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Abstract

This thesis presents a framework for low-latency interactive simulation of linear
elastostatic models and other systems associated with linear elliptic partial differention
equations. This approach makes it feasible to interactively simulate large-scale physical
models.

Linearity is exploited by formulating the boundary value problem (BVP) solution
in terms of Green’s functions (GFs) which may be precomputed to provide speed and cheap
lookup operations. Runtime BVPs are solved using a collection of Capacitance Matrix
Algorithms (CMAs) based on the Sherman-Morrison-Woodbury formula. Temporal co-
herence is exploited by caching and reusing, as well as sequentially updating, previous
capacitance matrix inverses.

Multiresolution enhancements make it practical to simulate and store very large
models. Efficient compressed representations of precomputed GFs are obtained using second-
generation wavelets defined on surfaces. Fast inverse wavelet transforms allow fast summa-
tion methods to be used to accelerate runtime BVP solution. Wavelet GF compression fac-
tors are directly related to interactive simulation speedup, and examples are provided with
hundredfold improvements at modest error levels. Furthermore, hierarchical constraints are
defined using hierarchical basis functions, and related hierarchical GFs are then used to
construct an hierarchical CMA. This direct solution approach is suitable for hard real time
simulation since it provides a mechanism for gracefully degrading to coarser resolution ap-
proximations, and the wavelet representations allow for runtime adaptive multiresolution
rendering.

These GF CMAs are well-suited to interactive haptic applications since GFs allow
random access to solution components and the capacitance matrix is the contact compliance
used for high-fidelity force feedback rendering. Examples are provided for distributed and
point-like interactions.

Precomputed multizone kinematic GF models are also considered, with examples
provided for character animation in computer graphics.

Finally, we briefly discuss the generation of multiresolution GF models using either
numerical precomputation methods or reality-based robotic measurement.
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Chapter 1

Introduction

Interactive multi-modal simulation of deformable objects, in which a user may manipulate
flexible objects and receive immediate sensory feedback via human-computer interfaces, is
a major challenge for computer graphics and virtual environments. Deformation is essen-
tial in computer animation for plausibly modeling the behavior of the human body, animals,
and soft objects such as furniture upholstery, but interactive applications, such as computer
games, have very limited computing budgets for 3D physical continuum simulation. Cur-
rent virtual prototyping and assembly applications also require deformable and also flexible
kinematic models suitable for interactive simulations such as assembly path planning. De-
formable models have a long history (see §1.1) and, one might say, are well understood
within the graphics, scientific and engineering communities. The challenge addressed by
this thesis is the design of deformable models that are both sufficiently realistic to capture
the relevant physics, and sufficiently fast for interactive simulation on ubiquitous computing
hardware.

The difficulty is that traditional scientific computing algorithms are capable of gen-
erating solutions to relatively complex 3D deformation problems on time-scales of minutes
or seconds, but interactivity requires solution times on the time-scales associated with hu-
man sensory perception. For example, an interactive elastic object simulation should be
capable of providing solutions for visual display at sufficient frame rates (30 Hz), as well
as haptic force feedback at kinesthetically convincing rates (1000 Hz), and perhaps even
contact force responses for sound generation. Failure to achieve sufficiently fast solution
rates introduces latency and results in an unconvincing simulation. Given such severe time
constraints, it makes sense to do as much work ahead of time as possible so that solution
costs during a simulation are smaller.

In recent years, linear elastostatic Green’s function models (LEGFMs) have been
shown to strike an attractive trade-off between realism and speed. The models are physically-
based and are accurate for a class of relatively stiff deformable materials which tend to reach
equilibrium quickly during continuous contact. The linearity of the model allows for the
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Figure 1.1: Example of a Complex Elastic Model: An elastic rabbit model with 2562 ver-
tices, 5120 faces and 5 levels of subdivision connectivity (L = 4), capable of being rendered
at 30 FPS with 1 kHz force feedback on a PC in our Java-based haptic simulation. The asso-
ciated dense square Green’s function (GF) submatrix contained 41 million floats (166 MB)
but was compressed down to 655 thousand floats (2.6 MB) in this animation (ε= .2). The
depicted deformation resulted from force interactions defined at a constraint resolution that
was two levels coarser (L=2) than the visible mesh; for these coarse level constraints, the
GF matrix block may be further compressed by a factor of approximately 16 = 42. Even
further compression is possible with file formats for storage and transmission of models.
(Reparameterized rabbit model generated from mesh courtesy of Cyberware [Cyb].)

use of very fast solution algorithms based on linear superposition which support real-time
rendering and stable force feedback. The use of these techniques in interactive simulation
was advanced by [BC96, CDA99, JP99a] who demonstrated real time interaction with de-
formable models in applications such as force feedback surgical simulation and computer
animation. A natural connection also exists between LEGFMs and active measurement
techniques for the direct acquisition of deformable objects [PvdDJ+01]. In this thesis we
show that linear superposition techniques can lead to truly low-cost interactive simulation
of small-strain deformations of extremely large models. Nevertheless, we also consider this
a starting point for the development of a complete set of hybrid solution techniques with
the ultimate goal of developing efficient simulation tools for difficult nonlinear phenomena
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associated with stiff models subject to constraints.
The key to the fast simulation technique is the use of precomputed Green’s functions

(GFs). Intuitively, Green’s functions form a basis for representing all possible deformations
of an object in a particular geometric configuration of boundary constraint types, e.g., es-
sential (Dirichlet), natural (Neumann), or mixed (Robin). The benefit of linearity is that the
response to any set of boundary values can be quickly reconstructed by a linear combina-
tion of precomputed GFs. In this way, these solution techniques can be used to obtain the
solution for any set of applied constraints by using the GFs in combination with a collection
of matrix updating methods (related to the Sherman-Morrison-Woodbury formula) which
we refer to collectively as Capacitance Matrix Algorithms, or simply CMAs.

Furthermore, the GF-based CMA matrix solvers are not limited to just LEGFMs,
and can in fact be used to simulate numerous other continuous physical systems in equi-
librium. Interesting examples are the visualization of solutions to linear elliptic partial
differential equations (PDEs), such as those used to model electrostatic fields, equilibrium
diffusion, and transport phenomena. The unifying property is that any physical (or non-
physical) equilibrium1 system for which there exists a linear matrix relationship between
specified and unspecified boundary values can be simulated; this is indeed a very large class
of systems given that it contains all models described by discrete BVPs arising from dis-
cretizations of linear elliptic PDEs. An interesting point is that LEGFMs are small strain
approximations of finite strain elasticity, however other physical systems are accurately
modeled by linear elliptic PDEs, e.g., electrostatics. The reader should keep in mind that,
although this thesis is largely explained in terms of deformable object simulation, parallel
relationships exist between the physical quantities in other applications.

