
Spatial Query Processing in
an Object-Oriented Database System

Jack A. Orenstem

Computer Corporation of Amerma

Abstract

DBMSs must offer spatial query processing capablhtles
to meet the needs of apphcatlons such as cartography,
geographic mformation processing and CAD. Many
data structures and algorithms that process grid
representations of spatial data have appeared in the
literature. We unify much of this work by ldentifymg
common prmclples and distlllmg them into a small set
of constructs. (Published data structures and algo-
rithms can be derived as special cases.) We show how
these constructs can be supported with only minor
modihcations to current DBMS implementations. The
ideas are demonstrated m the context of the range
query problem. AnalytIcal and experlmental evidence
indicates that performance of the derived solution IS
very good (e.g., comparable to performance of the kd
tree.)

1. Introduction

It IS widely recognized that existing database
management systems (DBMSs) do not address the
needs of many non-traditional apphcatlons such as
automated cartography, geographm informatIon pro-
cessing and computer-aided demgn. The underlying
data models, query languages and access paths were
designed to deal with simple datatypes such as
integers and strmgs, while these apphcatlons are
charactermed by spatial data, temporal data and other
forms of data with complex structure The subject of
this paper IS the handling of spatial data In a database
management system.

This work was supported by the Defense Advanced
Research Projects Agency and by the Space and Na-
val Warfare Systems Command under Contract No
N00039-85-C-0283. The views and conclusions con-
tamed in this paper are those of the author and do
not necessarily represent the official policies of the
Defense Advanced Research ProIects Agency, the
Space and Naval Warfare Systems Command, or the
U.S. Government.

PermIssIon to copy wtthout fee all or part of this material IS granted
provtded that the copies are not made or dtstrlbuted for du-ect
commercial advantage, the ACM copyright notlcc and the title of the
publrcauon and its date appear, and nottce IS gtven that copymg IS by
permtsston of the Assoclatlon for Computmg Machmery To copy
otherwlse or to repubhsh, requires a fee and/or spectfic permIssIon

@ 1986 ACM 0-89791-191-l/86/0500/0326 $00 75

There have been many attempts at combmmg
DBMS capabilities and spatial processing capabllltles.
The mmplest approach IS to build on top of an exlstmg
DBMS. In [CHOC84, LIEN77, SMIT841 a grid represen-
tation of geographm data Is used. Cells of the grid are
represented by database records. AdditIonal operators
(i.e., not usually found in query languages) are added
to provide hasm spatial capabllitles such as the com-
putatlon of distance [CHOC841. [CHANV] describes a
system that provides both cell and vector representa-
tions. In [CHAFIl] relations are used to store Images
using a vector representation. A QBE-like language
handles non-spatial parts of queries while a set of
built-m spatial operators handles the spatial parts of
queries. This system, unlike the others, has quite
sophistmated spatial searching capabIlItIes.

A more general approach Is to provide a DBMS that
can be customnzed by the addition of abstract data-
types (ADTs). Extenmons to System R provide a t?ong’l
field that can be used to store an arbitrary amount of
uninterpreted data. This provides the foundation for
an ADT facility [HASK82, LORI83]. INGRES has also
been extended to aRow the addition of ADTs
[STON83]. In addition, support for new access
methods IS provided [STON85] (e.g , access methods
for spatial searchmg can be added).

Neither of these approaches is satmfactory.
Assumptions that hmit generality (e.g., assumptions
about dimenslonabty of the data, the oblects that can
be described,, and the operations that can be per-
formed) are hard-wired into systems built on top of
DBMSs. On the other hand, the ADT approach
described above gives very little support to users that
need to manipulate spatial data. Both approaches
avold the central issue: What can the DBMS do to aid
In the processing of spatial data’ Can the DBMS do
more than lust deliver spatial data to the spatial
operators9 Adding a fixed set of spatial capabilities
(whether by hard-wiring or through an ADT mechan-
mm) leaves the semantrcs of spatial query processmg
outslde the DBMS.

The goal of the PROBE research project IS to mves-
tlgate data modelmg, architecture, query processmg
and optimization issues in the construction of an
“extensible” DBMS. This was motivated by the needs
of non-tradltlonal apphcatlons where spatml and tem-
poral data are prevalent. (For an overview of the
PROBE prolect see [DAYA85].) Our approach to spa-
tial data 1s as follows. The DBMS should be concerned
with mampulating collections of objects The detailed
manipulations of individual spatial objects should be
left to Specialized processors” encapsulated in oblect
classes (1.e. ADTs). This requires optimizatlons of
set-at-a-time operators to be done by the DBMS.

32

One object class to be built in, as part of the
PROBE research project, will support spatial query
processing. To allow wide apphcability, the oblect
class cannot be tailored to a particular dlmenslon or
representation. Our intention is not to eliminate the
need for specialized processors, but to simplify them
(by not requiring them to do set-at-a-time processing),
and to reduce the amount of work that gets passed to
them.

