
Linearized and Single-Pass Belief Propagation

Wolfgang Gatterbauer Stephan Günnemann Danai Koutra Christos Faloutsos
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

gatt@cmu.edu sguennem@cs.cmu.edu dkoutra@cs.cmu.edu christos@cs.cmu.edu

ABSTRACT
How can we tell when accounts are fake or real in a social
network? And how can we tell which accounts belong to
liberal, conservative or centrist users? Often, we can answer
such questions and label nodes in a network based on the
labels of their neighbors and appropriate assumptions of ho-
mophily (“birds of a feather flock together”) or heterophily
(“opposites attract”). One of the most widely used methods
for this kind of inference is Belief Propagation (BP) which
iteratively propagates the information from a few nodes with
explicit labels throughout a network until convergence. A
well-known problem with BP, however, is that there are no
known exact guarantees of convergence in graphs with loops.

This paper introduces Linearized Belief Propagation
(LinBP), a linearization of BP that allows a closed-form so-
lution via intuitive matrix equations and, thus, comes with
exact convergence guarantees. It handles homophily, het-
erophily, and more general cases that arise in multi-class set-
tings. Plus, it allows a compact implementation in SQL. The
paper also introduces Single-pass Belief Propagation (SBP),
a localized (or “myopic”) version of LinBP that propagates
information across every edge at most once and for which the
final class assignments depend only on the nearest labeled
neighbors. In addition, SBP allows fast incremental updates
in dynamic networks. Our runtime experiments show that
LinBP and SBP are orders of magnitude faster than stan-
dard BP, while leading to almost identical node labels.

1. INTRODUCTION
Network effects are powerful and often appear in terms

of homophily (“birds of a feather flock together”). For ex-
ample, if we know the political leanings of most of Alice’s
friends on Facebook, then we have a good estimate of her
leaning as well. Occasionally, the reverse is true, also called
heterophily (“opposites attract”). For example, in an online
dating site, we may observe that talkative people prefer to
date silent ones, and vice versa. Thus, knowing the labels of
a few nodes in a network, plus knowing whether homophily

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 5
Copyright 2015 VLDB Endowment 2150-8097/15/01.

D R
D 0.8 0.2
R 0.2 0.8

(a) homophily

T S
T 0.3 0.7
S 0.7 0.3

(b) heterophily

H A F
H 0.6 0.3 0.1
A 0.3 0.0 0.7
F 0.1 0.7 0.2

(c) general case

Figure 1: Three types of network effects with example coupling
matrices. Shading intensity corresponds to the affinities or cou-
pling strengths between classes of neighboring nodes. (a): D:
Democrats, R: Republicans. (b): T: Talkative, S: Silent. (c): H:
Honest, A: Accomplice, F: Fraudster.

or heterophily applies in a given scenario, we can usually give
good predictions about the labels of the remaining nodes.

In this work, we not only cover these two popular cases
with k=2 classes, but also capture more general settings
that mix homophily and heterophily. We illustrate with an
example taken from online auction settings like e-bay [38]:
Here, we observe k=3 classes of people: fraudsters (F), ac-
complices (A) and honest people (H). Honest people buy
and sell from other honest people, as well as accomplices;
accomplices establish a good reputation (thanks to multiple
interactions with honest people), they never interact with
other accomplices (waste of effort and money), but they
do interact with fraudsters, forming near-bipartite cores be-
tween the two classes. Fraudsters primarily interact with
accomplices (to build reputation); the interaction with hon-
est people (to defraud them) happens in the last few days
before the fraudster’s account is shut down.

Thus, in general, we can have k different classes, and k×k
affinities or coupling strengths between them. These affini-
ties can be organized in a coupling matrix (which we call het-
erophily matrix1), as shown in Fig.1 for our three examples.
Figure 1a shows the matrix for homophily: It captures that
a connection between people with similar political orienta-
tions is more likely than between people with different ori-
entations.2 Figure 1b captures our example for heterophily:
Class T is more likely to date members of class S, and vice
versa. Finally, Fig. 1c shows our more general example: We
see homophily between members of class H and heterophily
between members of classes A and F.

In all of the above scenarios, we are interested in the most
likely “beliefs” (or labels) for all nodes in the graph. The

1In this paper, we assume the heterophily matrix to be given; e.g., by
domain experts. Learning heterophily from existing partially labeled
data is interesting future work (see [11] for initial results).
2An example of homophily with k=4 classes would be co-authorship:
Researchers in computer science, physics, chemistry and biology, tend
to publish with co-authors of similar training. Efficient labeling in
case of homophily is possible; e.g., by simple relational learners [31].

underlying problem is then: How can we assign class la-
bels when we know who-contacts-whom and the apriori (“ex-
plicit”) labels for some of the nodes in the network? This
learning scenario, where we reason from observed training
cases directly to test cases, is also called transductive infer-
ence, or semi-supervised learning (SSL).3

One of the most widely used methods for this kind of
transductive inference in networked data is Belief Propaga-
tion (BP) [44], which has been successfully applied in sce-
narios, such as fraud detection [32, 38] and malware detec-
tion [5]. BP propagates the information from a few explicitly
labeled nodes throughout the network by iteratively prop-
agating information between neighboring nodes. However,
BP has well-known convergence problems in graphs with
loops (see [44] for a detailed discussion from a practitioner’s
point of view). While there is a lot of work on convergence
of BP (e.g., [8, 34]), exact criteria for convergence are not
known [35, Sec. 22]. In addition, whenever we get additional
explicit labels (e.g., we identify more fraudsters in the online
auction setting), we need to re-run BP from scratch. These
issues raise fundamental theoretical questions of practical
importance: How can we find sufficient and necessary con-
ditions for convergence of the algorithm? And how can we
support fast incremental updates for dynamic networks?

Contributions. This paper introduces two new formu-
lations of BP. Unlike standard BP, these (i) come with ex-
act convergence guarantees, (ii) allow closed-form solutions,
(iii) give a clear intuition about the algorithms, (iv) can be
implemented on top of standard SQL, and (v) one can even
be updated incrementally. In more detail, we introduce:

(1) LinBP : Section 3 gives a new matrix formulation for
multi-class BP called Linearized Belief Propagation (LinBP).
Section 4 proves LinBP to be the result of applying a certain
linearization process to the update equations of BP. Sec-
tion 4.2 goes one step further and shows that the solution
to LinBP can be obtained in closed-form by the inversion
of an appropriate Kronecker product. Section 5.1 shows
that this new closed-form provides us with exact conver-
gence guarantees (even on graphs with loops) and a clear in-
tuition about the reasons for convergence/non-convergence.
Section 5.3 shows that our linearized matrix formulation of
LinBP allows a compact implementation in SQL with stan-
dard joins and aggregates, plus iteration. Finally, experi-
ments in Sect. 7 show that a main-memory implementation
of LinBP takes 4 sec for a graph for which standard BP
takes 40 min, while giving almost identical classifications
(> 99.9% overlap).

(2) SBP : Section 6 gives a novel semantics for “local” (or
“myopic”) transductive reasoning called Single-pass Belief
Propagation (SBP). SBP propagates information across ev-
ery edge at most once (i.e. it ignores some edges) and is a
generalization of relational learners [31] from homophily to
heterophily and even more general couplings between classes
in a sound and intuitive way. In particular, the final labels
depend only on the nearest neighbors with explicit labels.
The intuition is simple: If we do not know the political lean-
ings of Alice’s friends, than knowing the political leaning of
friends of Alice’s friends (i.e. nodes that are 2 hops away
in the underlying network) will help us make some predic-
tions about her. However, if we do know about most of her
friends, then information that is more distant in the network

3Contrast this with inductive learning, where we first infer general
rules from training cases, and only then apply them to new test cases.

can often be safely ignored. We formally show the connec-
tion between LinBP and SBP by proving that the labeling
assignments for both are identical in the case of decreasing
affinities between nodes in a graph. Importantly, SBP (in
contrast to standard BP and LinBP) allows fast incremental
maintenance for the predicated labels if the underlying net-
work is dynamic: Our SQL implementation of SBP allows
incremental updates with an intuitive index based on short-
est paths to explicitly labeled nodes. Finally, experiments
in Sect. 7 show that a disk-bound implementation of SBP
is even faster than LinBP by one order of magnitude while
giving similar classifications (> 98.6% overlap).

Outline. Sect. 2 provides necessary background on BP.
Sect. 3 introduces the LinBP matrix formulation. Sect. 4
sketches its derivation. Sect. 5 provides convergence guar-
antees, extends LinBP to weighted graphs, and gives a SQL
implementation of LinBP. Sect. 6 introduces the SBP se-
mantics, including a SQL implementation for incremental
maintenance. Sect. 7 gives experiments. Sect. 8 contrasts
related work, and Sect. 9 concludes. All proofs plus an
additional algorithm for incrementally updating SBP when
adding edges to the graph are available in our technical re-
port on ArXiv [13]. The actual SQL implementations of
LinBP and SBP are available on the authors’ home pages.

2. BELIEF PROPAGATION
Belief Propagation (BP), also called the sum-product al-

gorithm, is an exact inference method for graphical mod-
els with tree structure [40]. The idea behind BP is that
all nodes receive messages from their neighbors in parallel,
then they update their belief states, and finally they send
new messages back out to their neighbors. In other words,
at iteration i of the algorithm, the posterior belief of a node
s is conditioned on the evidence that is i steps away from s
in the underlying network. This process repeats until con-
vergence and is well-understood on trees.