Recently we have shown that GF formulations play an important role in the direct
acquisition of deformable models by active measurement [PvdDJ+01]. Using the simula-
tion methods here, it is possible for the quasi-GF measurements to be immediately used for
interactive visualization. Multiresolution techniques developed here, such as hierarchical
GFs, are also very useful in the context of measurement and estimation. The GF’s input-
output boundary description also provides an important starting point for the definition of
inverse problems for determining internal material properties of deformable objects. Once
the possibly quite complicated internal material distribution is estimated, a more complete
simulation can then be undertaken, e.g., including nonlinear strain.

However, the CMAs achieve their impressive visualization speed (O(sn) time per
solution, where n is the simulated model’s geometric complexity and s is the number of
nonzero (or modified) boundary conditions) at the expense of storing O(n2) elements of

1We restrict our discussion to time-independent systems because, even though Green’s function
methods can be used for time-dependent systems, e.g., parabolic or even hyberbolic PDEs, the
storage costs are exacerbated by the extra time dimension.
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the large dense Green’s function matrices which can be accessed in constant time. This
clearly doesn’t scale well to large models; for example the GF matrix stored as floats for
a vertex-based model with 100 vertices requires only 360KB, however one with 10000
vertices such as dragon in Figure §3.5 (p. 56) would require 3.6GB! For these problems
bus and cache considerations are significant as well. In addition, the capacitance matrix
algorithm presented in [JP99a] requires anO(s3) factoring of the dense capacitance matrix,
which scales very poorly as the number of run-time constraints increase.

In this thesis we present a family of algorithms for simulating deformable models
and related systems that make Green’s function techniques practical for very large models.
The multiresolution enhancements introduced do much more than simply compress Green’s
functions to minimize storage. As a rule, these approaches are compatible with and improve
the performance and real time feasibility of numerical operations required for the direct
solution of boundary value problems. The algorithms exploit the fact that there exist several
distinct, yet related, spatial scales corresponding to

• geometric detail,

• elastic displacement fields,

• elastic traction fields, and

• numerical discretization.

We develop multiresolution summation techniques to quickly synthesize deformations, and
hierarchical capacitance matrix algorithms to deal with constraint changes. Wavelet GF
representations are also useful for simulating multiresolution geometry for graphical and
haptic rendering. Numerous other optimizations and applications are also presented, and
are summarized in §1.2.

1.1 Related Work

This thesis borrows from and builds on several fields of research.

1.1.1 Traditional Numerical Methods for Linear Elastostatics

Static linear elasticity is an old and well-understood topic [Lov27]. Boundary integral equa-
tion (BIE) formulations of Navier’s equation and other potential theories also have very
established roots [Kel29, JS77]. Numerical methods for approximating the solutions of lin-
ear elasticity, such as the Finite Element Method (FEM) [Zie77] and, more recently, the
Boundary Element Method (BEM) [BTW84], are well-known and commonly used. Effi-
cient iterative methods exist for the solution of large scale problems, with notable exam-
ples being multigrid [Hac85] for domain discretizations and preconditioned fast multipole
methods [GR87, YNK01] for boundary integral equations. Such methods are useful for
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Figure 1.2: Early examples created using ARTDEFO the Java-based system described
in [JP99a]. Each of these constant element BEM models has less than 300 nodes, and
only a small fraction of these are ever contacted at the same time. The basic capacitance
solver is adequate to handle these interactions and produce interactive frame rates on a PC.
To efficiently interact with more complex models as well as allow more contacted nodes,
the optimizations presented in this thesis are very useful.
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precomputing Green’s functions for simulations, but these (fast) solution methods aim to
reduce the total solution time and were never intended for interactive simulation applica-
tions where low latency is more important than total solution time or asymptotic large-scale
cost complexities. In this respect, a linear-time solution algorithm, such as multigrid or
the fast multipole method, is not optimal for force feedback. On the other hand, while
the capacitance matrix algorithm incurs significant precomputation costs, it is capable of
computing force responses, e.g., in constant time for point-like contact, and this is more
desireable.

1.1.2 Deformable Objects for Computer Graphics and Haptics

Substantial work has appeared on physical deformable object simulation and animation in
computer graphics and related fields [TPBF87, BW92, GM97, CDA99, ZC00, DDBC01],
although not all is appropriate for interactive or force feedback applications. Important
interactive applications of elastic simulation include computer animation and interactive
games, surgical simulation, computer aided design, interactive path planning, and virtual
assembly for increasingly complicated manufacturing processes2. Several broad surveys
are available for graphics [GM97] and surgical simulation [Del98], and we refer readers
there for additional details.

From the point of view of this work, there are two clearly effective classes of inter-
active simulation methods for complex 3D physical elastic objects: methods for simulating
stiff quasistatic systems under small strain, and explicit time-stepping schemes for simulat-
ing soft dynamic materials. This is primarily due to the fact that these approaches avoid the
construction and solution of large systems of equations at each step of a simulation. The
fast (quasi-)linear elastostatic models which can in a sense “precompute out stiffness” are
complementary to explicit (lumped mass) time-stepping schemes most effective for soft,
dynamic, highly deformable elastic models, e.g., [ZC00, PDA01, DDBC01]. Analogous
to applications of rigid body simulation, equilibrium systems are useful for simulating stiff
materials and in place of dynamic deformation that is too fast to be meaningfully resolved.
Ever since the beginning of computer graphics, soft deformable objects have been simu-
lated, and this is partly because they are much easier to compute than those involving stiff
systems of equations [Wil89]. For force feedback interaction with stiff geometrically com-
plex deformable models, in which model complexity and interaction fidelity are competing
factors, fast approximation methods, such as those presented here, are very useful. Perhaps
one of the most attractive features of LEGFM simulations is that it is possible to simulate
contact force feedback at extremely high-rates without ever simulating the entire model; this
is the reason that LEGFM simulations can achieve a much higher force feedback fidelity

2“Someone once said that a Boeing 747 is not really an airplane, but five million parts flying in
close formation.”(from [CM92])

6



than time-stepped simulations. We also expect that interactive simulations of deformable
objects will involve more hybrid numerical models in the future.

In recent years, the importance of implicit3 integration methods for numerically
stiff simulations of constrained deformable dynamical systems has been revived in graph-
ics [TF88, HE01]. Implicit methods have been very successfully applied to cloth simu-
lation for off-line computer animation [BW98], and also for interactive simulation at con-
stant frame rates using approximate cloth models of modest complexity [DSB99, KCC+00].
Implicit-explicit (IMEX) time-stepping schemes developed for PDEs [ARW95] have also
been used to address stiffness in the presence of nonlinearities and contact [KROM99,
EEH00]. However, with the exception of simplified cloth models, implicit integration meth-
ods have remained uncommon for interactive simulation of 3D volumetric elastic models
due to the need to solve a large linear system of (possibly changing) equations at each time
step, although this might change with vector supercomputing hardware [Tay91].