Section 2 describes the PROBE approach to spatial
query processing and surveys the relevant literature.
Section 3 describes the basic ideas behind our
approach and in Sectlon 4 it IS shown that, with very
minor modifications, exwting DBMS Implementations
can be adapted to support spatial query processmg as
developed here. In Section 5, space and time reqmre-
ments are examined analytically and experimentally.
Section 6 describes related PROBE work on spatial
query processing that is beyond the scope of this
paper.

2. Spatial Query Processing in PROBE

We will support spat& query processing by provid-
mg an oblect class that implements approximate
geometry (AG). The query processor will invoke opera-
tors of this object class to obtain fast but approximate
answers to spatial queries. If more precise answers are
needed, the approximate answers ~111 be refined by
the specialized processors.

Approximate geometry, as developed here, relies
(conceptually) on a grid representation of spatial data.
This IS where the approximation comes in - precision IS
limited by the resolution of the grid. The AG
algonthms are exact. I.e., if the grid representation IS
considered to be precise (as might be the case for
LANDSAT data), then AG would provide precise
results.

It IS not feasible to store high-resolution grids
exphcitly. The space and time requirements are too
high. Therefore data structures and algorithms that
optimize the processing of grids are Important. Work
along these lines has been conducted by researchers In
1) databases and 2) image processmg and vision (IPV).
This work IS surveyed below.

The work presented here has three new contnbu-
tions:

1. Unification of published resuIts. A large
number of published data structures and algo-
rlthms (from database and IPV research) are
special cases of the AG techniques described
here. As an example of this we will focus on the
range search problem (which is described
below). However, AG also supports other kinds
of searches and other spatial operations (see
Section 6). We have developed new algorithms
and re-explained published algorithms.

2. Integration with DBMSe. We show how AG can
be supported with very minor modifications of
current DBMS implementations. Common tech-
niques for file organmatlon (e.g. B-trees) and
buffer management provide excellent support
for AG. We are not aware of any other approach
to spatial data that can make this claim.

3. AnaIysis of performance. We have carried out
mathematical and experimental analyses of a
range query algorithm that can be derived from
AG. The analyses show that performance is
comparable to that of other practical solutions
(e.g. the kd tree [BENT75]).

Recent work from database researchers on the pro-
cessing of “range queries” resembles techniques being
used m IPV. This has occurred because the range
query problem can be transformed into a spatial
searching problem. Given a set of tuples with k attn-
butes (Al, . . . , Ak), a range query asks for all tuples
such that L, 5 A, 5 Up i = 1, . . . , k. I.e., a range,
defmed by Li and U,, IS specified for each attribute,
A,. This is a very broad and useful class of queries.

If each A, is an integer, then a tuple can be viewed
as a point in k-dimensional (kd) space or as a pixel m a
k-dimensional grid. Each attrtbute forms one axis of
the space. A t’blackn point or pixel represents a tuple.
A “white” point or pixel indicates the absence of a
tuple. Usually when we talk about points or pixels, we
mean the black ones representing tuples. In this view,
a range query IS a k-dimensional box in the space
(whose sides are parallel to the axes). The range query
problem IS now a spatial searching problem: Find all
the (black) points in a given box (see Figure 1).

In order to support range queries efficiently in a
DBMS, three issues must be considered:

1. How should the (black) points be allocated to
partitions of the kd space7 Each partition will
be stored on one disk page. The partitioning
should preserve proximity. As the distance
between two points decreases, the chance that
they will be retrieved together in response to a
range query increases. By preserving proximity,
the number of page accesses will be minimized.
What partitions (i.e. pages) need to be retrieved
in response to a range query7 How can they be
located? A partition must be retrieved if it
overlaps the box representing the query. The
data structure used for locating partitions IS a
“spatial index” or a vpartltion index”.
How are msertions and deletions handled’ The
partltlonmg and the partition index should
adapt gracefully as the number and distribution
of points change.

A “multldlmensional” data structure for searching
(MDS) solves the first two problems. A solution to the
third problem is desirable but not always necessary.

Most of the work in this field has been done in the
past ten years (see [BENT79, OREN83, OREN85] for
surveys.) The partitionmg of a kd space or grid pro-
vided by an MDS is usually grid-like or m a %rick-
wall” pattern. Grid methods [MERR78, MERR82,
MERR84, NIEV84, TAMM81, TAMM82] construct a
grid out of (k-1)-dimensional partitions. The brick-wall
pattern IS created by splitting in one dIrection first.
These partitions are further partittoned by splits in
another directlon, etc. This pattern is used in
[LIOU77, SCHE82, ROBI811. The kd tree [BENT751
partitions the space with 2k %ricks” and then, as

327

necessary, partitions each sub-region recursively. The
work presented here is based on a particularly simple
splitting scheme. This scheme (or a minor variation of
it) has been used in the data structures of [BURK83,
OREN82,OREN84,OUKS83, TAMM81, TAMM821. See
[OREN85] for a more thorough discussion of the sirni-
larites and differences among MDSs.