When applied to loopy graphs, however, BP is not guar-
anteed to converge to the marginal probability distribution.
Indeed, Judea Pearl, who invented BP, cautioned about the
indiscriminate use of BP in loopy networks, but advocated
to use it as an approximation scheme [40]. More important,
loopy BP is not even guaranteed to converge at all. Despite
this lack of exact criteria for convergence, many papers have
since shown that “loopy BP” gives very accurate results in
practice [49], and it is thus widely used today in various
applications, such as error-correcting codes [29] or stereo
imaging in computer vision [9]. Our practical interest in BP
comes from the fact that it is not just an efficient inference
algorithm on probabilistic graphical models, but it has also
been successfully used for transductive inference.

The transductive inference problem appears, in its gen-
erality, in a number of scenarios in both the database and
machine learning communities and can be defined as follows:
Consider a set of keys X = {x1, . . . , xn}, a domain of values
Y = {y1, . . . , yk}, a partial labeling function ` : XL → Y
with XL ⊆ X that maps a subset of the keys to values,
a weighted mapping w : (X1, X2) → R with (X1, X2) ⊆
X × X, and a local condition fi(X,w, xi, `i) that needs to
hold for a solution to be accepted.4 The three problems are
then to find: (i) an appropriate semantics that determines

4Notice that update equations define a local condition implicitly by
giving conditions that a solution needs to fulfill after convergence.

labels for all keys, (ii) an efficient algorithm that implements
this semantics, and (iii) efficient ways to update labels in
case the labeling function `, or the mapping w change.

In our scenario, we are interested in the most likely beliefs
(or classes) for all nodes in a network. BP helps to iteratively
propagate the information from a few nodes with explicit
beliefs throughout the network. More formally, consider a
graph of n nodes (or keys) and k possible classes (or values).
Each node maintains a k-dimensional belief vector where
each element i represents a weight proportional to the belief
that this node belongs to class i. We denote by es the vector
of prior (or explicit) beliefs and bs the vector of posterior
(or implicit or final) beliefs at node s, and require that es
and bs are normalized to 1; i.e.

∑
i es(i) =

∑
i bs(i) = 1.5

Using mst for the k-dimensional message that node s sends
to node t, we can write the BP update formulas [35, 48]
for the belief vector of each node and the messages it sends
w.r.t. class i as:

bs(i)←
1

Zs
es(i)

∏
u∈N(s)

mus(i) (1)

mst(i)←
∑
j

Hst(j, i) es(j)
∏

u∈N(s)\t

mus(j) (2)

Here, we write Zs for a normalizer that makes the ele-
ments of bs sum up to 1, and Hst(j, i) for a proportional
“coupling weight” that indicates the relative influence of
class j of node s on class i of node t (cf. Fig. 1).6 We as-
sume that the relative coupling between classes is the same
in the whole graph; i.e. H(j, i) is identical for all edges in
the graph. We further require this coupling matrix H to be
doubly stochastic and symmetric: (i) Double stochasticity is
a necessary requirement for our mathematical derivation.7

(ii) Symmetry is not required but follows from our assump-
tion of undirected edges. For BP, the above update formulas
are then repeatedly computed for each node until the values
(hopefully) converge to the final beliefs.

The goal in our paper is to find the top beliefs for each
node in the network, and to assign these beliefs to the re-
spective nodes. That is, for each node s, we are interested
in determining the classes with the highest values in bs.

Problem 1 (Top belief assignment). Given: (1) an undi-
rected graph with n nodes and adjacency matrix A, where
A(s, t) 6= 0 if the edge s− t exists, (2) a symmetric, doubly
stochastic coupling matrix H representing k classes, where
H(j, i) indicates the relative influence of class j of a node
on class i of its neighbor, and (3) a matrix of explicit beliefs
E, where E(s, i) 6= 0 is the strength of belief in class i by
node s. The goal of top belief assignment is to infer for
each node a set of classes with highest final belief.

In other words, our problem is to find a mapping from nodes
to sets of classes (in order to allow for ties).

3. LINEARIZED BELIEF PROPAGATION
5Notice that here and in the rest of this paper, we write

∑
i as short

form for
∑

i∈[k] whenever k is clear from the context.
6We chose the symbol H for the coupling weights as reminder of
our motivating concepts of homophily and heterophily. Concretely,
if H(i, i) > H(j, i) for j 6= i, we say homophily is present, otherwise
heterophily or a mix between the two.
7Notice that single-stochasticity could easily be constructed by taking
any set of vectors of relative coupling strengths between neighboring
classes, normalizing them to 1, and arranging them in a matrix.

Formula Maclaurin series Approx.

Logarithm ln(1 + ε) = ε− ε2

2
+ ε3

3
−. . . ≈ ε

Division
1
k

+ε1
1+ε2

= (1
k

+ε1)(1−ε2+ε22−. . .) ≈
1
k

+ε1− ε2
k

Figure 2: Two linearizing approximations used in our derivation.

In this section, we introduce Linearized Belief Propagation
(LinBP), which is a closed-form description for the final be-
liefs after convergence of BP under mild restrictions of our
parameters. The main idea is to center values around de-
fault values (using Maclaurin series expansions) and to then
restrict our parameters to small deviations from these de-
faults. The resulting equations replace multiplication with
addition and can thus be put into a matrix framework with
a closed-form solution. This allows us to later give exact
convergence criteria based on problem parameters.

Definition 2 (Centering). We call a vector or matrix x
“ centered around c” if all its entries are close to c and their
average is exactly c.

Definition 3 (Residual vector/matrix). If a vector x is cen-
tered around c, then the residual vector around c is defined
as x̂ = [x1 − c, x2 − c, . . .]. Accordingly, we denote a ma-

trix X̂ as a residual matrix if each column and row vector
corresponds to a residual vector.

For example, we call the vector x = [1.01, 1.02, 0.97] cen-
tered around c = 1.8 The residuals from c will form the
residual vector x̂ = [0.01, 0.02,−0.03]. Notice that the en-
tries in a residual vector always sum up to 0, by construction.

The main ideas in our proofs are as follows: (1) the k-
dimensional message vectors m are centered around 1; (2)
all the other k-dimensional vectors are probability vectors,
they have to sum up to 1, and thus they are centered around
1/k. This holds for the belief vectors b, e, and for the all
entries of matrix H; and (3) we make use of each of the two
linearizing approximations shown in Fig. 2 exactly once.

According to aspect (1) of the previous paragraph, we
require that the messages sent are normalized so that the
average value of the elements of a message vector is 1 or,
equivalently, that the elements sum up to k:

mst(i)←
1

Zst

∑
j

H(j, i) es(j)
∏

u∈N(s)\t

mus(j) (3)

Here, we write Zst as a normalizer that makes the elements
of mst sum up to k. Scaling all elements of a message vector
by the same constant does not affect the resulting beliefs
since the normalizer in Eq. 1 makes sure that the beliefs are
always normalized to 1, independent of the scaling of the
messages. Thus, scaling messages still preserves the exact
solution, yet it will be essential for our derivation.

Theorem 4 (Linearized BP (LinBP)). Let B̂ and Ê be the
residual matrices of final and explicit beliefs centered around
1/k, Ĥ the residual coupling matrix centered around 1/k, A
the adjacency matrix, and D = diag(d) the diagonal degree
matrix. Then, the final belief assignment from belief propa-
gation is approximated by the equation system:

B̂ = Ê + AB̂Ĥ−DB̂Ĥ
2

(LinBP) (4)

8All vectors x in this paper are assumed to be column vectors
[x1, x2, . . .]

ᵀ even if written as row vectors [x1, x2, . . .].

=	 +	 −	
t	 t	 t	 t	

s	

s	 t	

n	 n	 n	 n	

k	 k	 n	 k	 k	

k	

k	 k	

k	

n	

n	 n	

B̂ = Ê + A B̂ Ĥ − D B̂ Ĥ
2

Figure 3: LinBP equation (Eq.4): Notice our matrix conventions:

Ĥ(j, i) indicates the relative influence of class j of a node on class
i of its neighbor, A(s, t) = A(t, s) 6= 0 if the edge s− t exists, and

B̂(s, i) is the belief in class i by node s.

Figure 3 illustrates Eq. 4 and shows our matrix conven-

tions. We refer to the term DB̂Ĥ
2

as “echo cancellation”.9

For increasingly small residuals, the echo cancellation be-
comes increasingly negligible, and by further ignoring it,
Eq. 4 can be further simplified to

B̂ = Ê + AB̂Ĥ (LinBP∗) (5)

We will refer to Eq.4 (with echo cancellation) as LinBP and
Eq. 5 (without echo cancellation) as LinBP∗.

Iterative updates. Notice that while these equations
give an implicit definition of the final beliefs after conver-
gence, they can also be used as iterative update equations,
allowing an iterative calculation of the final beliefs. Starting
with an arbitrary initialization of B̂ (e.g., all values zero),
we repeatedly compute the right hand side of the equations
and update the values of B̂ until the process converges:

B̂
(`+1) ← Ê + AB̂

(`)
Ĥ−DB̂

(`)
Ĥ

2
(LinBP) (6)

B̂
(`+1) ← Ê + AB̂

(`)
Ĥ (LinBP∗) (7)

Thus, the final beliefs of each node can be computed via
elegant matrix operations and optimized solvers, while the
implicit form gives us guarantees for the convergence of this
process, as explained in Sect. 5.1. Also notice that our up-
date equations calculate beliefs directly (i.e. without having
to calculate messages first); this will give us significant per-
formance improvements as our experiments will later show.

