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Abstract 

DBMSs must offer spatial query processing capablhtles 
to meet the needs of apphcatlons such as cartography, 
geographic mformation processing and CAD. Many 
data structures and algorithms that process grid 
representations of spatial data have appeared in the 
literature. We unify much of this work by ldentifymg 
common prmclples and distlllmg them into a small set 
of constructs. (Published data structures and algo- 
rithms can be derived as special cases.) We show how 
these constructs can be supported with only minor 
modihcations to current DBMS implementations. The 
ideas are demonstrated m the context of the range 
query problem. AnalytIcal and experlmental evidence 
indicates that performance of the derived solution IS 
very good (e.g., comparable to performance of the kd 
tree.) 

1. Introduction 

It IS widely recognized that existing database 
management systems (DBMSs) do not address the 
needs of many non-traditional apphcatlons such as 
automated cartography, geographm informatIon pro- 
cessing and computer-aided demgn. The underlying 
data models, query languages and access paths were 
designed to deal with simple datatypes such as 
integers and strmgs, while these apphcatlons are 
charactermed by spatial data, temporal data and other 
forms of data with complex structure The subject of 
this paper IS the handling of spatial data In a database 
management system. 
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There have been many attempts at combmmg 
DBMS capabilities and spatial processing capabllltles. 
The mmplest approach IS to build on top of an exlstmg 
DBMS. In [CHOC84, LIEN77, SMIT841 a grid represen- 
tation of geographm data Is used. Cells of the grid are 
represented by database records. AdditIonal operators 
(i.e., not usually found in query languages) are added 
to provide hasm spatial capabllitles such as the com- 
putatlon of distance [CHOC841. [CHANV] describes a 
system that provides both cell and vector representa- 
tions. In [CHAFIl] relations are used to store Images 
using a vector representation. A QBE-like language 
handles non-spatial parts of queries while a set of 
built-m spatial operators handles the spatial parts of 
queries. This system, unlike the others, has quite 
sophistmated spatial searching capabIlItIes. 

A more general approach Is to provide a DBMS that 
can be customnzed by the addition of abstract data- 
types (ADTs). Extenmons to System R provide a t?ong’l 
field that can be used to store an arbitrary amount of 
uninterpreted data. This provides the foundation for 
an ADT facility [HASK82, LORI83]. INGRES has also 
been extended to aRow the addition of ADTs 
[STON83]. In addition, support for new access 
methods IS provided [STON85] (e.g , access methods 
for spatial searchmg can be added). 

Neither of these approaches is satmfactory. 
Assumptions that hmit generality (e.g., assumptions 
about dimenslonabty of the data, the oblects that can 
be described,, and the operations that can be per- 
formed) are hard-wired into systems built on top of 
DBMSs. On the other hand, the ADT approach 
described above gives very little support to users that 
need to manipulate spatial data. Both approaches 
avold the central issue: What can the DBMS do to aid 
In the processing of spatial data’ Can the DBMS do 
more than lust deliver spatial data to the spatial 
operators9 Adding a fixed set of spatial capabilities 
(whether by hard-wiring or through an ADT mechan- 
mm) leaves the semantrcs of spatial query processmg 
outslde the DBMS. 

The goal of the PROBE research project IS to mves- 
tlgate data modelmg, architecture, query processmg 
and optimization issues in the construction of an 
“extensible” DBMS. This was motivated by the needs 
of non-tradltlonal apphcatlons where spatml and tem- 
poral data are prevalent. (For an overview of the 
PROBE prolect see [DAYA85].) Our approach to spa- 
tial data 1s as follows. The DBMS should be concerned 
with mampulating collections of objects The detailed 
manipulations of individual spatial objects should be 
left to Specialized processors” encapsulated in oblect 
classes (1.e. ADTs). This requires optimizatlons of 
set-at-a-time operators to be done by the DBMS. 
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One object class to be built in, as part of the 
PROBE research project, will support spatial query 
processing. To allow wide apphcability, the oblect 
class cannot be tailored to a particular dlmenslon or 
representation. Our intention is not to eliminate the 
need for specialized processors, but to simplify them 
(by not requiring them to do set-at-a-time processing), 
and to reduce the amount of work that gets passed to 
them. 