Relevant work from the IPV literature IS related to
the %imple’l partitioning methods mentioned above
(see [SAME85a] for a thorough survey). A discussion
of the relationships between these methods and the
quadtree from IPV hterature appears m [OREN85]

3. Approximate Geometry

Our approach to AG IS based on a grid representa-
tion of spatial objects. The techniques to be presented
can be thought of as methods that optimize the han-
dling of these grids.

3.1 Elements

A k-dimensional spatial object is approximated by
superimposing a kd grid of pixels and noting which plx-
els he inside or on the boundary of the object. In what
follows, when we discuss spaces and spatial objects,
we will be referring to grids and approximations of
spatial objects respectively. While the presentation 1s
In terms of 2d data, all the ideas extend to lugher
dimensions (and to Id) without difficulty. We will call
the horizontal and vertical axes of the 2d space x and
y respectively. We assume 1) that the grid has resolu-
tion ad x 2d where d is an Integer; 2) that regions are
split into equal-sized subregions; 3) that the direction
of splitting alternates between x and y (as explained
below).

An understanding of the partitions obtained by this
splitting policy IS necessary for the development of
AG. The rest of this section ~111 cbscuss these parti-
tions m some detail.

We will use the following notation* <sl:nl I s2:n2 1
. . . 1 sm:nm> denotes the string

s1 s1 . . . s1 s2 92 . . . 52 . . . SG
--

“1 “2 “Ill
If n1 = 1 then s;nl may be written as 9,. E.g. <011:2 1
Ol> = 01101101.

A pixel m the grid is speclfled by providing two
coordmates of d bits each, (<x0 1 xl 1 . . . I xdsl>, <y. I
y1 1 . . . 1 y&l>)

A vertical split through the middle of this space
amounts to discriminating on the value of x0. In the
left half of the space x0 = 0, m the right half x

P
= 1 If

the resulting subregions are spht horizontal y, tlus
corresponds to discrlmmatlon on the value of yo.
There are now four regions corresponding to the posse-
ble values of x0 and y .
characterized by one bit rom x or y. The interleaving a

In general, each spht is

of these bits from x and y creates a bltstrmg that
uniquely identifies a region. If r IS a region created in
the splitting process then z(r) denotes the bitstring
corresponding to the region (see figure 2.)

The z value of a region is a concise description of
the shape, Size and position of the region. These can
be derived from the z value. In general, If the z value

contains the first m bits of x and the first n bits of y,
then the region described extends from <x0 1 . . . I x*-l
I O:d-m> to <x0 1 . . I xm-1 I l:d-m> horizontally, and
from <y

f
I . . . I ynvl I O.d-n> to <y. I . . I y,-1 I l:d-n>

vertical y. All points inside the region have coordi-
nates with the same m and n bit prefixes. Further-
more, for any region, r, obtained by recursive spht-
ting, the I value of any pomt In r IS Iexlcographtcally
between the z values of r’s lower left and upper rqht
corners (see figure 3) I.e., the z values of a region
(obtained by recursive splitting) are consecutive.

Although the preceding discussion applies to all
regions generated during splitting, it is only the
“bottom-most” regions, (those that are not spht
further), that would be kept m practice. These regions
will be called elements. Figure 2 shows the elements
generated in the “decomposition” of a box. The
decomposition algorithm for boxes IS given m
[OREN84] (the first RangeSearch algorithm). It gen-
erahzes immediately to an algorithm for the decom-
position of arbitrary spatial oblects. All that IS
required IS a procedure that mdicates whether a given
element 1s inside a given spatial object, outside the
object, or crosses the boundary of the oblect.

3.2 Z order

Z values can be compared lexicographically, i.e. the
bitstrings are left-Justified and then compared one bit
at a time. Therefore a collection of elements can be
ordered by sorting lexicographically on their z values
The spatial interpretation of this ordering IS mterest-
mg. If each pixel of a 2d grid is treated as an element,
then the z values of the elements trace out the path
shown in figure 4. This ordering has been discovered
many times [ABELSS, BURK83, GARG82, OREN84,
OUI&83]. When we discovered it we called It z order-
mzl rOREN83. OREN and we’ll use that name here.
T<e-curve ~s~recurs~ve~m that it consists of the same
“N” shape (covering four pomts) repeated throughout
the space. Groups of four Ns are connected in an N
pattern; groups of four of these groups of four are con-
nected in the same pattern, etc. (It’s called z order
because our first drawing of it had Zs instead of Ns.)

Z ordering 1s a total ordering of elements. This pro-
perty, combined with the highly constrained splitting
policy that produces elements, leads to the following
observation. The only posstble relatlonshtps between
elements are contatnment and precedence An z order)
Overlap (other than containment) cannot occur. This
leads to very simple algorithms based on the merging
of sequences of elements.