4. DERIVATION OF LINBP
This section sketches the proofs of our first technical con-

tribution: Section 4.1 linearizes the update equations of BP
by centering around appropriate defaults and using the ap-
proximations from Fig. 2 (Lemma 5), and then expressesing
the steady state messages in terms of beliefs (Lemma 6).
Sect. 4.2 gives an additional closed-form expression for the
steady-state beliefs (Proposition 7).

4.1 Centering Belief Propagation
We derive our formalism by centering the elements of the

coupling matrix and all message and belief vectors around
their natural default values; i.e. the elements of m around 1,
and the elements of H, e, and b around 1

k
. We are interested

in the residual values given by: m(i) = 1 + m̂(i), H(j, i) =

9Notice that the original BP update equations send a message across
an edge that excludes information received across the same edge from
the other direction (“u ∈ N(s)\t” in Eq.2). In a probabilistic scenario
on tree-based graphs, this term is required for correctness. In loopy
graphs (without well-justified semantics), this term still compensates
for two neighboring nodes building up each other’s scores.

1
k

+ Ĥ(j, i), e(i) = 1
k

+ ê(i), and b(i) = 1
k

+ b̂(i).10 As a

consequence, Ĥ ∈ Rk×k is the residual coupling matrix that
makes explicit the relative attraction and repulsion: The
sign of Ĥ(j, i) tells us if the class j attracts or repels class

i in a neighbor, and the magnitude of Ĥ(j, i) indicates the
strength. Subsequently, this centering allows us to rewrite
belief propagation in terms of the residuals.

Lemma 5 (Centered BP). By centering the coupling ma-
trix, beliefs and messages, the equations for belief propaga-
tion can be approximated by:

b̂s(i)← ês(i) +
1

k

∑
u∈N(s)

m̂us(i) (8)

m̂st(i)← k
∑
j

Ĥ(j, i)b̂s(j)−
∑
j

Ĥ(j, i)m̂ts(j) (9)

Using Lemma 5, we can derive a closed-form description
of the steady-state of belief propagation.

Lemma 6 (Steady state messages). For small deltas of all
values from their expected values, and after convergence of
belief propagation, message propagation can be expressed in
terms of the steady beliefs as:

m̂st = k(Ik − Ĥ
2
)−1Ĥ(b̂s − Ĥb̂t) (10)

where Ik is the identity matrix of size k.

From Lemma 6, we can finally prove Theorem 4.

4.2 Closed-form solution for LinBP
In practice, we will solve Eq. 4 and Eq. 5 via an iterative

computation (see end of Sect. 3). However, we next give a
closed-form solution, which allows us later to study the con-
vergence of the iterative updates. We need to introduce two
new notions: Let X and Y be matrices of order m× n and
p× q, respectively, and let xj denote the j-th column of ma-
trix X; i.e. X = {xij} = [x1 . . .xn]. First, the vectorization
of matrix X stacks the columns of a matrix one underneath
the other to form a single column vector; i.e.

vec
(
X
)

=

x1

...
xn

Second, the Kronecker product of X and Y is the mp × nq
matrix defined by

X⊗Y =

x11Y x12Y . . . x1nY
x21Y x22Y . . . x2nY

...
...

. . .
...

xm1Y xm2Y . . . xmnY

Proposition 7 (Closed-form LinBP). The closed-form so-
lution for LinBP (Eq. 4) is given by:

vec
(
B̂
)

= (Ink − Ĥ⊗A + Ĥ
2 ⊗D)−1vec

(
Ê
)

(LinBP) (11)

10Notice that we call these default values “natural” as our results
imply that if we start with centered messages around 1 and set 1

Zst
=

k, then the derived messages with Eq.3 remain centered around 1 for
any iteration. Also notice that multiplying with a message vector
with all entries 1 does not change anything. Similarly, a prior belief
vector with all entries 1

k gives equal weight to each class. Finally,
notice that we call “nodes with explicit beliefs”, those nodes for which
the residuals have non-zero elements (ê 6= 0k); i.e. the explicit beliefs
deviate from the center 1

k .

By further ignoring the echo cancellation Ĥ
2 ⊗D, we get

the closed-form for LinBP∗ (Eq. 5) as:

vec
(
B̂
)

= (Ink − Ĥ⊗A)−1vec
(
Ê
)

(LinBP∗) (12)

Thus, by using Eq. 11 or Eq. 12, we are able to compute the
final beliefs in a closed-form, as long as the inverse of the
matrix exists. In the next section, we show the relation of
the closed-form to our original update equation Eq. 6 and
give exact convergence criteria.

5. ADDITIONAL BENEFITS OF LINBP
In this section, we give sufficient and necessary conver-

gence criteria for LinBP and LinBP∗, we show how our for-
malism generalizes to weighted graphs, and we show how
our update equations can be implemented in standard SQL.

5.1 Update equations and Convergence
Equation 11 and Eq. 12 give us a closed-form for the fi-

nal beliefs after convergence. From the Jacobi method for
solving linear systems [43], we know that the solution for
y = (I −M)−1x can be calculated, under certain condi-
tions, via the iterative update equation

y(`+1) ← x + M y(`) (13)

These updates are known to converge for any choice of initial
values for y(0), as long as M has a spectral radius ρ(M) <

1.11 Thus, the same convergence guarantees carry over when
Eq. 11 and Eq. 12 are written, respectively, as

vec
(
B̂

(`+1))← vec
(
Ê
)

+
(
Ĥ⊗A− Ĥ

2 ⊗D
)
vec
(
B̂

(`))
(14)

vec
(
B̂

(`+1))← vec
(
Ê
)

+
(
Ĥ⊗A

)
vec
(
B̂

(`))
(15)

Furthermore, it follows from Proposition 7, that update
Eq. 14 is equivalent to our original update Eq. 6, and thus
both have the same convergence guarantees.

We are now ready to give a sufficient and necessary cri-
teria for convergence of the iterative LinBP and LinBP∗

update equations.

Lemma 8 (Exact convergence). Necessary and sufficient
criteria for convergence of LinBP and LinBP∗ are:

LinBP converges ⇔ ρ
(
Ĥ⊗A− Ĥ

2 ⊗D
)
< 1 (16)

LinBP∗ converges⇔ ρ(Ĥ) < 1
ρ(A)

(17)

In practice, computation of the largest eigenvalues can be
expensive. Instead, we can exploit the fact that any norm
||X|| gives an upper bounds to the spectral radius of a matrix
X to establish sufficient (but not necessary) and easier-to-
compute conditions for convergence.

Lemma 9 (Sufficient convergence). Let || · || stand for any
sub-multiplicative norm of the enclosed matrix. Then, the
following are sufficient criteria for convergence:

LinBP converges ⇐ ||Ĥ|| <
√
||A||2+4||D||−||A||

2||D|| (18)

LinBP∗ converges⇐ ||Ĥ|| < 1
||A|| (19)

Further, let M be a set of such norms and let ||X||M :=
min||·||i∈M ||X||i. Then, by replacing each || · || with || · ||M ,
we get better bounds.

11The spectral radius ρ(·) is the supremum among the absolute values
of the eigenvalues of the enclosed matrix.

Vector/Elementwise p-norms for p ∈ [1, 2] (e.g., the Frobe-
nius norm) and all induced p-norms are sub-multiplicative.12

Furthermore, vector p-norms are monotonically decreasing
for increasing p, and thus: ρ(X) ≤ ||X||2 ≤ ||X||1. We
thus suggest using the following set M of three norms which
are all fast to calculate: (i) Frobenius norm, (ii) induced-1
norm, and (iii) induced-∞ norm.

5.2 Weighted graphs
Notice that Theorem 4 can be generalized to allow weighted

graphs by simply using a weighted adjacency matrix A with
elements A(i, j) = w > 0 if the edge j− i exists with weight
w, and A(i, j) = 0 otherwise. Our derivation remains the
same, we only need to make sure that the degree ds of a
node s is the sum of the squared weights to its neighbors
(recall that the echo cancellation goes back and forth). The
weight on an edge simply scales the coupling strengths be-
tween two neighbors, and we have to add up parallel paths.
Thus, Theorem 4 can be applied for weighted graphs as well.

5.3 LinBP in SQL
Much of today’s data is stored in relational DBMSs. We
next give a compact translation of our linearized matrix for-
mulation into a simple implementation in SQL with stan-
dard joins and aggregates, plus iteration. As a consequence,
any standard DBMS is able to perform LinBP on networked
data stored in relations. An implementation of the original
BP would require either a non-standard product aggregate
function (with the practical side effect of often producing un-
derflows) or the use of an additional logarithmic function.
Issues with convergence would still apply [44].

In the following, we use Datalog notation extended with
aggregates in the tradition of [7]. Such an aggregate query
has the form Q(x̄, α(ȳ)) :−C(z̄) with C being a conjunction
of non-negated relational atoms and comparisons, and α(ȳ)
being the aggregate term.13 When translating into SQL, the
head of the query (x̄, α(ȳ)) defines the SELECT clause, and
the variables x̄ appear in the GROUP BY clause of the query.