There has been a natural recent trend toward explicit temporal integration of lumped
mass nonlinear FEM systems, with examples using parallel computation [SBD+00], adap-
tivity in space and perhaps time [ZC00, DDBC01, WDGT01] and also adaptive use of
linear and nonlinear elements [PDA01]. These approaches are very useful for modeling
soft materials in surgical simulation where a wide range of complex biological materials
undergoing very large strain must be simulated and modified during virtual surgical pro-
cedures. Despite the appropriateness of this approach for human tissue modeling, it has
several limitations which can be overcome in the case of linear elastostatic models: (1) only
several hundred interior nodes can be integrated at a given time4 (without special hardware),
and while adaptivity does help, this ultimately limits model complexity; (2) deformations
requiring that finely detailed discretizations be resolved will be slow due to CFL time-step
restrictions; (3) while excellent for soft materials, stiff objects with detailed discretizations
are difficult to time-step with explicit methods.

Multirate integration approaches are useful for introducing haptic interactions with
dynamic models [cT00, DDBC01]. An interesting example is the work of Astley and Hay-
ward [AH98] who precompute multilevel Norton equivalents for the stiffness matrix of a
linear viscoelastic FEM model so that haptic interactions are possible by employing an ex-
plicit multirate integration scheme wherein a model associated with the contact region is

3A suitable background text on issues related to time-stepping methods [AP98] might also be
consulted by the unfamiliar reader.

4Szekély et al. [SBD+00] analyzed the time-stepping cost of their “optimized explicit finite-
element algorithms” for nonlinear Cauchy-Green strain with a neo-Hookean strain energy func-
tional. They arrived at a cost of 650 flops per element per time-step, or about 1000 flops including
collision detection. Based on their restricted time-step of 100 µs they estimate that for a 2000
element model the sustained computational power required is 20 GFlops, hence their parallel com-
puting approach. As shown in the Results chapter, this model is approximately one thousand times
more costly than the corresponding LEGFM approximation.
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integrated at a higher rate than the remaining coarser model. Local buffer models have also
been introduced for deformable object simulations [Bal00, dBL00].

Modal analysis for linear elastodynamics [PW89] can also be used for interac-
tive [Sta96] and force feedback applications [Bas01] by precomputing modal data. Related
dimensional reduction time-stepping methods also exist for nonlinear solid dynamics, e.g.,
see [KLM01]. Sound models based on modal synthesis can also be used to render con-
tact sounds [vdDP98, PvdDJ+01]. The deformation method is costly as more modes are
used, but as with the superposition of GF global deformation bases, the superposition of
modal deformation bases can also be accelerated using fast-summation methods; for sim-
ple geometries, e.g., 1D, the FFT is commonly used. Unfortunately, while ideal for stiff
free-vibrating dynamic models, resolving constraints associated with continuous contact
interactions are problematic.

This thesis is most closely related to, and builds on, research on precomputed
Green’s function based models for real time simulation and force feedback interaction
[BC96, HK98, CDA99, JP99a, JP01]. Of notable mention is the work on hepatic surgery
simulation by the group at INRIA [BC96, CDA99, BN96]. In [BC96], a precomputation
phase is used to condense [Zie77] a linear system of FEM equations to produce a dense
boundary-only system of equations which are solved to obtain a set of surface Green’s func-
tions, while an iterative method is used in [CDA99]. During a laproscopic force feedback
simulation they solve a small system of equations to determine the correct superposition of
GFs, e.g., to apply displacement constraints at vertices of a triangle, which may be identi-
fied as a special case of the CMA. The approach taken by Hirota et al. [HK98] also involves
precomputing what are GFs of a FEM model in order to impose a point contact constraint
with force feedback rendering. Our work on the ARTDEFO simulator [JP99a] derived ca-
pacitance matrix updating equations in terms of GFs directly from the BEM matrix equa-
tions using the Sherman-Morrison-Woodbury formulae, and provided several examples of
distributed contact constraints [JP99b]. The generality of this GF updating formula and im-
plications for force feedback haptics were described in [JP01]. Despite their effectiveness,
all of these approaches suffer from a potentially long precomputation period, and poorly
scaling memory requirements which limit the complexity of models that can be constructed
and/or simulated. Additionally, the basic CMA approach will ultimately degrade interactive
performance for large contact areas. All of these short-comings are addressed by this the-
sis. Nevertheless, even with these limitations, the precomputed FEM model of [BC96] is of
practical use, e.g., in brain surgery simulation [HL98] and Forschungszentrum Karlsruhe’s
commercial KISMET endoscopic surgery simulators [KcM99].
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1.1.3 Subdivision and Wavelets

We make extensive use of multiresolution modeling related to Loop subdivision surfaces
[Loo87] and their displaced variants [LMH00]. Such geometric subdivision schemes have
proven to be highly successful geometric modeling tools [Sub00, War95, DKT98, CPD+96,
ZSS96, ZSS97]. For the BEM, notable benefits of subdivision meshing are high-quality
surface triangulations and control over mesh uniformity. We also exploit the semi-regular
subdivision mesh structure to define interpolating multiscale bases, such as surface adapted
hierarchical basis functions [Yse86].

We are mostly concerned with the efficient representation of Green’s functions de-
fined on subdivision surfaces. Natural tools here are subdivision wavelets [LDW97], since
geometric subdivision has deep connections with wavelets and the construction of multires-
olution analyses (MRA) on general manifolds. We make extensive use of such wavelets
based on the lifting scheme [Swe98, SS95a, SS96], since this provides a way to efficiently
represent functions on arbitrary surfaces [SS95a, SS95b] as well as a means to construct
fast O(n) wavelet transforms for use in GF fast summation calculations.

Efficient GF representation is also related to the much larger area of multiresolu-
tion and progressive geometric representation [KSS00], and the efficient represention of
functions on surfaces [KL97]. The issues governing choice of wavelets varies because of
the very different quantities being represented. In particular, 3D geometry and quantities
defined on it constitute a very broad class of functions, whereas displacement fields for 3D
boundary Green’s functions of elliptic PDEs are a very particular class of functions which
are typically extremely smooth (or nearly constant) over very large portions of the surface
with the exception of fast variations near constraints. For example, a surface region de-
scribed by a GF may be locally undergoing translation (constant displacement field) while
the underlying geometry is highly complex. For such reasons, we have observed that very
simple wavelets, such as lifted linear wavelets, have performance comparable to often better
performing smoother bases, such as lifted butterfly wavelets.