Much of the usefulness of z order IS based on the
property that it preserves proximity, i.e. if two points
are close in space then they are likely to be close in z
order. By preservmg proxnnity, elements are
clustered for efficient access on secondary storage.
(This pomt IS discussed in Section 5.)

3.3 A Solution to the Range Search Problem

To complete this section, the ideas developed above
will be used to derive a solution to the range query
problem: Given a set of points, fmd all points that fall
m a given box

328

The algorithm IS based on the followmg Idea. The
box representing the range query can be decomposed
mto elements. An element represents a set of con-
secutlve z values; i.e. a range of z values. Therefore,
If the z value of a pomt falls in the range of z values
of one of the box’s elements, the pomt must satisfy the
range query. The algorithm consists of three steps:

1 Compute the z value of each (black) point (by
mterleavmg all bits of the point’s coordinates).
Form a sequence of pomts ordered by z value
Call this sequence P. Conceptually, a member
of P IS a record of the form [z, pt] where pt IS a
description of the point (e.g. the identifier).
This IS a preprocessing step. Once completed,
queries would be run starting at step 2.

2. Decompose the box to yield a set of elements.
Compute the z value of each element. Form a
sequence of elements ordered by z value. Call
this sequence B. Conceptually, a member of B is
a record of the form [zlo, zhi]. Recall that each
element corresponds to a range of z values; zlo
and zhi are the extreme values in this range.

3. Perform a merge of sequences P and B identify-
ing pairs p and b such that b.zlo 5 p.z 5 b.zhl.
Such a pair represents the fact that the point
pt(p) satisfies the range query because It falls
mslde an element (b) of the box.

This algorithm is demonstrated in Figure 5. Note that
the running time is O(length(P) + length(B)) because of
the merge in step 3. However, the merge can be
optimized in the following way. When p.z > b.zhi,
mstead of scannmg through members of B until p.z (
b.zlo or b.zlo 5 p.z 5 b.zhi, the value of p.z can be
used m a random access to B to locate the next
t%Iterestmg” B record. Lmilarly, b.lo can be used in a
random access to P. I.e., parts of the space that could
not possibly contribute to the result are skipped

Note that we have said nothmg about data struc-
tures so far. The algorithm was expressed in terms of
the merging of sequences. Clearly, sequential access
1s needed so that the sequences can be merged. The
optimization described makes use of random access
Therefore, any data structure that supports both ran-
dom and sequentml accessing can be used to support
this range search algorithm. This IS a very modest
requirement since Btrees, ISAM, VSAM, etc. are
widely available. In spite of the simplicity of this
approach, good performance can be obtained. Analytl-
cal and experlmental results are described in Section
5.

Another optlmlzation IS that the sequence B does
not have to be formed before the merge starts. Ele-
ments of the box may be generated on demand, i.e.
when a sequential or random access on sequence B 1s
performed. The method for domg thus appears in
[OREN84].

With these optimizations, the algorithm IS essen-
tially the same as the algorithm reported m [OREN84].
In practice the running time of this algorithm appears
to be proportional to the fraction of the space covered
by the query (see Section 5.3).

Throughout this sectlon, 2d data has been discussed.
Algorithms based on z order work wlthout
modification m all dimensions. This IS because of the
reduction to Id.

4. Integration with a DBMS

We will now show how the ideas of the previous sec-
tion can be encapsulated by a Join-like operator. We
will also show how thm operator can be supported with
trivial modifications of existing DBMS implementa-
tions. The operator, apcttal lam, supports the following
very general class of queries. Given two relations, R
and 5, each stormg a set of spatial obIects (i.e., each
tuple stores the ldentlfler of one ObIect), spatial Iout
ldentlfles overlapping objects from R and S. (A range
query IS a special case in which one of the relations
represents the set of points and the other relation
represents the query region.) The spatial Iom IS
denoted by

R [zr o zs] S
where zr and zs are the attributes of R and S (respec-
tively) that store the elements resultmg from the
decomposltlon of spatml ObJCCtS.

Spatial loin can be built mto a relational DBMS
implementation with very little extra machinery. One
obvious addltlon 1s a domain for the “element” object
class. Recall that an element 1s just a variable-length
bltstrmg (that has a spatial mterpretatlon). The fol-
lowing operattons on elements are needed:

. shuffle(r: region) + element
This computes the z value for a region obtained
by recursive splitting.

. unshuffle(e: element) + region
Inverse of shuffle.

. decompose(b: box) -+ set of elements

. precedes(e1, e2: element) -+ boolean
Check for precedence in z order.

. contams(e1, e2: element) + boolean
Check if el contains e2.

These are all very simple to implement. The fmst
three are discussed in [OREN84]. If zl and 82 are the z
values of el and e2 respectively, then el precedes e2
If zl precedes 22 lexicographlcally, and el contains e2
If zl IS a prefix of 22. (Recall that z values are bit-
strings.)