We use table A(s, t, w) to represent the adjacency matrix
A with s and t standing for source and target node, respec-
tively, and w for weight; E(v, c, b) and B(v, c, b) to represent

the explicit beliefs Ê and final beliefs B̂, respectively, with v
standing for node, c for class and b for belief; and H(c1, c2, h)

to represent the coupling matrix Ĥ with coupling strength
h from a class c1 on it’s neighbor’s class c2. From these
data, we calculate an additional table D(v, d) representing
the degree matrix D, defined to allow weighted edges:14

D(s, sum(w ∗ w)) :−A(s, t, w)

and an additional table H2(c1, c2, h) representing Ĥ
2
:

H2(c1, c2, sum(h1 · h2)) :−H(c1, c3, h1), H(c3, c2, h2) (20)

Using these tables, Algorithm 1 shows the translation of
the update equations for LinBP into the relational model:

12Vector p-norms are defined as ||X||p =
(∑

i

∑
j |X(i, j)|p

)1/p.

Induced p-norms, for p = 1 and p = ∞, are defined ||X||1 =
maxj

∑
i |X(i, j)| and ||X||∞ = maxi

∑
j |X(i, j)|, i.e. as maximum

absolute column sum or maximum absolute row sum, respectively.
13Notice that in a slight abuse of notation (and for the sake of con-
ciseness), we use variables to express both attribute names and join
variables in Datalog notation.

14Remember from Sect. 5.2 that the degree of a node in a weighted
graph is the sum of the squares of the weights to all neighbors.

Algorithm 1: (LinBP) Returns the final beliefs B with LinBP

for a weighted network A with explicit beliefs E, coupling

strengths H, and calculated tables D and H2.

Input: A(s, t, w), E(v, c, b), H(c1, c2, h), D(v, d), H2(c1, c2, h)
Output: B(v, c, b)

1 Initialize final beliefs for nodes with explicit beliefs:
B(s, c, b) :−E(s, c, b)

2 for i← 1 to l do
3 Create two temporary views:

V1(t, c2, sum(w · b · h)) :−A(s, t, w), B(s, c1, b), H(c1, c2, h)
V2(s, c2, sum(d · b · h)) :−D(s, d), B(s, c1, b), H2(c1, c2, h)

4 Update final beliefs:
B(v, c, b1 + b2 − b3) :−E(v, c, b1), V1(v, c, b2), V2(v, c, b3)

return B(v, c, b)

We initialize the final beliefs with the explicit beliefs (line 1).
We then create two temporary tables, V1(v, c, b) representing

the result of AB̂Ĥ and V2(v, c, b) for DB̂Ĥ
2

(line 3). These
views are then combined with the explicit beliefs to update
the final beliefs (line 4).15 This is repeated a fixed number
l of times or until the maximum change of a belief between
two iterations is smaller than a threshold. Finally, we return
the top beliefs for each node.

Corollary 10 (LinBP in SQL). The iterative updates for
LinBP can be expressed in standard SQL with iteration.

6. SINGLE-PASS BELIEF PROPAGATION
Our ultimate goal with belief propagation is to assign the

most likely class(es) to each unlabeled node (i.e. each node
without explicit beliefs). Here, we define a semantics for top
belief assignment that is closely related to BP and LinBP
(it gives the same classification for increasingly small cou-
pling weights), but that has two algorithmic advantages: (i)
calculating the final beliefs requires to visit every node only
once (and to propagate values across an edge at most once);
and (ii) the beliefs can be maintained incrementally when
new explicit beliefs or edges are added to the graph.

6.1 Scaling Beliefs
We start with a simple definition that helps us separate

the relative strength of beliefs from their absolute values.

Definition 11 (Standardization). Given a vector x = [x1,
x2, . . . , xk] with µ(x) and σ(x) being the mean and the stan-
dard deviation of the elements of x, respectively. The stan-
dardization of x is the new vector x′ = ζ(x) with x′i =
xi−µ(x)
σ(x)

if σ 6= 0, and with x′i = 0 if σ = 0.16

For example, ζ
(
[1, 0]

)
= [1,−1], ζ

(
[1, 1, 1]

)
= [0, 0, 0], and

ζ
(
[1, 0, 0, 0, 0]

)
= [2,−0.5,−0.5,−0.5,−0.5]. The standard-

ized belief assignment b̂
′
s for a node s is then the standard-

ization of the final belief assignment: b̂
′
s = ζ(b̂s). For ex-

ample, assume two nodes s and t with final beliefs b̂s =
[4,−1,−1,−1,−1] and b̂t = [40,−10,−10,−10,−10], re-
spectively. The standardized belief assignment is then the

same for both nodes: b̂
′
s = b̂

′
t = [2,−0.5,−0.5,−0.5,−0.5]

15In practice, we use union all, followed by a grouping on v, c.
16We use the symbol ζ since standardized vector elements are also
varyingly called standard scores, z-scores, or z-values.

v2	

v3	

v7	
v6	

v5	

v4	
v1	

(a)

v2	

v3	

v7	
v6	

v5	

v4	
v1	 g=2	

g=1	

(b)

v1	 v2	

v3	v4	
v8	 v7	

v6	v5	

(c)

Figure 5: (a),(b): Example 16: Node v1 has geodesic number 2
and three shortest paths to nodes with explicit beliefs v2 and v7.
(c): Example 20: Example torus graph taken from [48].

whereas the standard deviations indicate the magnitude of

differences: σ(b̂
′
s) = 2, σ(b̂

′
s) = 20.

Lemma 12 (Scaling Ê). Scaling the explicit beliefs with a
constant factor λ leads to scaled final beliefs by λ. In other
words, ∀λ ∈ R :

(
Ê← λ · Ê

)
⇒
(
B̂← λ · B̂

)
.

Proof. This follows immediately from Eq. 11.

Corollary 13 (Scaling Ê). Scaling Ê with a constant factor

does not change the standardized belief assignment B̂
′
.

The last corollary implies that scaling the explicit beliefs
has no effect on the top belief assignment, and thus the
ultimate classification by LinBP.

6.2 Scaling Coupling Strengths
While scaling Ê has no effect on the standardized beliefs,

the scale of the residual coupling matrix Ĥ is important.
To separate (i) the relative difference among beliefs from
(ii) their absolute scale, we introduce a positive parameter

εH and define with Ĥo the unscaled (“original”) residual

coupling matrix implicitly by: Ĥ = εHĤo. This separation
allows us to keep the relative scaling fixed as Ĥo and to
thus analyze the influence of the absolute scaling on the
standardized belief assignment (and thereby the top belief
assignment) by varying εH only.

It was previously observed in experiments [26] that the
top belief assignment is the same for a large range of εH in
belief propagation with binary classes, but that it deviates
for very small εH . Here we show that the standardized belief
assignment for LinBP converges for εH → 0+, and that any
deviations are due to limited computational precision. We
also give a new closed-form for the predictions of LinBP in
the limit of εH → 0+ and name this semantics Single-Pass
Belief Propagation (SBP). SBP has several advantages: (i)
it is faster to calculate (we chose its name since information
is propagated across each edge at most once), (ii) it can
be maintained incrementally, and (iii) it provides a simple
intuition about its behavior and an interesting connection to
relational learners [31]. For that, we need one more notion:

Definition 14 (Geodesic number g). The geodesic number
gt of a node t is the length of the shortest path to any node
with explicit beliefs.

Notice that any node with explicit beliefs has geodesic
number 0. For the following definition, let the weight w of
a path p be the product of the weights of its edges (if the
graph is unweighted, than the weights are 1).

0.01 0.1 1
−1.5

−1

−0.5

0

0.5

1

1.5

εH

st
a
n
d
a
rd

iz
ed

b
el
ie
fs

class 2	

class 1	

class 3	

(a) b̂
′
v4

for BP

0.01 0.1 1
−1.5

−1

−0.5

0

0.5

1

1.5

εH

st
a
n
d
a
rd

iz
ed

b
el
ie
fs

class 2	

class 1	

class 3	

ρ	|	|	

(b) b̂
′
v4

for LinBP

0.01 0.1 1
−1.5

−1

−0.5

0

0.5

1

1.5

εH

st
a
n
d
a
rd

iz
ed

b
el
ie
fs

class 2	

class 1	

class 3	

ρ	|	|	

(c) b̂
′
v4

for LinBP∗

0.1 0.2 0.5 0.8
10−4

10−3

10−2

10−1

100

101

εH

st
a
n
d
a
rd

d
ev

ia
ti
o
n LBP*	

LBP	

ρLBP*	
ρLBP	

SBP	

BP	

(d) σ(b̂v4)

Figure 4: Example 20: (a-c): For decreasing εH , the standardized beliefs of BP, LinBP, and LinBP∗ converge towards the ones from
SBP: [−0.069, 1.258,−1.189] (horizontal dashed lines). While there are no known exact convergence criteria for BP, we gave necessary
and sufficient criteria for both LinBP and LinBP∗ (vertical full lines named ρ) plus easier-to-calculate sufficient only conditions (vertical
dashed lines named ||). Notice that our ρ-criteria predict exactly when they algorithms stop converging (end of lines). (d): For decreasing
εH , the standard deviations of final beliefs for BP, LinBP, and LinBP∗ also converge towards the one of SBP.