Our multiresolution elastostatic surface splines also have connections with varia-
tional and physically-based subdivision schemes [DLG90, WW98, WW99, WW00]. A
relevant point is that the multiresolution framework presented here can be used to accu-
rately solve boundary value problems arising from inhomogeneous linear partial differential
equations by accurately modeling the nonlocal (dense) influences of (changing) boundary
conditions. This contrasts with the local rules obtained for subdivision modeling, e.g., of
linear Stokes flow [WW99], which do not solve arbitrary boundary value problems per se
but rather provide a tool for convenient variational modeling of plausible physical solutions.

9



1.1.4 Fast Summation and Integral Transforms

Our work on wavelet Green’s functions is strongly related to multiresolution discretization
techniques [BCR91b, ABCR93] for sparsely representing integral operators and obtaining
fast summations for fast matrix multiplication. However, unlike the cases from classical
potential theory where the integral operator’s kernel is explicitly known [JS77] and can
be exploited [GR87, HN89, YNK01], or for wavelet radiosity in which the form factors
may be extracted relatively easily [GSCH93], here the integral operator’s discrete matrix
elements are defined implicitly as Green’s functions which are obtained by solving a class
of boundary value problems. Nevertheless, it is known that such (Green’s function) inte-
gral operators which describe the solutions to boundary value problems arising from elliptic
partial differential equations may be efficiently represented in wavelet bases [Bey92]. How-
ever, unlike these multiresolution discretization approaches that are commonly used with
iterative solution methods, we are not primarily interested in performing fast matrix-vector
multiplies with the full Green’s function matrix; we also require a number of specially op-
timized matrix-vector multiplication and matrix element extraction operations for use with
capacitance matrix algorithm constraint solver.

1.1.5 Capacitance Matrix Algorithms

The main focus of this work is on capacitance algorithms used for updating matrices in the
solution of linear algebraic systems. This topic has a long and interesting history [OW79,
PW80, Dry83, CS85, Yip86, KT87, Che87, Hag89, GMW91, Rie92, LV98, AGH01] dat-
ing back to the pioneering work by Sherman, Morrison, Woodbury [She53, SM50, Woo50,
PFTV87] and a few others. The range of application of these methods is very broad, and
hundreds of papers have been published on updating matrices, especially for optimization
and least squares [Hag89]. There is also a fundamental relation between capacitance meth-
ods and domain decomposition, imbedding and Schur complements, e.g., see [PV94, PV95]
and references contained therein, and this is discussed later in the context of multizone mod-
els with precomputed GFs. Recently, a generalized capacitance matrix algorithm [LV98]
has appeared for updating matrices with general dimensions and rank.

1.1.6 Capacitance Matrix Updating and Downdating

Methods for updating and downdating5 the capacitance matrix inverse, in which rows and
columns are respectively added or deleted, are very important tools for exploiting temporal
coherence with the CMAs (discussed in §2.3). Matrix factorizations may also be efficiently
updated [GL96, GMW91], in addition to updating the explicit capacitance matrix inverse.

5I will refer to updating and downdating collectively as updating.
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This is not a new idea, as the updating of capacitance inverses and their factorizations
has been a useful tool for a few decades, e.g., in linear programming and quasi-Newton
recurrences [BGS70, BG66, Hag89]. Efficiently updating QR factorizations has been an
important problem, e.g., for least squares (see [GL96] and references therein). It is possi-
ble to update LU factorizations [GL96, GGMS74, Ste79]; however for various reasons, e.g.,
pivoting requirements, this can be problematic. While there are nice properties of QR fac-
torizations for the capacitance problem, e.g., stability, the generally larger cost of updating
matrix factorizations compared to inverses leads us to explicitly consider inverse updating
methods.

1.1.7 Static Reanalysis and Contact Mechanics

The engineering community uses updating methods for the analysis of elastic structures
undergoing changes, e.g., during a design process, and it is generally referred to as static
reanalysis (see [Aro76, KT87, BH93] for comprehensive reviews). These numerous direct
solution techniques are very similar to the general matrix updating schemes, and it turns
out that many are related to the Sherman-Morrison-Woodbury formula. It is also possible
to extend reanalysis to handle nonlinear material changes [AGH01].

The formal description of contact between deformable/rigid objects using unilateral
inequalities (precluding tensile contact tractions and material interpenetration) and further
equations approximating friction and other contact physics, is the subject of contact me-
chanics [Joh85, BC00]. In the BE contact community, Sherman–Morrison–Woodbury re-
lated methods are commonly used to modify contact constraints between contacting elastic
bodies [EO89, MAR93]; this provided an insight which eventually led us to use CMAs for
solving contact problems interactively, e.g., in [JP99a]. Coupling elastic models together
is also related to domain decomposition and multizone models, and this is discussed later
in §5.1 in the context of precomputed GF models. While the methods described in this
thesis are appropriate and intended for solving quasistatic contact problems, we focus on
developing fast methods for computing the structural response of elastic models, and do
not explicitly address the solution of contact problems. These latter issues are already ad-
dressed by the literature (although not in an interactive context), and we have made use of
this information in our software for interactive simulation of deformation resulting from
contact.

1.2 Thesis Organization and Contributions

The organization and contributions of each chapter of this thesis are as follows:

• Chapter 2 introduces the Capacitance Matrix Algorithm (CMA) for interactive simu-
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lation of Green’s function (GF) based physical models (§2.1-2.2). We use a generic
formulation and notation which separates discretization details from simulation is-
sues. This formulation highlights the role of the capacitance matrix in the BVP solu-
tion process and also simplifies discussion of later material. The final section (§2.3)
provides extensive detail on efficient methods for sequential updating and caching of
capacitance matrix inverses to exploit temporal coherence in BVPs.

• Chapter 3 introduces several new multiresolution enhancements for the CMA. A
summary of multiresolution analysis on manifolds is given for second-generation
biorthogonal vertex-based wavelets with fast lifted wavelet transforms (§3.1). These
are used to construct sparse wavelet GF approximations which yield substantial com-
pression (§3.2). This also allows the definition of a fast summation CMA which
significantly improves simulation speeds for large models (§3.3). A multiresolution
constraint formalism based on hierarchical basis functions is also introduced (§3.4)
to improve the efficiency of simulating detailed models, especially in the presence
of numerous (updated) constraints. GFs corresponding to hierarchical constraints, or
hierarchical GFs (§3.5), are used to define an hierarchical CMA (§3.6) also support-
ing fast summation. Approaches for multiresolution and detailed rendering are also
discussed (§3.7).

• Chapter 4 outlines the special properties of the CMA for haptic interaction. Section
4.1 illustrates the special role of the capacitance matrix as a surface compliance, and
its use for force feedback of distributed contact. The important special case of point-
like contact for force feedback rendering is considered in §4.2. We introduce pressure
masks for smooth force rendering and consistent scale-specific definition of boundary
conditions for the otherwise ill-defined case of point contact.