The only other thing needed IS an implementation
of spatial loin. The implementation strategies of
natural join can be used. Instead of looking for equal-
lty, we’re looking for containment between zr and zs.
I.e., we want pairs of tuples from R and S such that
contams(zr,zs) or contams(zs,zr).

Implementations of spatial Join that incorporate the
optlmlzatlons dmcussed above wdl be designed in the
next phase of PROBE research. However, It is already
clear that exlstmg DBMS facilities provide what is
needed m the way of file organizations and buffer
management. Recall that the merge step (as m se&Ion
3.3) can use any data structure that supports random
and sequentml access. Many existing DBMS implemen-
tations already use B-trees. Z values can easily be
represented as integers. Then the < predicate of any
programming language can be used to test precedence
m z order, so existing sort utilities can be used to
create z ordered sequences. The LRU buffering stra-
tegy will work well because of our reliance on merging
in AG algorithms: each page IS accessed at most once,

329

its contents are processed, and then the page will not
be needed agam for the rest of the merge.

Spatial loin would normally be used as in the fol-
lowing scenario. Spatial objects (stored in relations)
are decomposed. The resulting relations have attri-
butes for the element and for the identifier (indicated
by 8) of the object that generated the element.

R@& zr, . ..) := Decompose(P@Q, . ..))
S(q@, zs, . ..) := Decompose(Q(q@, . ..))

(This notatton hides some details. Decompose would
have to be applied to each spatial oblect; i.e., to each
tuple of P and Q. Each decomposition would yield a set
of elements. Thus the result is a set of sets that must
be “flattened” to yield the 1NF relations R and S.)

Next, the spatml loin is done.
RS(pQ, qQ, zr, zs,) := R [zr o zs] S

Now, if (pa*, q@‘, zr’, zs’,) Is a tuple of RS, then
p@’ and q@’ overlap. The overlap of pa’ and q@’ may
be noted many times. Projecting out the zr and zs
fields elimmates this redundancy.

Result := RSbB, 46, a.., . ..I
If p@” and q@” do not occur together in a tuple of RS
then they do not overlap.

This strategy leads to the following implementation
of range search.

Given Points(pQ, x, y) and Box(b& x10, xhi,
ylo, yhi). Box contains one tuple representing
the query region.

P(pQ, zp, x, y) := Points[pQ, ahuffle([x:x, y:yl), x, y)l
Shuffle takes the X range and Y range of an
element and produces the z value for the ele-
ment. Here, the element contains a single
pixel, so the X and Y ranges each contain a sin-
gle value (x and y respectively).

B(zb) := Decompose(Box)
Create the set of elements representing the
bOX.

Result := (P [zp 0 zb] B) [x,yl
Do the spatial join and prolect onto the point
coordinates.

5. Analysis of tba Range Search AJgorithm

The oblects manipulated by AG algorithms are the
elements generated by the decomposition of spatial
objects. The time and space requirements of AG algo-
rithms obviously depend on the number of elements
generated in a decomposition. Space requirements are
discussed in Section 5.1. The preservation of proxim-
ity is an important consideration when the elements
are kept on secondary storage. Section 5.2 discusses
the relationship between preservation of proximity
and the time requirements of the range search algo-
rithm. Only results are given here. Derivations and
proofs can-be found in TOREN831. An intermediate
level of oresentation can be found in IOREN851 Sec-
tion 5.3 summarizes experimental results on the range
search algorithm. A detailed description of the exper-
iments and results is in [ORENSS].

5.1 &ace Reqldrements

In [ORENISI we analyzed the decomposition of a 2d

rectangle of size U x V whose lower left corner IS at
(0,O). We wanted to understand how the number of ele-
ments in the decomposition depends on U and V. (The
fact that elements are of different sizes 1s irrelevant.
The time to process one element is independent of the
size of the element.) The following facts were derived:
(E(U,V) is the number of elements generated in the
decomposition.)

. E(U,V) is highly dependent on the number of bit
positions between the first and last 1 bits in the
bitwise logical OR of the binary representations
of U and V. (Closed form expressions are given in
[ORENdS, ORENSI].)

. E(U,V) is cyclic in the magnitudes of U and V:
Specifically, E(U,V) = B(2U,2V).

These results sharpen our mtultion about space
requirements and immediately lead to an optimiza-
tion. The added intuition is that small changes in the
oosltion of the border (i.e. the values of U and V) can
iead to large increases in E(U,V). Also, it can be
observed that E(U,V) is usually dominated by the
number of elements on the border of the decomposed
object. These observations suggest that E(U,V) is
determined by the &ace area of a spatial object, not
the volume. Dependence on surface area was also
reported in [SAME85b]. Note that for an explicit grid
representation, space and time requirements are dic-
tated by the volume of spatial objects. Thus AG tech-
niques should be very hard to beat, especially at high
resolution.