Definition 15 (Single-Pass BP (SBP)). Given a node t with
geodesic number k, let P kt be the set of all paths with length
k from a node with explicit beliefs to t. For any such path
p ∈ P kt , let wp be its weight, and êp the explicit beliefs of
the node at the start of path p. The final belief assignment
b̂t for Single-pass Belief Propagation (SBP) is defined by

b̂s = Ĥ
k ∑
p∈Pk

s

wpêp (21)

The intuition behind SBP is that nodes with increasing
distance have an increasingly negligible influence: For every
additional edge in a path, the original influence is scaled by
εH times the modulation by Ĥ. Thus in the limit of εH →
0+, the nearest neighbors with explicit beliefs will dominate
the influence of any other node. Since linear scaling does
not change the standardization of a vector, ζ(εx) = ζ(x),

scaling Ĥ has no effect on the standardized and thus also top
belief assignments for SBP. In other words, the standardized
belief assignment of SBP is independent of εH (as long as
εH > 0), and w.l.o.g. we can therefore use the unscaled

coupling matrix Ĥo (εH = 1). This does not hold for LinBP.

Example 16 (SBP illustration). Consider the undirected
and unweighted graph of Fig. 5a. Node v1 has geodesic num-
ber 2 since the closest nodes with explicit beliefs are v2 and
v7 two hops away. There are three highlighted shortest paths
to those beliefs. The SBP standardized belief assignment is

then b̂
′
v1 = ζ

(
Ĥ

2

o(2êv2 + êv7)
)
. Notice that the factor 2 for

êv1 arises from the 2 shortest paths from v2 to v1.

Given a graph with adjacency matrix A and a selection of
explicit nodes. Then for any edge, one of two cases is true:
(i) the edge connects two nodes with the same geodesic num-
ber, or (ii) the edge connects two nodes that have geodesic
numbers of difference one. It follows that SBP has the same
semantics as LinBP over a modified graph with some edges
removed and the remaining edges becoming directed:

Lemma 17 (Modified adjacency matrix). Consider a graph
with adjacency matrix A and a selection of explicit nodes.
Remove all edges between nodes with same geodesic numbers.
For the remaining edges, keep the direction from lower to
higher geodesic number. Let A∗ be the resulting modified
adjacency matrix. Then: (1) the directed graph A∗ has no

directed cycles; and (2) SBP for A leads to the same final
beliefs as LinBP over the transpose Aᵀ

∗.

Example 18 (SBP adjacency matrix). Let’s consider again
the undirected graph of Fig. 5b. Among the 4 entries for
v1 − v3 and v1 − v5 in A, the modified adjacency matrix
contains only one entry for v3 → v1, because v3, v1, v5

have geodesic numbers 1, 2, 2, respectively. Thus the edge
v1 − v3 only propagates information from v3 to v1, and the
edge v1 − v5 propagates no information, as both end points
have the same geodesic number.

A =

0 0 1 1 0 0 0
0 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 0 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 1 0 0 1 0

 A∗ =

0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0

The following theorem gives the connection between LinBP

and SBP and is the main result of this section.

Theorem 19 (Limit of LinBP). For limεH→0+ , the stan-
dardized belief assignment for LinBP converges towards the
standardized belief assignment for SBP.

In other words, except for ties (!), the top belief assignment
for LinBP and SBP are equal for sufficiently small εH .

Example 20 (Detailed example). Consider the unweighted
and undirected torus graph shown in Fig. 5c, and assume
explicit beliefs êv1 = [2,−1,−1], êv2 = [−1, 2,−1], êv3 =
[−1,−1, 2], plus the coupling matrix from Fig.1c. We get the
unscaled residual matrix by centering all entries around 1

3
:

Ĥo =
[

0.6 0.3 0.1
0.3 0.0 0.7
0.1 0.7 0.2

]
−
[

1
3

]
3×3

. We focus on node v4 and com-

pare the standardized belief assignment b̂
′
v4 and the standard

deviation σ(b̂v4) between BP, LinBP, LinBP∗, and SBP for

Ĥ = εHĤo and the limit of εH → 0. SBP predicts the
standardized beliefs to result from the two shortest paths,
v1 → v5 → v8 → v4 and v3 → v7 → v8 → v4, and thus

b̂
′
v4 = ζ

(
Ĥ

3

o (êv1 + êv3)
)
≈ [−0.069, 1.258,−1.189]. For the

standard deviation, we get σ
(
b̂v4
)

= σ
(
Ĥ

3
(êv1 + êv3)

)
=

ε3Hσ
(
Ĥ

3

o (êv1 + êv3)
)
≈ ε3H · 0.332. According to Eq. 16,

LinBP converges iff ρ
(
εHĤ0 ⊗A − ε2HĤ

2

0 ⊗D
)
< 1, from

which we can calculate numerically εH . 0.488. According
to Eq. 17, LinBP∗ converges iff εH < 1

ρ(Ĥo)ρ(A)
and thus

Algorithm 2: (SBP) Returns the final beliefs B and geodesic

numbers G with SBP for a weighted network A with explicit

beliefs E, and coupling scores H.

Input: A(s, t, w), E(v, c, b), H(c1, c2, h)
Output: B(v, c, b), G(v, g)

1 Initialize geodesic n. and beliefs for nodes with explicit beliefs:
G(v,′ 0′) :−E(v, ,)
B(v, c, b) :−E(v, c, b)

2 i← 1
3 repeat
4 Find next nodes to calculate:

G(t, i) :−G(s, i− 1), A(s, t,),¬G(t,)
5 Calculate beliefs for new nodes:

B(t, c2, sum(w · b · h)) :−G(t, i), A(s, t, w), B(s, c1, b),
G(s, i− 1), H(c1, c2, h)

6 i← i+ 1

until7 no more inserts into G
8 return B and G

for εH . 0.658, given ρ(A) ≈ 2.414 and ρ(Ĥo) ≈ 0.629.
Using the norm approximations instead of the spectral radii,
we get εH . 0.360 for LinBP, and εH . 0.455 for LinBP∗

as sufficient (but not necessary) conditions for convergence.
Figure 4c and Fig.4d illustrate that our spectral radii criteria
capture the convergence of LinBP and LinBP∗ exactly.

6.3 SBP in SQL
The SBP semantics may assign beliefs to a node that de-

pend on an exponential number of paths (exponential in the
geodesic number of a node). However, SBP actually allows a
simple algorithm in SQL that propagates information across
every edge at most once, which justifies our choice of name
“single-pass”. We achieve this in SQL by adding a table
G(v, g) to the schema that stores the geodesic number g for
each node v. This table G, in turn, also supports efficient
updates. In the following, we give two algorithms for (1)
the initial assignments of beliefs and (2) addition of explicit
beliefs. The Appendix also includes an algorithm for (3)
addition of edges to the graph.

(1) Initial belief assignment. Algorithm 2 calculates
the initial final beliefs: We start with nodes with explicit
beliefs; i.e. geodesic number 0 (line 1). At each subsequent
iteration (line 3), we then determine nodes with increasing
geodesic number by following edges from previously inserted
nodes (i.e. those with geodesic number smaller by 1), but ig-
noring nodes that have already been visited (i.e. those that
are already in G) (line 4). Notice that in a slight abuse of
Datalog notation (and for the sake of conciseness), we al-
low negation on relational atoms with anonymous variables
implying a nested not exist query.17 The beliefs of the new
nodes are then calculated by following all edges from nodes
that have just been assigned their beliefs in the previous step
(line 5). This is repeated for nodes with increasing geodesic
numbers until the table G remains unchanged (line 7).

Proposition 21 (Algorithm 2). Algorithm 2 terminates in
finite number of iterations and returns a sound and complete
enumeration of final beliefs according to SBP.

(2) Addition of explicit beliefs. We assume the set of
changed or additional explicit beliefs to be available in table

17The common syntactic safety restriction is that all variables need to
appear in a positive relational atom of the body. In practice, we use
a left outer join and an “is null” condition.

Algorithm 3: (∆SBP:newExplicitBeliefs) Updates B and G,

given new explicit beliefs En and weighted network A.

Input: En(v, c, b), A(s, t, w)
Output: Updated B(v, c, b) and G(v, g)

1 Initialize geodesic numbers for new nodes with explicit beliefs:
Gn(v,′ 0′) :−En(v, ,)
!G(v,′ 0′) :−Gn(v,)

2 Initialize beliefs for new nodes:
Bn(v, c, b) :−En(v, c, b)
!B(v, c, b) :−Bn(v, c, b)

3 i← 1
4 repeat
5 Find next nodes to update:

Gn(t, i) :−Gn(s, i− 1), A(s, t,),¬
(
G(t, gt), gt < i

)
!G(v, i) :−Gn(v, i)

6 Calculate new beliefs for these nodes:
Bn(t, c2, sum(w · b · h)) :−Gn(t, i), A(s, t, w), B(s, c1, b),

G(s, i− 1), H(c1, c2, h)
!B(v, c, b) :−Bn(v, c, b)

7 i← i+ 1

until8 no more inserts into Gn
9 return B and G

En(v, c, b) and use tables Gn(v, g) and Bn(v, c, b) to store
temporary information for nodes that get updated. We will
further use an exclamation mark left of a Datalog query to
imply that the respective data record is either inserted or
an existing one updated. Algorithm 3 shows the SQL trans-
lation for batch updates of explicit beliefs: Line 1 and line 2
initialize tables Gn and Bn for all new explicit nodes. At
each subsequent iteration i (line 4), we then determine all
nodes t that need to be updated with new geodesic number
gt = i by following edges from previously updated nodes s
with geodesic number gs = i − 1 and ignoring those that
already have a smaller geodesic number gt < i. (line 5).18

For these nodes t, the updated beliefs are then calculated
by only following edges that start at nodes s with geodesic
number gs = i − 1, independent of whether those were up-
dated or not (line 6). The algorithm terminates when there
are no more inserts in table Gn (line 8).