Section 2 describes the PROBE approach to spatial 
query processing and surveys the relevant literature. 
Section 3 describes the basic ideas behind our 
approach and in Sectlon 4 it IS shown that, with very 
minor modifications, exwting DBMS Implementations 
can be adapted to support spatial query processmg as 
developed here. In Section 5, space and time reqmre- 
ments are examined analytically and experimentally. 
Section 6 describes related PROBE work on spatial 
query processing that is beyond the scope of this 
paper. 

2. Spatial Query Processing in PROBE 

We will support spat& query processing by provid- 
mg an oblect class that implements approximate 
geometry (AG). The query processor will invoke opera- 
tors of this object class to obtain fast but approximate 
answers to spatial queries. If more precise answers are 
needed, the approximate answers ~111 be refined by 
the specialized processors. 

Approximate geometry, as developed here, relies 
(conceptually) on a grid representation of spatial data. 
This IS where the approximation comes in - precision IS 
limited by the resolution of the grid. The AG 
algonthms are exact. I.e., if the grid representation IS 
considered to be precise (as might be the case for 
LANDSAT data), then AG would provide precise 
results. 

It IS not feasible to store high-resolution grids 
exphcitly. The space and time requirements are too 
high. Therefore data structures and algorithms that 
optimize the processing of grids are Important. Work 
along these lines has been conducted by researchers In 
1) databases and 2) image processmg and vision (IPV). 
This work IS surveyed below. 

The work presented here has three new contnbu- 
tions: 

1. Unification of published resuIts. A large 
number of published data structures and algo- 
rlthms (from database and IPV research) are 
special cases of the AG techniques described 
here. As an example of this we will focus on the 
range search problem (which is described 
below). However, AG also supports other kinds 
of searches and other spatial operations (see 
Section 6). We have developed new algorithms 
and re-explained published algorithms. 

2. Integration with DBMSe. We show how AG can 
be supported with very minor modifications of 
current DBMS implementations. Common tech- 
niques for file organmatlon (e.g. B-trees) and 
buffer management provide excellent support 
for AG. We are not aware of any other approach 
to spatial data that can make this claim. 

3. AnaIysis of performance. We have carried out 
mathematical and experimental analyses of a 
range query algorithm that can be derived from 
AG. The analyses show that performance is 
comparable to that of other practical solutions 
(e.g. the kd tree [BENT75]). 

Recent work from database researchers on the pro- 
cessing of “range queries” resembles techniques being 
used m IPV. This has occurred because the range 
query problem can be transformed into a spatial 
searching problem. Given a set of tuples with k attn- 
butes (Al, . . . , Ak), a range query asks for all tuples 
such that L, 5 A, 5 Up i = 1, . . . , k. I.e., a range, 
defmed by Li and U,, IS specified for each attribute, 
A,. This is a very broad and useful class of queries. 

If each A, is an integer, then a tuple can be viewed 
as a point in k-dimensional (kd) space or as a pixel m a 
k-dimensional grid. Each attrtbute forms one axis of 
the space. A t’blackn point or pixel represents a tuple. 
A “white” point or pixel indicates the absence of a 
tuple. Usually when we talk about points or pixels, we 
mean the black ones representing tuples. In this view, 
a range query IS a k-dimensional box in the space 
(whose sides are parallel to the axes). The range query 
problem IS now a spatial searching problem: Find all 
the (black) points in a given box (see Figure 1). 

In order to support range queries efficiently in a 
DBMS, three issues must be considered: 

1. How should the (black) points be allocated to 
partitions of the kd space7 Each partition will 
be stored on one disk page. The partitioning 
should preserve proximity. As the distance 
between two points decreases, the chance that 
they will be retrieved together in response to a 
range query increases. By preserving proximity, 
the number of page accesses will be minimized. 
What partitions (i.e. pages) need to be retrieved 
in response to a range query7 How can they be 
located? A partition must be retrieved if it 
overlaps the box representing the query. The 
data structure used for locating partitions IS a 
“spatial index” or a vpartltion index”. 
How are msertions and deletions handled’ The 
partltlonmg and the partition index should 
adapt gracefully as the number and distribution 
of points change. 