• Chapter 5 presents several advanced modeling techniques for extending the GF sim-
ulation framework to include nonlinear strain and/or material properties. Aspects of
multizone GF models for simulation are discussed (§5.1), and extensions for multi-
zone elastostatic kinematic models with large strain are derived.

• Chapter 6 addresses the generation of GFs prior to simulation. Numerical precom-
putation is discussed in §6.1 with an emphasis on boundary integral methods; exam-
ples are provided for direct BEM matrix solver, as well as a preconditioned iterative
method employing fast integral transforms based on wavelets. As an alternative to
numerical precomputation, the acquisition of multiresolution GF models using reality
based modeling techniques in introduced in §6.2.

• Chapter 7 presents various experimental results. Timings of key CMA operations
are given in §7.2 for typical BVP solution and capacitance matrix inversion costs,
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and for sequential capacitance matrix inverse updating in §7.3. Benefits related to
multiresolution enhancements are described in §7.4 for (hierarchical) GF compres-
sion and consequent fast summation speedup. The remainder of the chapter discusses
force feedback simulation examples (§7.5), precomputation times (§7.6), and wavelet
compression of reality based models (§7.7).

• Chapter 8 presents our conclusions and suggestions for future work.

Several appendices provide tutorials on boundary integral formulations of Navier’s equation
(§A) and the boundary element method (BEM) (§B), as well as a justification of our pressure
mask approach for point contact (§C), and an overview of the system system developed
during this thesis project (§D).
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Chapter 2

Interactive Simulation of Green’s
Function Models using Matrix

Updating Techniques

2.1 Linear Elastostatic Boundary Model Preliminaries

Linear elastostatic objects are generalized three dimensional linear springs, and as such
they are useful modeling primitives for physically-based simulations. In this section, back-
ground material for a generic discrete Green’s function (GF) description for a variety of
precomputed linear elastostatic models is provided. While this chapter can stand on its
own to a certain degree, it is not an introduction to this topic, and the reader unfamil-
iar with such models might also consult a suitable background reference before continu-
ing [Bar92, Har85, Zie77, BTW84, JP99a]. Conceptually, GFs form a basis for describing
all possible deformations of a linear elastostatic model subject to a certain class of con-
straints. This is useful because it (1) provides a common language to describe all discrete
models, (2) subsumes extraneous discretization details by relating only physical quanti-
ties, and (3) clarifies the generality of the force feedback and multiresolution algorithms
described later.

Another benefit of using GFs is that they provide an efficient means for exclusively
simulating only boundary data (displacements and forces). This is useful when rendering
of interior data is not required or in cases where it may not even be available, such as for
reality-based models obtained via boundary measurement [PvdDJ+01]. While it is possible
to simulate various internal volumetric quantities (§2.1.5), simulating only boundary data
involves less computation. This is sufficient since in interactive computer graphics we are
primarily concerned with haptic interactions that impose surface constraints and provide
feedback via visible surface deformation and contact forces.
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2.1.1 Geometry and Material Properties

Given that the fast solution method is based on linear systems principles, essentially any
linear elastostatic model with physical geometric and material properties is admissible.
We shall consider models in three dimensions, although many arguments also apply to
lower dimensions. Suitable models would of course include bounded volumetric objects
with various internal material properties, as well as special subclasses such as thin plates
and shells. Since only a boundary or interface description is utilized for specifying user
interactions, other exotic geometries may also be easily considered such as semi-infinite
domains, exterior elastic domains, or simply any set of parametrized surface patches with
a linear response. Similarly, numerous representations of the surface and associated dis-
placement shape functions are also possible, e.g., polyhedra, NURBS and subdivision sur-
faces [Sub00]. The undeformed boundary is denoted by Γ.

Γu Figure 2.1: Illustration of discrete nodal displacements u

defined at vertices on the undeformed boundary Γ (solid
blue line), that result in a deformation of the surface (to
dashed red line). Although harder to illustrate, a similar
definition exists for the traction vector, p.

2.1.2 Nodal Displacements and Tractions

The change in shape of the surface is described by the surface displacement field u(x),
x ∈ Γ, and the surface force distribution is called the traction field p(x), x ∈ Γ. We will
assume that each surface field is parametrized by n nodal variables (see Figure 2.1), so that
the discrete displacement and traction vectors are

u = [u1, . . . , un]T (2.1)

p = [p1, . . . , pn]T , (2.2)

respectively, where each nodal value is a vector in R
3. This description admits a very

large class of surface displacement and traction distributions, suitable for considering those
associated with elasticity discretizations.

Each discrete vector field u and p have continuous counterparts, whose components
belong to a continuous scalar space on the model’s boundary, e.g.,

L = span {φj(x), j = 1 . . . n, x ∈ Γ} , (2.3)

where φj(x) is a scalar basis function associated with the jth node. The continuous traction
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field may then be defined as a 3-vector function with components in L,

p(x) =
n∑

j=1

φj(x)pj , (2.4)

The force on any surface area is equal to the integral of p(x) on that area. We can then
define the nodal force associated with any nodal traction as

fj = ajpj where aj =

∫

Γ
φj(x)dΓx (2.5)

defines the area associated with the jth node. A similar space exists for the continuous dis-
placement field components, and is in general different from the traction field, and perhaps
more smooth.

Our implementation uses linear boundary element models, for which the nodes are
vertices of a closed triangle mesh model using Loop subdivision [Loo87]. Such surfaces are
convenient for obtaining multiresolution models for rendering as well as smoothly param-
eterized surfaces suitable for BEM discretization and deformation depiction. We describe
both the traction field and the polyhedral displacement field using continuous piecewise lin-
ear basis functions: φj(x) represents a “hat function” located at the jth vertex normalized
so that1 φj(xi) = δij . Given our implementation, we shall often refer to node and vertex
interchangeably. The displacement and traction fields both have convenient vertex-based
descriptions

uj = u(xj), pj = p(xj), (2.6)

where xj is the jth vertex.

2.1.3 Discrete Boundary Value Problem (BVP)

At each step of the simulation, a discrete BVP must be solved which relates specified and
unspecified nodal values, e.g., to determine deformation and force feedback forces. With-
out loss of generality, it shall be assumed that either position or traction constraints are
specified at each boundary node, although this can be extended to allow mixed conditions,
e.g., normal displacement and tangential tractions. Let nodes with prescribed displacement
or traction constraints be specified by the mutually exclusive index sets Λu and Λp, respec-
tively, so that Λu∩Λp = ∅ and Λu∪Λp = {1, 2, ..., n}. In order to guarantee an equilibrium

1δij is the Kronecker delta function,

δij =

{
1, i = j,
0, i 6= j
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constraint configuration we will require that there is at least one displacement constraint,
i.e., Λu 6= ∅. We shall refer to the (Λu,Λp) pair as the system constraint or BVP type.