Proposition 22 (Algorithm 3). Algorithm 3 terminates in
finite number of iterations and returns a sound and complete
enumeration of updated beliefs.

7. EXPERIMENTS
In this section, we experimentally verify how well our new

methods LinBP and SBP scale, and how close the top belief
classification of both methods matches that of standard BP.

Experimental setup. We implemented main memory-
based versions of BP and LinBP in JAVA, and disk-bound
versions of LinBP and SBP in SQL. The JAVA implementa-
tion uses optimized libraries for sparse matrix operations [39].
When timing our memory-based algorithms, we focus on the
running times for computations only and ignore the time
for loading data and initializing matrices. For the SQL im-
plementation, we report the times from start to finish on
PostgreSQL 9.2 [41]. We are mainly interested in relative
performance within a platform (LinBP vs. BP in JAVA, and

18Notice that edges s→ t with gs ≥ gt cannot contain a geodesic path
in that direction and are thus ignored. Also notice that, again for the
sake of conciseness, we write ¬(G(t, g), g < i) to indicate that nodes
t with gt < i are not updated. In SQL, we used an except clause.

Graph characteristics Explicit b.
Nodes n Edges e e/n 5% 1‰
1 243 1 024 4.2 12 1
2 729 4 096 5.6 36 1
3 2 187 16 384 7.6 110 3
4 6 561 65 536 10.0 328 7
5 19 683 262 144 13.3 984 20
6 59 049 1 048 576 17.8 2 952 60
7 177 147 4 194 304 23.7 8 857 178
8 531 441 16 777 216 31.6 26 572 532
9 1 594 323 67 108 864 42.6 79 716 1 595

(a) Number of nodes, edges, explicit beliefs

1 2 3
1 10 -4 -6
2 -4 7 -3
3 -6 -3 9

(b) Unscaled
residual cou-
pling m. Ĥo

Figure 6: Synthetic data used for our experiments.

SBP vs. LinBP in SQL) and scalability with graph sizes.
Both implementations run on a 2.5 Ghz Intel Core i5 with
16G of main memory and a 1TB SSD hard drive. To allow
comparability across implementations, we limit evaluation
to one processor. For timing results, we run BP and LinBP
for 5 iterations, and SBP until termination.

Synthetic data. We assume a scenario with k = 3 classes
and the matrix Ĥo from Fig.6b as the unscaled coupling ma-
trix. We study the convergence of our algorithms by scaling
Ĥo with a varying parameter εH . We created 9 “Kronecker
graphs” of varying sizes (see Fig. 6a) which are known to
share many properties with real world graphs [30].19 To gen-
erate initial class labels (explicit beliefs), we pick 5% of the
nodes in each graph and assign to them two random num-
bers from {−0.1,−0.09, . . . , 0.09, 0.1} as centered beliefs for
two classes (the belief in the third class is then their negative
sum due to centering). For timing of incremental updates
for SBP (denoted as ∆SBP), we created similar updates
for 2% of the nodes with explicit beliefs (corresponding to
1‰ = 0.1% of all nodes in a graph).

DBLP data. For this experiment, we use the DBLP
data set from [21] which consists of 36 138 nodes represent-
ing papers, authors, conferences, and terms. Each paper
is connected to its authors, the conference in which it ap-
peared and the terms in its title. Overall, the graph con-
tains 341 564 edges (counting edges twice according to their
direction). Only 3 750 nodes (i.e. ≈ 10.4%) are labeled ex-
plicitly with one of 4 classes: AI (Artificial Intelligence), DB
(Databases), DM (Data Mining), and IR (Information Re-
trieval). We are assuming homophily, which is represented
by the 4 × 4-matrix in Fig. 8a. Our goal is to label the
remaining 89.6% of the nodes.

Measuring classification quality. We take the top be-
liefs returned by BP as “ground truth” (GT) and are in-
terested in how close the classifications returned by LinBP
and SBP come for varying scaling of Ĥo.

20 We measure
quality of our methods with precision and recall as follows:
Given a set of top beliefs BGT for a GT labeling method
and a set of top beliefs BO of another method (O), let B∩
be the set of shared beliefs: B∩ = BGT ∩ BO. Then, re-
call r measures the portion of GT beliefs that are returned
by O: r = |B∩|/|BGT|, and precision p measures the por-
tion of “correct” beliefs among BO: p = |B∩|/|BO|. Notice

19Notice that we count the number of entries in A as the number of
edges; thus, each edge is counted twice (s−t equals s→ t plus t→ s).

20Our experimental approach is justified since BP has previously been
shown to work well in real-life classification scenarios. Our goal in this
paper is not to justify BP for such inference, but rather to replace BP
with a faster and simpler semantics that gives similar classifications.

that this method naturally handles ties. For example, as-
sume that the GT assigns classes c1, c2, c3 as top beliefs to
3 nodes v1, v2, v3, respectively: {v1 → c1, v2 → c2, v3 → c3},
whereas the comparison method assigns 4 beliefs: {v1 →
{c1, c2}, v2 → c2, v3 → c2}. Then r = 2/3 and p = 2/4. As
alternative, we also use the F1-score, which is the harmonic
mean of precision and recall: h = 2pr

p+r
.

Question 1. Timing: How fast and scalable are LinBP and
SBP as compared to BP in both implementations?

Result 1. The main memory implementation of LinBP is
up to 600 times faster than BP, and the SQL implementa-
tion of SBP is more than 10 times faster than LinBP.

Figure 7a and Fig.7b show our timing experiments in both
JAVA and SQL, respectively. Figure 7c shows the times for
the 5 largest graphs. Notice that all implementations ex-
cept BP show approximate linear scaling behavior in the
number of edges (as reference, both Fig.7a and Fig.7b show
a dashed grey line that represents an exact linear scalability
of 100 000 edges per second). The main-memory implemen-
tation of LinBP is 600 times faster than that of BP for the
largest graph. We see at least two reasons for these speed-
ups: (i) the LinBP update equations calculate beliefs as
function of beliefs. In contrast, the BP update equations
calculate, for each node, outgoing messages as function of
incoming messages; (ii) our matrix formulation of LinBP
enables us to use well-optimized JAVA libraries for matrix
operations. These optimized operations lead to a highly ef-
ficient algorithm. SBP is 10 times faster than LinBP in
SQL (we look at this closer in the next question). Not sur-
prisingly, the main-memory JAVA implementation of LinBP
is much faster than the disk-bound LinBP implementation
in SQL. It is worth mentioning that even though our SQL
implementation did not exploit special libraries and is the
disk-bound, our SBP implementation in SQL is still faster
than the BP implementation in JAVA (!).

Question 2. Timing: What can the speed-up of SBP over
LinBP be mostly attributed to?

Result 2. SBP needs fewer iterations to converge and re-
quires fewer calculations for each iteration, on average.

Figure 7d shows the time required by our JAVA imple-
mentation for both LinBP and SBP within each iteration
on graph #7. SBP visits different edges in each iteration,
and thus needs a different amount of time for each itera-
tion, whereas LinBP revisits every edge in every iteration
again. The fact that SBP needs more time for the 2nd it-
eration than LinBP, although fewer edges are visited, is a
consequence of the overhead for maintaining the indexing
structure required to decide on which edges to visit next.

Question 3. Timing: When is it faster to update a graph
incrementally than to recalculate from scratch with SBP?

Result 3. In our experiments, it was faster to update SBP
when less than ≈ 50% of the final explicit beliefs are new.

Figure 7e shows the results for SQL on graph #5. We
fix 10% of the nodes with explicit beliefs after the update.
Among these nodes, we vary a certain fraction as new be-
liefs. For example, 20% on the horizontal axis implies that

104 105 106 107 1081 msec

10 msec

0.1 sec

1 sec

10 sec

1 min

10 min

1 h

Number of edges

LinBP	

100k edges/sec	

BP	

(a) Scalability JAVA

104 105 106 107 1081 msec

10 msec

0.1 sec

1 sec

10 sec

1 min

10 min

1 h

Number of edges

LinBP	

100k edges/sec	

SBP	

ΔSBP	

(b) Scalability SQL

JAVA [sec] PostgreSQL [sec] Comparisons

BP LinBP LinBP SBP ∆SBP BP
LinBP

LinBP
SBP

SBP
∆SBP

5 2 0.03 40 4.0 0.5 60 10.0 7.5
6 11 0.09 167 14.4 3.2 120 12.3 4.5
7 62 0.32 788 39.1 15.3 198 20.1 2.6
8 430 0.99 3584 222.7 76.0 433 16.1 2.9
9 2 514 3.92 - 820.7 313.5 642 - 2.6

(c) Timing results of all methods in SQL/JAVA on 5 largest graphs

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Iteration

T
im

e
[m

se
c]

SBP	

LinBP	

(d) SBP/LinBP in JAVA on #7

0 20% 40% 60% 80% 100%
0

1

2

3

4

5

6

Fraction of new explicit beliefs

T
im

e
[s
ec
]