A “multldlmensional” data structure for searching 
(MDS) solves the first two problems. A solution to the 
third problem is desirable but not always necessary. 

Most of the work in this field has been done in the 
past ten years (see [BENT79, OREN83, OREN85] for 
surveys.) The partitionmg of a kd space or grid pro- 
vided by an MDS is usually grid-like or m a %rick- 
wall” pattern. Grid methods [MERR78, MERR82, 
MERR84, NIEV84, TAMM81, TAMM82] construct a 
grid out of (k-1)-dimensional partitions. The brick-wall 
pattern IS created by splitting in one dIrection first. 
These partitions are further partittoned by splits in 
another directlon, etc. This pattern is used in 
[LIOU77, SCHE82, ROBI811. The kd tree [BENT751 
partitions the space with 2k %ricks” and then, as 
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necessary, partitions each sub-region recursively. The 
work presented here is based on a particularly simple 
splitting scheme. This scheme (or a minor variation of 
it) has been used in the data structures of [BURK83, 
OREN82,OREN84,OUKS83, TAMM81, TAMM821. See 
[OREN85] for a more thorough discussion of the sirni- 
larites and differences among MDSs. 

Relevant work from the IPV literature IS related to 
the %imple’l partitioning methods mentioned above 
(see [SAME85a] for a thorough survey). A discussion 
of the relationships between these methods and the 
quadtree from IPV hterature appears m [OREN85] 

3. Approximate Geometry 

Our approach to AG IS based on a grid representa- 
tion of spatial objects. The techniques to be presented 
can be thought of as methods that optimize the han- 
dling of these grids. 

3.1 Elements 

A k-dimensional spatial object is approximated by 
superimposing a kd grid of pixels and noting which plx- 
els he inside or on the boundary of the object. In what 
follows, when we discuss spaces and spatial objects, 
we will be referring to grids and approximations of 
spatial objects respectively. While the presentation 1s 
In terms of 2d data, all the ideas extend to lugher 
dimensions (and to Id) without difficulty. We will call 
the horizontal and vertical axes of the 2d space x and 
y respectively. We assume 1) that the grid has resolu- 
tion ad x 2d where d is an Integer; 2) that regions are 
split into equal-sized subregions; 3) that the direction 
of splitting alternates between x and y (as explained 
below). 

An understanding of the partitions obtained by this 
splitting policy IS necessary for the development of 
AG. The rest of this section ~111 cbscuss these parti- 
tions m some detail. 

We will use the following notation* <sl:nl I s2:n2 1 
. . . 1 sm:nm> denotes the string 

s1 s1 . . . s1 s2 92 . . . 52 . . . SG 
-- 

“1 “2 “Ill 
If n1 = 1 then s;nl may be written as 9,. E.g. <011:2 1 
Ol> = 01101101. 

A pixel m the grid is speclfled by providing two 
coordmates of d bits each, (<x0 1 xl 1 . . . I xdsl>, <y. I 
y1 1 . . . 1 y&l>) 

A vertical split through the middle of this space 
amounts to discriminating on the value of x0. In the 
left half of the space x0 = 0, m the right half x 

P 
= 1 If 

the resulting subregions are spht horizontal y, tlus 
corresponds to discrlmmatlon on the value of yo. 
There are now four regions corresponding to the posse- 
ble values of x0 and y . 
characterized by one bit rom x or y. The interleaving a 

In general, each spht is 

of these bits from x and y creates a bltstrmg that 
uniquely identifies a region. If r IS a region created in 
the splitting process then z(r) denotes the bitstring 
corresponding to the region (see figure 2.) 

The z value of a region is a concise description of 
the shape, Size and position of the region. These can 
be derived from the z value. In general, If the z value 

contains the first m bits of x and the first n bits of y, 
then the region described extends from <x0 1 . . . I x*-l 
I O:d-m> to <x0 1 . . I xm-1 I l:d-m> horizontally, and 
from <y 

f 
I . . . I ynvl I O.d-n> to <y. I . . I y,-1 I l:d-n> 

vertical y. All points inside the region have coordi- 
nates with the same m and n bit prefixes. Further- 
more, for any region, r, obtained by recursive spht- 
ting, the I value of any pomt In r IS Iexlcographtcally 
between the z values of r’s lower left and upper rqht 
corners (see figure 3) I.e., the z values of a region 
(obtained by recursive splitting) are consecutive. 