Typical boundary conditions for a force feedback loop consist of specifying some
(compactly supported) displacement constraints in the area of contact, with free boundary
conditions (zero traction) and other (often zero displacement) support constraints outside
the contact zone. The solution to (2.8) yields the rendered contact forces and surface defor-
mation.

Denote the unspecified and complementary specified nodal variables by

vj =

{

pj : j ∈ Λu

uj : j ∈ Λp

and v̄j =

{

uj : j ∈ Λu

pj : j ∈ Λp

, (2.7)

respectively. By linearity of the discrete elastic model, there formally exists a linear rela-
tionship between all nodal boundary variables

0 = Av + Āv̄ = Av − z (2.8)

where the BVP system matrix A and its complementary matrix Ā are, in general, dense
block n-by-n matrices [Har85] with 3-by-3 blocks.

Body force terms associated with other phenomena, e.g., gravity, have been omitted
for simplicity, but can be included since they only add an extra contribution to the z term.
More generally (2.8) may be written

0 = Av + Āv̄ − b = Av − z (2.9)

where
z = b− Āv̄. (2.10)

For later purposes, it is useful to parametrically describe contributions to b as2

b = Bβ =
∑

j

B:jβj (2.11)

where β are some scalar parameters. For example, gravitational body force contributions
can be parameterized in terms of gravitational acceleration, g ∈ R

3.
A fundamental relationship between BVP system matrices (A, Ā) arising from dif-

ferent BVP types (Λu,Λp) is that they are related by exchanges of corresponding block
columns, e.g., (A:j, Ā:j). Therefore changes to a small number of nodes in the BVP type
will result in low-rank changes to the BVP system matrices (see §2.2.3).

While the boundary-only system matrices in (2.8) could be constructed explicitly,
e.g., via condensation [Zie77] or using a boundary integral formulation (see next section), it
need not be in practice. Equation 2.8 is primarily a common starting point for later definition
of GFs and derivation of the CMA, while GFs may be computed by any convenient method.

2Notation: Throughout we use a colon subscript to refer to all components of a matrix quantity,
e.g., B:j represents the jth (block) column vector of the matrix B.
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2.1.4 Example: Boundary Element Method (BEM) Models

Closed-form definitions of (A, Ā) are possible for boundary element models ([BTW84,
JP99a], Appendix B). BEM discretizations are possible for models with homogeneous and
isotropic material properties. The surface nodal quantities are related by the dense linear
block matrix system

0 = Hu− Gp (2.12)

0 =
n∑

j=1

hijuj −
n∑

j=1

gijpj , i = 1 . . . n, (2.13)

where G and H are n-by-n block matrices, with each matrix element, gij or hij , a 3-by-3
influence matrix with known formulae [BTW84]. In this case, the j th block columns of A

and Ā may be identified as column exchanged variants of G and H:

A:j =

{

−G:j : j ∈ Λu

H:j : j ∈ Λp

and Ā:j =

{

H:j : j ∈ Λu

−G:j : j ∈ Λp

. (2.14)

2.1.5 Fast BVP Solution with Green’s Functions (GFs)

Green’s functions (GFs) of a single BVP type provide an economical means for solving
(2.8) for that BVP, and when combined with the CMA (§2.2) will also be useful for solving
other BVP types. From (2.8), the general solution of a BVP type (Λu,Λp) may be expressed
in terms of discrete Green’s functions (GFs)3 as

v = Ξv̄ =
n∑

j=1

ξj v̄j =
∑

j∈Λu

ξj ūj +
∑

j∈Λp

ξj p̄j , (2.15)

where the discrete GFs of the BVP system are the block column vectors

ξj = −
(
A−1Ā

)

:j
(2.16)

and
Ξ = −A−1Ā = [ξ1ξ2 · · · ξn] . (2.17)

Equation (2.15) may be taken as the definition of the discrete GFs, since it is clear that
the jth GF simply describes the linear response of the system to the j th node’s specified

3Note on GF terminology: we are concerned with discrete numerical approximations of contin-
uous GFs, however for convenience these GF vectors will simply be referred to as GFs.
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boundary value, v̄j (see Figure 2.2). This equation may be interpreted as the discrete man-
ifestation of a continuous Green’s function integral equation4. Once the GFs have been
computed for one BVP type, that BVP may then be solved easily using (2.15). An attrac-
tive feature for interactive applications is that the entire solution can be obtained in 18ns

flops5 if only s boundary values (BV) are nonzero (or have changed since the last time step);
moreover, individual components of the solution may also be computed independently at
proportionately smaller costs, as shown below.

Parameterized body force contributions may also be included in (2.15) to yield the
summation

v = Ξv̄ +
(
A−1B

)
β, (2.19)

for which the matrix
(
A−1B

)
could be precomputed.

Temporal coherence may also be exploited by considering the effect of individual
changes in components of v̄ on the solution v. For example, given a sparse set of changes
to the constraints, δv̄, if follows from (2.15) that the new solution can be incremented effi-
ciently,

v̄new = v̄old + δv̄ (2.20)

vnew = vold + Ξ δv̄. (2.21)

By only summing contributions to constraints which have changed significantly, temporal
coherence can be exploited to reduce BVP solve times and obtain faster frame rates.

Further leveraging linear superposition, each GF system response may be enhanced
with additional information in order to simulate other precomputable quantities. In this way,
volumetric stress, strain and displacement data may also be simulated at preselected loca-
tions. For example, a GF could be augmented with additional rows containing quantities to
be superposed,

ξmodified
j =









ξj
uvolume

j
...
σj









(2.22)

4The continuous representation may be written, in an obvious notation, as

v(x) =

∫

Γu

Ξu(x,y)ū(y)dΓy +

∫

Γp

Ξp(x,y)p̄(y)dΓy (2.18)

5Flops convention [GL96]: count both + and ×. For example, the scalar saxpy operation y :=
a ∗ x + y involves 2 flops, so that the 3-by-3 matrix-vector multiply accumulate, vi := Ξij v̄j + vi,
involves 9 saxpy operations, or 18 flops.
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v = 0 v = ξj ẑ

v = ξjx̂ v = ξjŷ

Figure 2.2: Illustration of the jth Green’s function block column, ξj = Ξ:j , representing the
model’s response due to the three XYZ components of the j th specified boundary value,
v̄j . Here the vertex belongs to the (“free”) traction boundary, j ∈ Λp, and so ξj is literally
the three responses due to unit tractions applied in the (RGB color-coded) XYZ directions.
White edges emanating from the (displaced) jth vertex help indicate the resulting deforma-
tion. Note that the vertex does not necessarily move in the direction of the XYZ tractions.
Using linear superposition, the CMA can determine the combinations of these and other
tractions required to move vertices to specified positions.
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Applications could use this to monitor stresses and strains to determine, e.g., if fracture
occurs or that a nonlinear correction should be computed. The multiresolution methods
presented later can be extended to efficiently handle such volumetric data.