SBP	

ΔSBP	

(e) ∆SBP/SBP in SQL on #5

10−8 10−7 10−6 10−5 10−4 10−3 10−2
0.995

0.996

0.997

0.998

0.999

1

εH

LinBP w.r.t. BP (r)	

LinBP w.r.t. BP (p)	

ρ	|	|	

(f) Recall & precision on #5

10−8 10−7 10−6 10−5 10−4 10−3 10−2
0.95

0.96

0.97

0.98

0.99

1

εH

SBP w.r.t. LinBP (r)	
LinBP* w.r.t. LinBP (r=p)	

SBP w.r.t. LinBP (p)	

ρ	

|	|	

(g) Recall & precision on #5

Figure 7: (a)-(c): Scalability of methods in Java and SQL: dashed gray lines represent linear scalability. (d): ∆SBP vs. SBP for various
fractions of updates assuming 10% explicit beliefs. (e): Timing LinBP and SBP per iteration. (f),(g): Quality of LinBP w.r.t. BP, and
SBP w.r.t. LinBP: the vertical gray lines mark εH = 0.0002, i.e. the sufficience convergence criterium from Lemma 9.

we had 80% of the explicit nodes (= 8% of all nodes) known
before the update, and are now adding 20% of the explicit
nodes (= 2% of all nodes) with the incremental SBP Algo-
rithm 3 (“∆SBP”). For the alternative Algorithm 2 (“SBP”),
we recalculate the final beliefs from scratch (therefore, shown
with a constant horizontal line). In addition, Fig. 7c shows
timing for updating 1‰ of the nodes in a graph that previ-
ously had 5% nodes with explicit beliefs: The relative speed-
up is around 2.5 for the larger graphs.

Question 4. Quality: How do the top belief assignments of
LinBP, LinBP∗ and SBP compare to that of BP?

Result 4. BP, LinBP, LinBP∗, and SBP give almost iden-
tical top belief assignments (for εH given by Lemma 9).
However, ties can drop the quality of SBP to <95%.

Figure 7f shows recall (r) and precision (p) of LinBP with
BP as GT (“LinBP with regard to BP”) on graph #5 (simi-
lar results hold for all other graphs). The vertical gray lines
show εH = 0.0002 and εH = 0.0028, which result from our
sufficient (Lemma 9) and exact (Lemma 8) convergence cri-
teria of LinBP, respectively. The graphs stop earlier than
εH = 0.0028 as BP stops converging earlier. We see that
LinBP matches the top belief assignment of BP exactly in
the upper range of guaranteed convergence; for smaller εH ,
errors result from roundoff errors due to limited precision
of floating-point computations. We thus recommend choos-
ing εH according to Lemma 8. Overall accuracy (harmonic
mean of precision and recall) is still > 99.9% across all εH .

Figure 7g shows that the results of LinBP and LinBP∗ are
almost identical as long as εH is small enough for the algo-
rithms to converge (both LinBP and LinBP∗ always return
unique top belief assignments; thus, r and p are identical

and we only need to show one graph for both). The vertical
drops in r and p on the right correspond to choices of εH for
which LinBP stops converging.

Figure 7g also validates that SBP closely matches LinBP
(and thus BP). The averaged recall of SBP w.r.t. LinBP for
10−9<εH<0.0002 is 0.995 and the averaged precision 0.978.
Thus overall accuracy is > 98.6% across all εH . The visible
oscillations and the observation that SBP’s precision values
are generally lower than its recall values are mainly due to
“tied top beliefs:” the final beliefs are almost identical, but
SBP returns two top beliefs, while LinBP returns only one.
For example, we observed the following final beliefs which
lead to a drop in precision (due to SBP’s tie):

• LinBP: [1.0000000014, 1.0000000002,−2.0000000016] ·10−2

• SBP: [1, 1,−2] · 10−2

The following more rare scenario is due to numerical round-
ing errors and led to a drop in both precision and recall
(LinBP and SBP return two different top beliefs):

• LinBP: [7.60009, 7.60047,−15.20056] · 10−11

• SBP: [7.6, 7.59999999999999,−15.2] · 10−11

Minimizing the possibility of ties by choosing initial ex-
plicit beliefs with additional digits (e.g., 0.0503 instead of
0.05) removed these oscillations. On the other hand, if there
are many tied explicit beliefs (such as in the DBLP data
where all explicit nodes have one among 4 different beliefs),
the difference between SBP and BP increases. Figure 8b
shows that, for the DBLP data set, SBP performs worse
than LinBP due to many ties. The absolute accuracy, how-
ever, is still above 95%. LinBP and LinBP∗ approximate
BP very well as long as BP converges. LinBP converges for
εH <0.0013, however BP stops converging earlier: This ex-
plains the gap between the convergence bounds for LinBP,
and when the accuracy actually drops. For very small εH ,

1 2 3 4
1 6 -2 -2 -2
2 -2 6 -2 -2
3 -2 -2 6 -2
4 -2 -2 -2 6

(a) Unscaled residual

coupling matrix Ĥo

10−8 10−7 10−6 10−5 10−4 10−3 10−2
0.9

0.92

0.94

0.96

0.98

1

εH

LinBP (F1)	

LinBP* (F1)	

SBP (F1)	

ρ	

(b) F1 on DBLP data

Figure 8: Coupling matrix and quality results on DBLP data.

we see results from floating-point rounding errors.
In summary, SBP and LinBP match the classification of

BP very well. Misclassifications are mostly due to closely
tied top beliefs, in which case returning both tied beliefs (as
done by SBP) would arguably be the preferable alternative.

8. RELATED WORK
The two main philosophies for transductive inference are
logical approaches and statistical approaches (see Fig. 9).

Logical approaches determine the solution based on
hard rules, and are most common in the database litera-
ture. Examples are trust mappings, preference-based up-
dates, stable model semantics, but also tuple-generating de-
pendencies, inconsistency-resolution, database repairs, com-
munity databases. Example applications are peer-data man-
agement and collaborative data sharing systems that have
to deal with conflicting data and lack of consensus about
which data is correct during integration, update exchange,
and that have adopted some form of conflict handling or
trust mappings in order to facilitate data sharing among
users [3, 12, 14, 16, 17, 23, 24, 46]. Commonly, those incon-
sistencies are expressed with key violations [10] and resolved
at query time through database repairs [1].

Statistical approaches determine the solution based on
soft rules. The related work comprises guilt-by-association
approaches, which use limited prior knowledge and network
effects in order to derive new knowledge. The main alter-
natives are semi-supervised learning (SSL), random walks
with restarts (RWR), and label or belief propagation (BP).
SSL methods can be divided into low-density separation
methods, graph-based methods, methods for changing the
representation, and co-training methods (see [31, 50] for
overviews). A multi-class approach has been introduced
in [21]. RWR methods are used to compute mainly node
relevance; e.g., original and personalized PageRank [4, 18],
lazy random walks [33], and fast approximations [37, 47].

Belief Propagation (or min-sum or product-sum algo-
rithm) is an iterative message-passing algorithm that is a
very expressive formalism for assigning classes to unlabeled
nodes and has been used successfully in multiple settings for
solving inference problems, such as error-correcting codes
[29] or stereo imaging in computer vision [9], fraud detec-
tion [32, 38], malware detection[5], graph similarity [2, 27],
structure identification [25], and pattern mining and anomaly
detection [22]. BP solves the inference problem approxi-
mately; it is known that when the factor graph has a tree
structure, it reaches a stationary point (convergence to the
true marginals) after a finite number of iterations. Although
in loopy factor graphs, convergence to the correct marginals

Databases Machine Learning
Inconsistency resolution Semi-supervised learning
Logic-based approaches Statistical approaches

extensional database prior beliefs
intensional database posterior beliefs

Figure 9: Comparing common formulations of transductive infer-
ence in the database and machine learning communities.

is not guaranteed, the true marginals may still be achieved
in locally tree-like structures. As a consequence, approaches
in the database community that rely on BP-type of inference
also commonly lack convergence guarantees [45].

Convergence of BP in loopy graphs has been studied be-
fore [8, 20, 34]. To the best of our knowledge, all existing
bounds for BP give only sufficient convergence criteria. In
contrast, our work presents a stronger result by providing
sufficient and necessary conditions for the convergence of
LinBP, which is itself an approximation of BP. Other recent
work [28] studies a form of linearization for unsupervised
classification in the stochastic block model without an obvi-
ous way to include supervision in this setting.

There exist various works that speed up BP by: (i) ex-
ploiting the graph structure [6, 38], (ii) changing the order
of message propagation [8, 15, 34], or (iii) using the MapRe-
duce framework [22]. Here, we derive a linearized formula-
tion of standard BP. This is a multivariate (“polytomous”)
generalization of the linearized belief propagation algorithm
FABP [26] from binary to multiple labels for classification.
In addition, we provide translations into SQL and a new,
faster semantics that captures the underlying intuition and
provides efficient incremental updates.

Incremental maintenance. While our nearest-labeled-
neighbor-semantics SBP allows efficient incremental updates
(cf. Lemma 17), incrementally updating LinBP is more chal-
lenging since it involves general matrix computations. For
such scenarios, combining our work with approaches like the
one from [36] is left for future work.