Optimization can be achieved by reducing the
number of bit positions between the first and last 1s in
U OR V. By expanding the boundaries of the spatial
oblect (i.e., increasing U and V) appropriately, the
number of elements generated can be decreased.
Specifically, replace U and V by U’ and V’ such that U’
2 U, VI 2 V and the last m bits of II’ and r are zero
(for an arbitrary value of m). This is equivalent to
using a coarser grid. The construction is trivial. E.g.,
if U = 01181101 and m = 4, then U’ = 01110000.

In going to a coarser grid, the imprecimon of the
approximation grows slowly (e.g., based on a measure-
ment of area). This is because it is the small (e.g., 1
pixel) elements that are being aggregated to form plx-
els of the coarser gmd.

5.2 Proximity

In [OREN83] we derived a relationship between prox-
imity in space and proximity in z order. The results
can be summarized as follows. Proximity in space in
any direction usually corresponds to proximity in z
order. The greater the discrepancy, the less hkely It is
to occur. (A closed form ezpresslon IS in [OREN83,
OREN851.)

A disk page can be seen as storing all the points
whose z values are in a certain range. Therefore, a
disk page represents a set of points that are close In
snace. In general, the space covered bv a naae is not
r&tang&r (see figure 6). However, under t‘he-assump-
tions of the analysis, there is a certain regularity in
the partitioning. In [OREN83] we assumed that every
page could represent a fixed number of pixels (black
and white), regardless of the density of black pixels

330

(i.e. data density). We will refer to this as the “fixed-
size page” assumption. This assumption leads to the
following results:

l The space is partitioned mto rectangular blocks
of the same size and shape. Each block contains
several disk pages.

l The number of pages m a block is bounded by a
number that depends only on the dimensionahty
of the space. (6 m 2d, 28/3 in 3d [OREN85].)

This result is used in the analysis of the following sub-
section.

5.3 Performance

The preceding discussion sets the stage for an analyms
of performance under the assumption of fixed-size
pages. In this section we give results for the number of
pages accessed in range and partial match queries fol-
lowed by a discussion of experimental results.

5.3.1 Analysis of Range and Partial Match Queries

Recall that a range query asks for all points (Al, . . . ,
Ak) such that L, < Ai 5 Ui, 1 = 1, . . . , k. In a partial
match query, for each I, either Li = U, or L, and U, do
not restrict the value of Ai at all. As explained m
[OREN83, OREN851, the two cases must be analyzed
separately.

Under the assumption that each page covers the
same amount of space, the following results are
obtained. For a range query, the number of (data)
pages accessed is O(vN) where v is the volume of
space covered by the query (as a fraction of the
volume of the entire space) and N is the total number
of pages.

The numb r f pages accessed by a partial match
query is O(NfwtR) where t is the number of attributes
restricted in the query and k is the dimensionahty of
the data, t < k.

These results are obtained by counting the number
of “blocksn covered by the query. (Recall that each
block covers a fixed number of pages in a given
dimension.) They match the performance predicted for
kd trees [BENT75].

5.3.2 Rxperimental Results

The analysis of range and partial match queries IS
based on the fixed-size page assumption. There is no
guarantee that the predicted behavior would be
observed in practice. Experiments were conducted to
test two hypotheses.

1. The general trends predicted by the analysis are
robust; i.e., observable when the fixed-size
page assumption is dropped. One of these
trends is a dependence on query shape; that for
queries of the same volume, “long and narrow”
queries (e.g., partial match queries) require
more work than queries with a squarish shape.

2. The results of the analysis are pessimistm.
Observed behavior should be better than what IS
predicted. (For a rationale see [OREN85].)
Worst case scenarios are easy to construct, but
we are concerned with performance averaged
over several queries.

For the experiments we implemented a prefix B+-
tree to store points in z order. Page capacity was 20
points (in 2d) and 5000 points were generated for each
experiment. Three sets of experiments were run, 1)
uniformly distributed data (experiment U), 2)
%lusteredn data - 50 small clusters of 100 points each
(experiment C), 3) t’diagonally” distributed data -
points uniformly distributed along the x=y line (experi-
ment D). The partitioning induced by page boundaries
IS shown in figure 13. For each experiment queries of
various rectangular shapes (and four different
volumes) were run m five randomly selected locations.
We measured 1) the number of (data) pages accessed
for each query, and 2) efficiency, a measure mdicat-
ing how much “relevant” data was on each retrieved
page.

We obtained the following results:

. The general trends predicted by the analysis were
observed in all experiments. The results for
experiment U were closest to the predicted
results and the results for experiment D were
farthest.

. Except for a few data points, the predicted
results provided an upper bound for the experi-
mental results. 1.e , the hypothesis about pessi-
mism of the analysis was supported.

. Query efficiency increased with query volume.
Low efficiency was usually accompanied by a low
number of page accesses (fortunately).

. Analysis predicted that the greatest efficiency
would be achieved by queries which are square or
twice as tall as they are wide [OREN85]. This was
observed in all experiments.

These results are very encouraging. Experiments in
higher dimensions and with “real” data are still
needed.