2.1.6 Precomputation of Green’s Functions

Since the GFs for a single BVP type only depend on geometric and material properties of
the deformable object, they may be precomputed for use in a simulation. Obtaining the
GF deformation basis ahead of time is a key step that provides a dramatic speed-up for the
simulation. While this is not necessarily a huge amount of work (see Table 7.7) (p. 118), the
principal benefits for interactive simulations are reduced latency due to the availability of
the GF elements via cheap look-up table operations, and elimination of redundant runtime
computation. For example, using a haptic device to grab a vertex of the model and move
it around simply renders a single GF, however an iterative method would recompute the
solution each time.

Once a set of GFs for a LEGFM are precomputed, the overall stiffness can be varied
at runtime by scaling BVP forces accordingly, however changes in compressibility and
internal material distributions do require recomputation. In practice it is only necessary to
compute the GF corresponding to nodes which may have changing or nonzero boundary
values during the simulation.

Further details of the approaches taken for precomputation of GFs (using BEM
models) as well as robotic measurement [PvdDJ+01] are discussed in Chapter 6.

2.2 Fast Global Deformation using Capacitance Matrix Algo-
rithms (CMAs)

This section presents an algorithm for using the precomputed GFs of a relevant reference
BVP (RBVP) type to efficiently solve other BVP types by avoiding redundant computation
and providing random access to solution components. This section on CMA lays the foun-
dation for the framework of this thesis. With an improved notation and emphasis on haptics,
this section also helps to unify and extend the approaches presented in [JP99a] exclusively
for BEM models, and for FEM models in, e.g., [BC96], in a way that is applicable to all
LEGFMs regardless of discretization. The key benefit of the formulation for haptic appli-
cations is that the capacitance matrix is the surface compliance of the contact zone. This is
discussed further in §4.1.
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2.2.1 Reference Boundary Value Problem (RBVP) Choice

A key step in the precomputation process is the identification of a RBVP type, denoted by
(Λ0

u,Λ
0
p), that is similar to the BVP types arising during a simulation. For interactions with

an exposed free boundary, a common choice is to have the uncontacted model attached to a
rigid support (see Figure 2.3). The system matrices associated with the RBVP are denoted
by6 A0 and Ā0, and the corresponding GFs will hereafter be simply represented by Ξ.

0
pΛ

0
uΛFixed Boundary;

Free Boundary;

Figure 2.3: Reference Boundary Value Problem (RBVP) Definition: The RBVP associ-
ated with a model attached to a flat rigid support is shown with boundary regions having
displacement (“fixed”, Λ0

u) or traction (“free”, Λ0
p) nodal constraints indicated. A typical

simulation would then impose contacts on the free boundary via displacement constraints
with the capacitance matrix algorithm.

Figure 2.4: Rabbit model Reference Boundary Value Problem (RBVP): A RBVP for the
rabbit model is illustrated with white dots attached to position constrained vertices in Λ0

u.
These (zero) displacement constraints were chosen to hold the rabbit model upright while
users pushed on his belly in a force feedback simulation.

6It is convenient to use subscripts to identify A and Ā matrices of different BVPs. Note that A0

and Ā0 still represent square n-by-n block matrices.
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2.2.2 Sherman-Morrison-Woodbury Inverse Updating Formula

The Sherman-Morrison-Woodbury (SMW) formula is used to relate GFs of one BVP to
those of another BVP, and is included here for reference.

Consider an n-by-n block matrix B0, and a second block matrix related by a general
rank 3s change

B = B0 + UVT, (2.23)

where both U and V are n–by–s block matrices. The SMW formula [PFTV87, GL96] gives
an expression for the rank 3s difference between B−1

0 and B−1, namely

B−1 = B−1
0 − B−1

0 UC−1VTB−1
0 (2.24)

C = I + VTB−1
0 U (2.25)

where the s-by-s block matrix C is called the capacitance matrix. The benefit of this is that
only the smaller capacitance matrix must be inverted to obtain B−1 if B−1

0 is known. This
formula is also useful for evaluating matrix-vector products with the new inverse without
explicitly forming it, which is the spirit in which it will be used here.

2.2.3 Capacitance Matrix Algorithm (CMA) Formulae

Precomputed GFs speed-up the solution to the RBVP, but they can also dramatically reduce
the amount of work required to solve a related BVP when used in conjunction with CMAs.
If this were not so, precomputing Green’s functions for a single BVP would have little
practical use.

Suppose the constraint-type changes, e.g., displacement↔traction, with respect to
the RBVP at s nodes specified by the list of nodal indices

S = {S1, S2, . . . , Ss}. (2.26)

As mentioned earlier, it follows from (2.7) and (2.8) that the new BVP system matrices
(A, Ā) are related to those of the RBVP (A0, Ā0) by s block column swaps. This may be
written as

A = A0 +
(
Ā0 − A0

)
EET (2.27)

Ā = Ā0 +
(
A0 − Ā0

)
EET (2.28)

where E is an n-by-s block matrix

E =
[

I:S1
I:S2

· · · I:Ss

]

. (2.29)

containing columns of the n-by-n identity block matrix, I, specified by the list of updated
nodal indices S. Postmultiplication by E extracts columns specified by S. Throughout, E is
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used to write sparse matrix operations using dense data, e.g., Ξ, and like the identity matrix,
it should be noted that there is no cost involved in multiplication by E or its transpose.