9. CONCLUSIONS
This paper showed that the widely used multi-class be-

lief propagation algorithm can be approximated by a linear
system that replaces multiplication with addition. This al-
lows us to give a fast and compact matrix formulation and
a compact implementation in standard SQL. The linear sys-
tem also allows a closed-form solution with the help of the
inverse of an appropriate matrix. We can thus explain ex-
actly when the system will converge, and what the limit
value is as the neighbor-to-neighbor influence tends to zero.
For the latter case, we show that the scores depend only
on the “nearest labeled neighbor,” which leads to an even
faster algorithm that also supports incremental updates.

Acknowledgements. This work was supported in part by
NSF grants IIS-1217559 and IIS-1408924. Stephan Günne-
mann has been supported by a fellowship within the postdoc-
program of the German Academic Exchange Service (DAAD).
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation, or other funding parties. We would also like to
thank Garry Miller for pointing us to Roth’s column lemma
and the anonymous reviewers for their careful feedback.

10. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query

answers in inconsistent databases. In PODS, pp. 68–79, 1999.
[2] M. Bayati, M. Gerritsen, D. Gleich, A. Saberi, and Y. Wang.

Algorithms for large, sparse network alignment problems. In
ICDM, pp. 705–710, 2009.

[3] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data management
for peer-to-peer computing: A vision. In WebDB, pp. 89–94,
2002.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer networks and
ISDN systems, 30(1-7):107–117, 1998.

[5] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and
C. Faloutsos. Polonium: Tera-scale graph mining and inference
for malware detection. In SDM, pp. 131–142, 2011.

[6] A. Chechetka and C. Guestrin. Focused belief propagation for
query-specific inference. In AISTATS, pp. 89–96, 2010.

[7] S. Cohen, W. Nutt, and Y. Sagiv. Containment of aggregate
queries. In ICDT, pp. 111–125, 2003.

[8] G. Elidan, I. McGraw, and D. Koller. Residual belief
propagation: Informed scheduling for asynchronous message
passing. In UAI, pp. 165–173, 2006.

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief
propagation for early vision. Int. J. Comput. Vision,
70(1):41–54, Oct. 2006.

[10] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: Efficient
management of inconsistent databases. In SIGMOD, pp.
155–166, 2005.

[11] W. Gatterbauer. Semi-supervised learning with heterophily,
Dec 2014. (CoRR abs/1412.3100).

[12] W. Gatterbauer, M. Balazinska, N. Khoussainova, and
D. Suciu. Believe it or not: Adding belief annotations to
databases. PVLDB, 2(1):1–12, 2009.

[13] W. Gatterbauer, S. Günnemann, D. Koutra, and C. Faloutsos.
Linearized and single-pass belief propagation, June 2014.
(CoRR abs/1406.7288).

[14] W. Gatterbauer and D. Suciu. Data conflict resolution using
trust mappings. In SIGMOD, pp. 219–230, 2010.

[15] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for
optimally parallelizing belief propagation. Journal of Machine
Learning Research - Proceedings Track, 5:177–184, 2009.

[16] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G.
Ives, and V. Tannen. ORCHESTRA: facilitating collaborative
data sharing. In SIGMOD, pp. 1131–1133, 2007.

[17] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. In ICDE, pp.
505–516, 2003.

[18] T. Haveliwala. Topic-sensitive pagerank: A context-sensitive
ranking algorithm for web search. IEEE Trans. Knowl. Data
Eng., pp. 784–796, 2003.

[19] H. V. Henderson and S. R. Searle. The vec-permutation
matrix, the vec operator and Kronecker products: a review.
Linear and Multilinear Algebra, 9(4):271–288, 1981.

[20] A. T. Ihler, J. W. F. III, and A. S. Willsky. Loopy belief
propagation: Convergence and effects of message errors.
Journal of Machine Learning Research, 6:905–936, 2005.

[21] M. Ji, Y. Sun, M. Danilevsky, J. Han, and J. Gao. Graph re-
gularized transductive classification on heterogeneous infor-
mation networks. In ECML/PKDD (1), pp. 570–586, 2010.

[22] U. Kang, D. H. Chau, and C. Faloutsos. Mining large graphs:
Algorithms, inference, and discoveries. In ICDE, pp. 243–254,
2011.

[23] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data
in peer-to-peer systems: Semantics and algorithmic issues. In
SIGMOD, pp. 325–336, 2003.

[24] L. Kot and C. Koch. Cooperative update exchange in the
Youtopia system. PVLDB, 2(1):193–204, 2009.

[25] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VoG:
Summarizing and understanding large graphs. In SDM, pp.
91–99, 2014.

[26] D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao, and
C. Faloutsos. Unifying guilt-by-association approaches:
Theorems and fast algorithms. In ECML/PKDD (2), pp.
245–260, 2011.

[27] D. Koutra, J. Vogelstein, and C. Faloutsos. Deltacon: A
principled massive-graph similarity function. In SDM, pp.
162–170, 2013.

[28] F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly,
L. Zdeborová, and P. Zhang. Spectral redemption in clustering
sparse networks. PNAS, 110(52):20935–20940, 2013.

[29] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transactions on
Information Theory, 47(2):498–519, 2001.

[30] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable graph
generation and evolution, using Kronecker multiplication. In
PKDD, pp. 133–145, 2005.

[31] S. A. Macskassy and F. J. Provost. Classification in networked
data: A toolkit and a univariate case study. Journal of
Machine Learning Research, 8:935–983, 2007.

[32] M. McGlohon, S. Bay, M. G. Anderle, D. M. Steier, and
C. Faloutsos. SNARE: a link analytic system for graph labeling
and risk detection. In KDD, pp. 1265–1274, 2009.

[33] E. Minkov and W. Cohen. Learning to rank typed graph walks:
Local and global approaches. In WebKDD workshop on Web
mining and social network analysis, pp. 1–8, 2007.

[34] J. M. Mooij and H. J. Kappen. Sufficient conditions for
convergence of the sum-product algorithm. IEEE Transactions
on Information Theory, 53(12):4422–4437, 2007.

[35] K. P. Murphy. Machine learning: a probabilistic perspective.
MIT Press, 2012.

[36] M. Nikolic, M. Elseidy, and C. Koch. LINVIEW: incremental
view maintenance for complex analytical queries. In SIGMOD,
pp. 253–264, 2014.

[37] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. GCap: Graph-
based automatic image captioning. In MDDE, p. 146, 2004.

[38] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe:
a fast and scalable system for fraud detection in online auction
networks. In WWW, pp. 201–210, 2007.

[39] Parallel Colt: http://sourceforge.net/projects/parallelcolt/.
[40] J. Pearl. Probabilistic reasoning in intelligent systems:

networks of plausible inference. Morgan Kaufmann, 1988.
[41] PostgreSQL 9.2: http://www.postgresql.org/download/.
[42] W. E. Roth. On direct product matrices. Bull. Amer. Math.

Soc., 40:461–468, 1934.
[43] Y. Saad. Iterative methods for sparse linear systems. SIAM,

2nd ed edition, 2003.
[44] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and

T. Eliassi-Rad. Collective classification in network data. AI
Magazine, 29(3):93–106, 2008.

[45] F. M. Suchanek, S. Abiteboul, and P. Senellart. Paris:
Probabilistic alignment of relations, instances, and schema.
PVLDB, 5(3):157–168, 2011.

[46] N. E. Taylor and Z. G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In SIGMOD, pp.
13–24, 2006.

[47] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with
restart and its applications. In ICDM, pp. 613–622, 2006.

[48] Y. Weiss. Correctness of local probability propagation in
graphical models with loops. Neural Computation, 12(1):1–41,
2000.

[49] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding
belief propagation and its generalizations. In Exploring arti-
ficial intelligence in the new millennium, pp. 239–269. 2003.

[50] X. Zhu. Semi-supervised learning literature survey, 2006.

NOMENCLATURE
n number of nodes
s, t, u indices used for nodes
N(s) list of neighbours for node s
k number of classes
i, j, g indices used for classes
es k-dimensional prior (explicit) belief vector at node s
bs k-dim. posterior (implicit, final) belief vector at node s
mst k-dim. message vector from node s to node t
A n× n weighted symmetric adjacency matrix
D n× n diagonal degree matrix
E,B n× k explicit or implicit belief matrix with E(s, i) indi-

cating the strength of belief in class i by node s
H k × k coupling matrix with H(j, i) indicating the influ-

ence of class j of a sender on class i of the recipient

Ĥ, Ê, B̂ residual matrices centered around 1
k

Ĥo unscaled, original coupling matrices Ĥ = εHĤo

εH scaling factor
Ik k-dimensional identity matrix
vec
(
X
)

vectorization of matrix X
X⊗Y Kronecker product between matrices X and Y
ρ(X) spectral radius of a matrix X

http://arxiv.org/pdf/1412.3100
http://arxiv.org/abs/1412.3100
http://arxiv.org/pdf/1406.7288
http://arxiv.org/abs/1406.7288
http://sourceforge.net/projects/parallelcolt/
http://www.postgresql.org/download/

	1 Introduction
	2 Belief Propagation
	3 Linearized Belief Propagation
	4 Derivation of LinBP
	4.1 Centering Belief Propagation
	4.2 Closed-form solution for LinBP

	5 Additional Benefits of LinBP
	5.1 Update equations and Convergence
	5.2 Weighted graphs
	5.3 LinBP in SQL

	6 Single-pass Belief Propagation
	6.1 Scaling Beliefs
	6.2 Scaling Coupling Strengths
	6.3 SBP in SQL

	7 Experiments
	8 Related Work
	9 Conclusions
	10 References