6. Other AG Algorithms

The work presented here dealt with spatial queries
involving overlap. Simple modifications can be used
for queries involving containment and proximity.
(Containment implies overlap but not vice versa.)
Proximity queries can often be translated into con-
tainment or overlap queries. We have already
developed AG algorithms for several other spatial
operators. Details are in [OREN85]. The operations
considered are the following.

.

331

Overlay. Polygon overlay is an extremely impor-
tant operation in geographic information process-
ing. The operation is simple to carry out on a grid
representation, a pixel at a time. We have
developed an AG algorithm that works directly on
sequences of elements. The AG algorithm should
be faster than the grid algorithm since perfor-
mance is determined by the surface area of spa-
tial objects, not volume (as discussed in Section
5.3).

l Cuaneeted component iabelling. Another class of
spatial queries has to do with the computing of
“global” properties. E.g., how many black oblects
are in a even puzture” What IS the area of each
object’ Computmg global propertles of these
oblecta IS at least as hard as ldentlfymg them.
One algorithm that works directly on quadtrees
has appeared [SAME85c] but it 1s extremely com-
plicated. We have developed an AG version of the
algorithm that can be expressed very concisely.

l Support for mechanical CAD. Very recently, IPV
researchers have been using quadtrees (and
related structures) to support approximate algo-
rithms for interference detection and related
problems [MANT83, SAME85bl. AG, the spatial
join in particular, can be of use here. We have
developed an AG algorithm to speed up an imple-
mentation based on boundary representation. Our
approach was to re-express the algorithms of
[MANT83] using spatial lam.

Aeknoulef2gementa
I am grateful to Umesh Dayal and Arnie Rosenthal

for insightful comments on early versions of this
paper. Thanks also to Nita Mulani for writing the
software that produced Figure 6.

Refereneea
[ABEL831

D. J. Abel, J. L. Smith. A data structure and
aIgorithm based on a linear key for a rectangle
retrieval problem. Computer Vtslon, Graphws
and Image Processmng 27, 1(1983), 19-31.

[BENT751
J. L. Bentley. Hultidimenslonal bmary search
trees used for associative searctnng. Comm
ACM 18, 9 (1975), 509-517.

[BENT~S]
J. L. Bentley, J. H. Friedman. Data structures
for range searching. ACM Comp. Surv. 11, 4
(lS?S), 397-410.

[BURK83]
W.A. Burkhard. Interpolation-based index
maintenance. Proc. 2nd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems,
(1983), 76-89.

[CHAP811
N. S. Chang, K. S. Fu. Picture query languages
for pictorml database systems. COMPUTER 14,
11 (1981), 23-33.

[CHAN'II]
S. K. Chang et al. A relational database system
for pictures. Proc. IEEE Workshoo on Picture
Data Description and Management 11977).

[C~0C84]
M. Chock et al. Database structure and manl-
pulation capabilities of a picture database
management system (PICDMS). IEEE Trans on
Pattern Analysts and Machme lntell~gence 6, 4
(1984), 484-492.

[DAYA85]

U. Dayal et al. PROBE - a research prolect m
knowledge-oriented database systems: prehm-
inary analysis. Technical Report CCA-85-03
(1985), Computer Corporation of America.

[GARG82]
I. Gargantun. An effective way to represent
quadtrees. Comm. ACM 25, 12 (1982), 905-910.

[HASK82]
R. L. Ha&m, R. A. Lone. On extending the
functions of a relational database system.
Proc. ACM SIGMOD (1982), 207-212.

[LIEN??]
Y. E. Lien, D. F. Utter Jr. Design of an image
database. Proc. IEEE Workshop on Picture
Data Description and Management (1977).

[LIOU77]
J. H. LIOU, S. B. Yao. Multidimensional cluster-
ing for database organization. hformatlon !@?-
terns 2,4 (1977), 187-198.

1~0~1831
R. A. Lorie, W. Plouffe. Relational databases
for engineering data. IBM Research Report RJ
3847 (43914) 4/6/83 (1983).

[MANT83]
M. Mantyla, M. Tammmen. Locahzed set
operations for solid modehng. Computer
Graphws 17, 3 (1983), 279-288.

[MERR78]
T. H. Merrett. Multidimensional paging for
efbclent database querying. Proc. Int’l Confer-
ence of Management of Data, Milan (1978),
277-290.

[MERR82]
T. H. Merrett, E.J. Otoo. Dynamic multipag-
ing: a storage structure for large shared data-
bases. Proc. 2nd Int’l Conference on Databases%
Improving Usability and Responsiveness,
Jerusalem (1982).

[MERR84]
T. H. Merrett. Relational Information Systems,
Reston Pubhshmg, Reston, Vlrgmia (1984).

[NIEV84]
J Nievergelt, H. Hmterberger, K. C. Sevclk.
The grid file: an adaptable, symmetru? multi-
key file structure. ACM TODS 9, 1 (1984), 38-
71.