Although the preceding discussion applies to all 
regions generated during splitting, it is only the 
“bottom-most” regions, (those that are not spht 
further), that would be kept m practice. These regions 
will be called elements. Figure 2 shows the elements 
generated in the “decomposition” of a box. The 
decomposition algorithm for boxes IS given m 
[OREN84] (the first RangeSearch algorithm). It gen- 
erahzes immediately to an algorithm for the decom- 
position of arbitrary spatial oblects. All that IS 
required IS a procedure that mdicates whether a given 
element 1s inside a given spatial object, outside the 
object, or crosses the boundary of the oblect. 

3.2 Z order 

Z values can be compared lexicographically, i.e. the 
bitstrings are left-Justified and then compared one bit 
at a time. Therefore a collection of elements can be 
ordered by sorting lexicographically on their z values 
The spatial interpretation of this ordering IS mterest- 
mg. If each pixel of a 2d grid is treated as an element, 
then the z values of the elements trace out the path 
shown in figure 4. This ordering has been discovered 
many times [ABELSS, BURK83, GARG82, OREN84, 
OUI&83]. When we discovered it we called It z order- 
mzl rOREN83. OREN and we’ll use that name here. 
T<e-curve ~s~recurs~ve~m that it consists of the same 
“N” shape (covering four pomts) repeated throughout 
the space. Groups of four Ns are connected in an N 
pattern; groups of four of these groups of four are con- 
nected in the same pattern, etc. (It’s called z order 
because our first drawing of it had Zs instead of Ns.) 

Z ordering 1s a total ordering of elements. This pro- 
perty, combined with the highly constrained splitting 
policy that produces elements, leads to the following 
observation. The only posstble relatlonshtps between 
elements are contatnment and precedence An z order) 
Overlap (other than containment) cannot occur. This 
leads to very simple algorithms based on the merging 
of sequences of elements. 

Much of the usefulness of z order IS based on the 
property that it preserves proximity, i.e. if two points 
are close in space then they are likely to be close in z 
order. By preservmg proxnnity, elements are 
clustered for efficient access on secondary storage. 
(This pomt IS discussed in Section 5.) 

3.3 A Solution to the Range Search Problem 

To complete this section, the ideas developed above 
will be used to derive a solution to the range query 
problem: Given a set of points, fmd all points that fall 
m a given box 
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The algorithm IS based on the followmg Idea. The 
box representing the range query can be decomposed 
mto elements. An element represents a set of con- 
secutlve z values; i.e. a range of z values. Therefore, 
If the z value of a pomt falls in the range of z values 
of one of the box’s elements, the pomt must satisfy the 
range query. The algorithm consists of three steps: 

1 Compute the z value of each (black) point (by 
mterleavmg all bits of the point’s coordinates). 
Form a sequence of pomts ordered by z value 
Call this sequence P. Conceptually, a member 
of P IS a record of the form [z, pt] where pt IS a 
description of the point (e.g. the identifier). 
This IS a preprocessing step. Once completed, 
queries would be run starting at step 2. 

2. Decompose the box to yield a set of elements. 
Compute the z value of each element. Form a 
sequence of elements ordered by z value. Call 
this sequence B. Conceptually, a member of B is 
a record of the form [zlo, zhi]. Recall that each 
element corresponds to a range of z values; zlo 
and zhi are the extreme values in this range. 

3. Perform a merge of sequences P and B identify- 
ing pairs p and b such that b.zlo 5 p.z 5 b.zhl. 
Such a pair represents the fact that the point 
pt(p) satisfies the range query because It falls 
mslde an element (b) of the box. 

This algorithm is demonstrated in Figure 5. Note that 
the running time is O(length(P) + length(B)) because of 
the merge in step 3. However, the merge can be 
optimized in the following way. When p.z > b.zhi, 
mstead of scannmg through members of B until p.z ( 
b.zlo or b.zlo 5 p.z 5 b.zhi, the value of p.z can be 
used m a random access to B to locate the next 
t%Iterestmg” B record. Lmilarly, b.lo can be used in a 
random access to P. I.e., parts of the space that could 
not possibly contribute to the result are skipped 

Note that we have said nothmg about data struc- 
tures so far. The algorithm was expressed in terms of 
the merging of sequences. Clearly, sequential access 
1s needed so that the sequences can be merged. The 
optimization described makes use of random access 
Therefore, any data structure that supports both ran- 
dom and sequentml accessing can be used to support 
this range search algorithm. This IS a very modest 
requirement since Btrees, ISAM, VSAM, etc. are 
widely available. In spite of the simplicity of this 
approach, good performance can be obtained. Analytl- 
cal and experlmental results are described in Section 
5. 

Another optlmlzation IS that the sequence B does 
not have to be formed before the merge starts. Ele- 
ments of the box may be generated on demand, i.e. 
when a sequential or random access on sequence B 1s 
performed. The method for domg thus appears in 
[OREN84]. 

With these optimizations, the algorithm IS essen- 
tially the same as the algorithm reported m [OREN84]. 
In practice the running time of this algorithm appears 
to be proportional to the fraction of the space covered 
by the query (see Section 5.3). 

Throughout this sectlon, 2d data has been discussed. 
Algorithms based on z order work wlthout 
modification m all dimensions. This IS because of the 
reduction to Id. 

4. Integration with a DBMS 

We will now show how the ideas of the previous sec- 
tion can be encapsulated by a Join-like operator. We 
will also show how thm operator can be supported with 
trivial modifications of existing DBMS implementa- 
tions. The operator, apcttal lam, supports the following 
very general class of queries. Given two relations, R 
and 5, each stormg a set of spatial obIects (i.e., each 
tuple stores the ldentlfler of one ObIect), spatial Iout 
ldentlfles overlapping objects from R and S. (A range 
query IS a special case in which one of the relations 
represents the set of points and the other relation 
represents the query region.) The spatial Iom IS 
denoted by 

R [zr o zs] S 
where zr and zs are the attributes of R and S (respec- 
tively) that store the elements resultmg from the 
decomposltlon of spatml ObJCCtS. 

Spatial loin can be built mto a relational DBMS 
implementation with very little extra machinery. One 
obvious addltlon 1s a domain for the “element” object 
class. Recall that an element 1s just a variable-length 
bltstrmg (that has a spatial mterpretatlon). The fol- 
lowing operattons on elements are needed: 

. shuffle(r: region) + element 
This computes the z value for a region obtained 
by recursive splitting. 

. unshuffle(e: element) + region 
Inverse of shuffle. 

. decompose(b: box) -+ set of elements 

. precedes(e1, e2: element) -+ boolean 
Check for precedence in z order. 

. contams(e1, e2: element) + boolean 
Check if el contains e2. 

These are all very simple to implement. The fmst 
three are discussed in [OREN84]. If zl and 82 are the z 
values of el and e2 respectively, then el precedes e2 
If zl precedes 22 lexicographlcally, and el contains e2 
If zl IS a prefix of 22. (Recall that z values are bit- 
strings.) 

The only other thing needed IS an implementation 
of spatial loin. The implementation strategies of 
natural join can be used. Instead of looking for equal- 
lty, we’re looking for containment between zr and zs. 
I.e., we want pairs of tuples from R and S such that 
contams(zr,zs) or contams(zs,zr). 

Implementations of spatial Join that incorporate the 
optlmlzatlons dmcussed above wdl be designed in the 
next phase of PROBE research. However, It is already 
clear that exlstmg DBMS facilities provide what is 
needed m the way of file organizations and buffer 
management. Recall that the merge step (as m se&Ion 
3.3) can use any data structure that supports random 
and sequentml access. Many existing DBMS implemen- 
tations already use B-trees. Z values can easily be 
represented as integers. Then the < predicate of any 
programming language can be used to test precedence 
m z order, so existing sort utilities can be used to 
create z ordered sequences. The LRU buffering stra- 
tegy will work well because of our reliance on merging 
in AG algorithms: each page IS accessed at most once, 
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its contents are processed, and then the page will not 
be needed agam for the rest of the merge. 

Spatial loin would normally be used as in the fol- 
lowing scenario. Spatial objects (stored in relations) 
are decomposed. The resulting relations have attri- 
butes for the element and for the identifier (indicated 
by 8) of the object that generated the element. 