[OREN82]
J. A. Orenstem. Multldimenslonal tries used
for assoclatlve searchmg. Informatum Procew
mg Letters 14, 4 (1982), 150-157.

[ORENSS]
J. A. Orenstem. Algorithms and data structures
for the implementation of a relatlonal data-
base. Ph.D. thesis, McGill Umverslty, (1983).
Also avallable as TechnIcal Report SOCS-82-17
(1982), School of Computer Science, McGill
Umvernty.

[OREN84]
J A. Orensteln, T. H. Merrett. A class of data
structures for associative searching. Proc. 3rd
ACM SIGACT-SIGMOD Symposium on Prmci-
ples of Database Systems (1984), 181-190.

[ORENSS]
J. A. Orenstein. Spatial query processmg in

332

PROBE. Workmg paper. To appear as a Techni-
cal Report, Computer Corporation of America.

[OUKS~~]
M. Ouksel, P. Scheuermann. Storage mappings
for multldlmenmonal linear dynamic hashing.
Proc. 2nd ACM SIGACT-SIGMOD Sympomum on
Prmclples of Database Systems, (1983), 90-105.

[ROB1811
J. T. Robmson. The K-D-B tree: a search struc-
ture for large multidlmenslonal dynamic
Indexes. Proc. ACM SIGMOD (1981), 10-18.

[SCHE82]
P. Scheuermann, M. Ouksel. Multidimensional
B-trees for associative searching in database
systems lnformatlon Systems 7, 2 (1982), 123-
137.

[SMIT84]
J. D. Smith. The application of data base
management systems to spatial data handling.
ProIect report, Department of Landscape
Architecture and RegIonal Planning, Unlvermty
of Massachusetts, Amherst (1984).

[STON83]
M. Stonebraker et al. Apphcation of abstract
data types and abstract Indices to CAD data.
Proc. ACM SIGMOD conference on engmeermg
demgn applications (1983).

[STON85]
M. Stonebraker. Inclumon of new types in rela-
tlonaI data base systems. Memorandum No.
UCBJERL M85/67, Electromcs Research
Laboratory, College of Engmeermg, Univermty
of Cahfornla, Berkeley (1985).

[SAME85a]
H. Samet. The quadtree and related hlerarchl-
cal data structures. ACM Comp. Surv. IS, 2
(1984), 187-260.

[SAME85b]
H. Samet, M. Tammmen. Bmtrees, CSG trees
and time. SIGGRAPH (1985).

[SAME85c]
M. Samet, M. Tammmen. Computing
geometru! propertles of images represented by
hnear quadtrees. IEEE Trans. on Pattern
Analysu and Machme lntelllgence 7, 2 (1985),
229-239.

[TAMM81]
M. Tammmen. The EXCELL method for
efficient geometric access to data. Acta
Polytectuuca ScondmaMca, Mathematics and
Computer Science Series No. 34 (1981).

[TAMM82]
M. Tammmen, R. SuIonen. The EXCELL
method for efflclent geometric access to data.
Proc 19th ACM Design Automatlon Conf.
(1982), 345-351.

7
6

5

4
Y

3

2

I

0

D

H

G

F

E

O/234567
x

Figure 1:

SpatmI mterpretatlon of the range query
15x13 & OIYS4.

333

00011

00001

woo0 011010

i_

001

L

00ll01 001ll1

00ll00 0cwl0

-

00100/ 0010//

1010 00I0lc I

Figure 2:

The decomposition of a box. Each element
is labelled with its z value. A z value is con-
structed by interleaving the bits describing
the range of values covered by the element
along each dimension. E.g. The element
labelled 001 is handled as follows. The
ranges of X and Y values covered are
described by 12~3, 0:3] (1.e. 25x53 and
OIY<3). In binary, these ranges are
[OlO:Oll, 000:0111. The element is charac-
terized by the common prefix of each
range: 101, 01. Interleaving these bits (start-
ing with X) ytelds 001.

Figure 3:

The n valuea in an element are conseoutive.
The element shown is the large element
from figure 2 (z value = 001). Note that all z
values inside the element have the same
prefix, 001.

334

7
6

5
4

3
2
/
0

01234567

Pomt elements

H

G

F

E

Figure 4:

Spatial interpretation of 8 order. The rank
of a point 1s obtained by interleawng the
bits of the coordinates and interpretmg as
an integer. E.g. 13, 51 -t (011, 101) -+
011011 = 27.

Figure 5:

Range search algorithm. Each point IS a one
pixel element. The box 1s decomoosed to
elements. Merge the sequences of ilements,
lookmg for containment of pomt elements
by box elements.

335

Flgure 6.

Partltlonlng of the space Induced by page boundarles
m the zkd B+-tree.

a) Experiment U. Uniformly dlstrlbuted pomts.

b) Experiment C. Uniformly dlstrlbuted clusters of pomts.

c) Experiment D. Points uruformly dlstrfbuted along the hne X=Y.

336