R@& zr, . ..) := Decompose(P@Q, . ..)) 
S(q@, zs, . ..) := Decompose(Q(q@, . ..)) 

(This notatton hides some details. Decompose would 
have to be applied to each spatial oblect; i.e., to each 
tuple of P and Q. Each decomposition would yield a set 
of elements. Thus the result is a set of sets that must 
be “flattened” to yield the 1NF relations R and S.) 

Next, the spatml loin is done. 
RS(pQ, qQ, zr, zs, . . . . . ..) := R [zr o zs] S 

Now, if (pa*, q@‘, zr’, zs’, . . . . . ..) Is a tuple of RS, then 
p@’ and q@’ overlap. The overlap of pa’ and q@’ may 
be noted many times. Projecting out the zr and zs 
fields elimmates this redundancy. 

Result := RSbB, 46, a.., . ..I 
If p@” and q@” do not occur together in a tuple of RS 
then they do not overlap. 

This strategy leads to the following implementation 
of range search. 

Given Points(pQ, x, y) and Box(b& x10, xhi, 
ylo, yhi). Box contains one tuple representing 
the query region. 

P(pQ, zp, x, y) := Points[pQ, ahuffle([x:x, y:yl), x, y)l 
Shuffle takes the X range and Y range of an 
element and produces the z value for the ele- 
ment. Here, the element contains a single 
pixel, so the X and Y ranges each contain a sin- 
gle value (x and y respectively). 

B(zb) := Decompose(Box) 
Create the set of elements representing the 
bOX. 

Result := (P [zp 0 zb] B) [x,yl 
Do the spatial join and prolect onto the point 
coordinates. 

5. Analysis of tba Range Search AJgorithm 

The oblects manipulated by AG algorithms are the 
elements generated by the decomposition of spatial 
objects. The time and space requirements of AG algo- 
rithms obviously depend on the number of elements 
generated in a decomposition. Space requirements are 
discussed in Section 5.1. The preservation of proxim- 
ity is an important consideration when the elements 
are kept on secondary storage. Section 5.2 discusses 
the relationship between preservation of proximity 
and the time requirements of the range search algo- 
rithm. Only results are given here. Derivations and 
proofs can-be found in TOREN831. An intermediate 
level of oresentation can be found in IOREN851 Sec- 
tion 5.3 summarizes experimental results on the range 
search algorithm. A detailed description of the exper- 
iments and results is in [ORENSS]. 

5.1 &ace Reqldrements 

In [ORENISI we analyzed the decomposition of a 2d 

rectangle of size U x V whose lower left corner IS at 
(0,O). We wanted to understand how the number of ele- 
ments in the decomposition depends on U and V. (The 
fact that elements are of different sizes 1s irrelevant. 
The time to process one element is independent of the 
size of the element.) The following facts were derived: 
(E(U,V) is the number of elements generated in the 
decomposition.) 

. E(U,V) is highly dependent on the number of bit 
positions between the first and last 1 bits in the 
bitwise logical OR of the binary representations 
of U and V. (Closed form expressions are given in 
[ORENdS, ORENSI].) 

. E(U,V) is cyclic in the magnitudes of U and V: 
Specifically, E(U,V) = B(2U,2V). 

These results sharpen our mtultion about space 
requirements and immediately lead to an optimiza- 
tion. The added intuition is that small changes in the 
oosltion of the border (i.e. the values of U and V) can 
iead to large increases in E(U,V). Also, it can be 
observed that E(U,V) is usually dominated by the 
number of elements on the border of the decomposed 
object. These observations suggest that E(U,V) is 
determined by the &ace area of a spatial object, not 
the volume. Dependence on surface area was also 
reported in [SAME85b]. Note that for an explicit grid 
representation, space and time requirements are dic- 
tated by the volume of spatial objects. Thus AG tech- 
niques should be very hard to beat, especially at high 
resolution. 

Optimization can be achieved by reducing the 
number of bit positions between the first and last 1s in 
U OR V. By expanding the boundaries of the spatial 
oblect (i.e., increasing U and V) appropriately, the 
number of elements generated can be decreased. 
Specifically, replace U and V by U’ and V’ such that U’ 
2 U, VI 2 V and the last m bits of II’ and r are zero 
(for an arbitrary value of m). This is equivalent to 
using a coarser grid. The construction is trivial. E.g., 
if U = 01181101 and m = 4, then U’ = 01110000. 

In going to a coarser grid, the imprecimon of the 
approximation grows slowly (e.g., based on a measure- 
ment of area). This is because it is the small (e.g., 1 
pixel) elements that are being aggregated to form plx- 
els of the coarser gmd. 

5.2 Proximity 

In [OREN83] we derived a relationship between prox- 
imity in space and proximity in z order. The results 
can be summarized as follows. Proximity in space in 
any direction usually corresponds to proximity in z 
order. The greater the discrepancy, the less hkely It is 
to occur. (A closed form ezpresslon IS in [OREN83, 
OREN851.) 

A disk page can be seen as storing all the points 
whose z values are in a certain range. Therefore, a 
disk page represents a set of points that are close In 
snace. In general, the space covered bv a naae is not 
r&tang&r (see figure 6). However, under t‘he-assump- 
tions of the analysis, there is a certain regularity in 
the partitioning. In [OREN83] we assumed that every 
page could represent a fixed number of pixels (black 
and white), regardless of the density of black pixels 
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(i.e. data density). We will refer to this as the “fixed- 
size page” assumption. This assumption leads to the 
following results: 

l The space is partitioned mto rectangular blocks 
of the same size and shape. Each block contains 
several disk pages. 

l The number of pages m a block is bounded by a 
number that depends only on the dimensionahty 
of the space. (6 m 2d, 28/3 in 3d [OREN85].) 

This result is used in the analysis of the following sub- 
section. 

5.3 Performance 

The preceding discussion sets the stage for an analyms 
of performance under the assumption of fixed-size 
pages. In this section we give results for the number of 
pages accessed in range and partial match queries fol- 
lowed by a discussion of experimental results. 

5.3.1 Analysis of Range and Partial Match Queries 

Recall that a range query asks for all points (Al, . . . , 
Ak) such that L, < Ai 5 Ui, 1 = 1, . . . , k. In a partial 
match query, for each I, either Li = U, or L, and U, do 
not restrict the value of Ai at all. As explained m 
[OREN83, OREN851, the two cases must be analyzed 
separately. 

Under the assumption that each page covers the 
same amount of space, the following results are 
obtained. For a range query, the number of (data) 
pages accessed is O(vN) where v is the volume of 
space covered by the query (as a fraction of the 
volume of the entire space) and N is the total number 
of pages. 

The numb r f pages accessed by a partial match 
query is O(NfwtR ) where t is the number of attributes 
restricted in the query and k is the dimensionahty of 
the data, t < k. 

These results are obtained by counting the number 
of “blocksn covered by the query. (Recall that each 
block covers a fixed number of pages in a given 
dimension.) They match the performance predicted for 
kd trees [BENT75]. 

5.3.2 Rxperimental Results 

The analysis of range and partial match queries IS 
based on the fixed-size page assumption. There is no 
guarantee that the predicted behavior would be 
observed in practice. Experiments were conducted to 
test two hypotheses. 

1. The general trends predicted by the analysis are 
robust; i.e., observable when the fixed-size 
page assumption is dropped. One of these 
trends is a dependence on query shape; that for 
queries of the same volume, “long and narrow” 
queries (e.g., partial match queries) require 
more work than queries with a squarish shape. 

2. The results of the analysis are pessimistm. 
Observed behavior should be better than what IS 
predicted. (For a rationale see [OREN85].) 
Worst case scenarios are easy to construct, but 
we are concerned with performance averaged 
over several queries. 

For the experiments we implemented a prefix B+- 
tree to store points in z order. Page capacity was 20 
points (in 2d) and 5000 points were generated for each 
experiment. Three sets of experiments were run, 1) 
uniformly distributed data (experiment U), 2) 
%lusteredn data - 50 small clusters of 100 points each 
(experiment C), 3) t’diagonally” distributed data - 
points uniformly distributed along the x=y line (experi- 
ment D). The partitioning induced by page boundaries 
IS shown in figure 13. For each experiment queries of 
various rectangular shapes (and four different 
volumes) were run m five randomly selected locations. 
We measured 1) the number of (data) pages accessed 
for each query, and 2) efficiency, a measure mdicat- 
ing how much “relevant” data was on each retrieved 
page. 

We obtained the following results: 

. The general trends predicted by the analysis were 
observed in all experiments. The results for 
experiment U were closest to the predicted 
results and the results for experiment D were 
farthest. 

. Except for a few data points, the predicted 
results provided an upper bound for the experi- 
mental results. 1.e , the hypothesis about pessi- 
mism of the analysis was supported. 

. Query efficiency increased with query volume. 
Low efficiency was usually accompanied by a low 
number of page accesses (fortunately). 

. Analysis predicted that the greatest efficiency 
would be achieved by queries which are square or 
twice as tall as they are wide [OREN85]. This was 
observed in all experiments. 

These results are very encouraging. Experiments in 
higher dimensions and with “real” data are still 
needed. 

6. Other AG Algorithms 

The work presented here dealt with spatial queries 
involving overlap. Simple modifications can be used 
for queries involving containment and proximity. 
(Containment implies overlap but not vice versa.) 
Proximity queries can often be translated into con- 
tainment or overlap queries. We have already 
developed AG algorithms for several other spatial 
operators. Details are in [OREN85]. The operations 
considered are the following. 

. 
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Overlay. Polygon overlay is an extremely impor- 
tant operation in geographic information process- 
ing. The operation is simple to carry out on a grid 
representation, a pixel at a time. We have 
developed an AG algorithm that works directly on 
sequences of elements. The AG algorithm should 
be faster than the grid algorithm since perfor- 
mance is determined by the surface area of spa- 
tial objects, not volume (as discussed in Section 
5.3). 



l Cuaneeted component iabelling. Another class of 
spatial queries has to do with the computing of 
“global” properties. E.g., how many black oblects 
are in a even puzture” What IS the area of each 
object’ Computmg global propertles of these 
oblecta IS at least as hard as ldentlfymg them. 
One algorithm that works directly on quadtrees 
has appeared [SAME85c] but it 1s extremely com- 
plicated. We have developed an AG version of the 
algorithm that can be expressed very concisely. 

l Support for mechanical CAD. Very recently, IPV 
researchers have been using quadtrees (and 
related structures) to support approximate algo- 
rithms for interference detection and related 
problems [MANT83, SAME85bl. AG, the spatial 
join in particular, can be of use here. We have 
developed an AG algorithm to speed up an imple- 
mentation based on boundary representation. Our 
approach was to re-express the algorithms of 
[MANT83] using spatial lam. 
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Figure 1: 

SpatmI mterpretatlon of the range query 
15x13 & OIYS4. 
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Figure 2: 

The decomposition of a box. Each element 
is labelled with its z value. A z value is con- 
structed by interleaving the bits describing 
the range of values covered by the element 
along each dimension. E.g. The element 
labelled 001 is handled as follows. The 
ranges of X and Y values covered are 
described by 12~3, 0:3] (1.e. 25x53 and 
OIY<3). In binary, these ranges are 
[OlO:Oll, 000:0111. The element is charac- 
terized by the common prefix of each 
range: 101, 01. Interleaving these bits (start- 
ing with X) ytelds 001. 

Figure 3: 

The n valuea in an element are conseoutive. 
The element shown is the large element 
from figure 2 (z value = 001). Note that all z 
values inside the element have the same 
prefix, 001. 
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Figure 4: 

Spatial interpretation of 8 order. The rank 
of a point 1s obtained by interleawng the 
bits of the coordinates and interpretmg as 
an integer. E.g. 13, 51 -t (011, 101) -+ 
011011 = 27. 

Figure 5: 

Range search algorithm. Each point IS a one 
pixel element. The box 1s decomoosed to 
elements. Merge the sequences of ilements, 
lookmg for containment of pomt elements 
by box elements. 
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Flgure 6. 

Partltlonlng of the space Induced by page boundarles 
m the zkd B+-tree. 

a) Experiment U. Uniformly dlstrlbuted pomts. 

b) Experiment C. Uniformly dlstrlbuted clusters of pomts. 

c) Experiment D. Points uruformly dlstrfbuted along the hne X=Y. 

336 