An explicit formula for the GF matrix of the new BVP in terms of the old BVP’s
GF matrix Ξ can be obtained using the Sherman-Morrison-Woodbury formula (§2.2.2) for
A−1,

A−1 = A−1
0 − A−1

0

(
Ā0 − A0

)
EC−1ETA−1

0 . (2.30)

Substituting this in the expression for the new GFs and simplifying with the expression for
the old GFs,

Ξ = −A−1
0 Ā0, (2.31)

we obtain

Ξnew = −A−1Ā (2.32)

=
(
I + (E + (ΞE))C−1ET

) [
Ξ(I− EET)− EET

]
(2.33)

= Ξ + (Ξ + I)EC−1ET(Ξ− I) (2.34)

It then follows immediately7 that the BVP solution may be written in terms of the precom-
puted GFs. The resulting capacitance matrix formulae for v are

v = v(0)
︸︷︷︸

n× 1

+ (E + (ΞE))
︸ ︷︷ ︸

n× s

C−1
︸︷︷︸

s× s

ETv(0)
︸ ︷︷ ︸

s× 1

(2.35)

where C is the s-by-s capacitance matrix, a negated submatrix of Ξ,

C = −ETΞE, (2.36)

and v(0) is the response of the RBVP system to z, so that A0v
(0) = z and

v(0) = A−1
0 z = −A−1

0 Āv̄ =
[
Ξ
(
I− EET

)
− EET

]
v̄. (2.37)

If body forces are included, it follows from (2.10) and (2.11) that (2.37) becomes

v(0) = A−1
0 z = −A−1

0 Āv̄ +
(
A−1

0 B
)
β =

[
Ξ
(
I− EET

)
− EET

]
v̄ +

(
A−1

0 B
)
β. (2.38)

2.2.4 A Capacitance Matrix Algorithm for Global Solution

With Ξ precomputed, formulae (2.35)-(2.37) immediately suggest an algorithm given that
only simple manipulations of Ξ and inversion of the smaller capacitance submatrix is re-
quired. An algorithm for computing all components of v is as follows:

7alternately from [JP99a] with A−1
0 δAS =(I−Ξ)E.
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• For each new BVP type (with a different C matrix) encountered, construct and tem-
porarily store C−1 (or LU factors) for subsequent use.

• Construct v(0).

• Extract ETv(0) and apply the capacitance matrix inverse to it, C−1(ETv(0)).

• Add the s column vectors (E + (ΞE)) weighted by C−1(ETv(0)) to v(0) for the final
solution v.

Each new capacitance matrix inversion/factorization involves O(s3) work, after
which each solve takes no more than O(ns) operations given O(s) nonzero boundary val-
ues. This is particularly attractive when s�n is small, such as often occurs in practice with
localized surface contacts.

An important feature of the CMA for interactive methods is that it is a direct matrix
solver with a deterministic operation count. It is therefore possible to predict the runtime
cost associated with each matrix solve and associated force feedback subcomputations (see
§4.1), thus making CMAs predictable for real-time computations.

2.2.5 Numerical Stability of the CMA

The stability of solving a modified linear system (2.23) using the SMW formula is deter-
mined by the conditioning of the matrices involved, the relative scaling of matrix quantities,
and the particular (nonunique8) choice of the UVT update pair; Yip [Yip86] has shown that
if B and B0 are well-conditioned, then there exists a choice of update pair such that the
process is stable.

Since our formulation involves precomputed GF quantities, and so the capacitance
matrices (submatrices of the GF matrix) are all explicitly known beforehand, understanding
stability issues is slightly different. On the practical side, for the example models considered
in this thesis, we have observed that the CMA, and in particular the capacitance matrix
inversion and related updating techniques (in §2.3), have been numerically stable, and can
be evaluated using 32-bit floating point operations provided that certain precautions are
taken (see below). There are however cases where the CMA can fail, and we shall mention
why this might occur.

In practice, the main precaution to be taken regards the appropriate relative scaling
of quantities used in the capacitance matrix formulae (2.35)-(2.37). Since GFs are added
and subtracted from columns of the identity matrix, to avoid problems the GF’s should be
of a similar magnitude. This means that the tractions and displacements described by the
rows of the GF matrix, as well as the postmultiplied constraints, should be suitably normal-
ized. Suitable nondimensionalization can be easily achieved by describing displacements

8Consider inserting an s-by-s matrix factored as XX−1.
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as multiples of the object’s length scale, and tractions in terms of the object’s average shear
modulus9. Without such precautions, the capacitance matrix inversion can easily lead to
catastrophic cancellation errors and be numerically unstable. For example, failure to suit-
ably rescale for an object of unit size with a large shear modulus, e.g., 108, is asking for
trouble in single precision arithmetic, and will also make precomputation more problematic.

This latter point leads to the second and more serious aspect of stability: the nu-
merical conditioning of inverted matrices involved, i.e., B0 and C = I + VTB

−1
0 U. Because

of our precomputation phase, in practice, all problems enter through the GF matrix. Put
simply, the stability of the CMA, after suitable nondimensionalization, is limited by the
conditioning of the GF matrix and its submatrices. First, the issue of the conditioning of
B0 is really a moot point here, as B0 is a formality of our derivation, and has effectively
been subsumed by the “black box” GF precomputation phase. In practice it is possible to
precompute the GFs using a suitable stable discretization scheme, e.g., FEM or BEM, to a
specifiable accuracy. Therefore the real stability concern is the capacitance matrix, whose
expression (2.25) has been conveniently identified as a negated GF submatrix, thus avoiding
further numerical concerns. Stably updating from one RBVP to all other valid BVP types
requires that all possible capacitance matrices must also be well-conditioned; this is a much
stronger condition than simply requiring that the GF matrix be well-conditioned. This also
ensures that the GF summation (the last step of the CMA (§2.2.4)) is well behaved, so that
GFs of one BVP type can be used to describe GFs of another BVP type.

The overall conditioning of the GF submatrices depends on several factors: geom-
etry, material properties, underlying discretization, accuracy of precomputed GFs, and the
RBVP choice. It is difficult to make any general statements regarding conditioning in this
case. If necessary, GF conditioning properties could be quantified before simulation begins.

Finally, later in this thesis, methods are considered which introduce approximation
errors into the GF matrix, e.g., by wavelet compression and/or reality-based GF estimation
techniques. For a well-behaved GF matrix and sufficiently small errors there are no prob-
lems, however for GFs with bad conditioning and/or larger errors one is walking upon less
stable ground. Nevertheless, for our presented wavelet GF examples, we have observed
that the CMA has been stable long after the approximation’s utility has vanished, e.g., for
contact mechanics problems.

2.2.6 Selective Deformation Computation

A major benefit of the CMA with precomputed GFs is that it is possible to just evaluate
selected components of the solution vector at runtime, with the total computing cost pro-

9Our BEM models are precomputed with unit shear modulus, G, with overall stiffness being
modified at runtime by suitably scaling input/output tractions. On the other hand, Poisson’s ratio
can not be changed at runtime for 3D objects.
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portional to the number of components desired. This random access to the BVP solution is
a key enabling feature for haptics where, e.g., contact force responses are desired at differ-
ent rates than the geometric deformations. Selective evaluation is also useful for optimizing
(self) collision detection queries, as well as avoiding simulation of occluded or undesired
portions of the model.

In general, any subset of solution components may be determined at a smaller cost
than computing v entirely. Let the solution be desired at nodes specified by the set of indices
D, with the desired components of v extracted by ET

D. Using (2.35), the selected solution
components may be evaluated as

ET
Dv = ET

Dv(0) + ET
D (E + (ΞE)) C−1ETv(0) (2.39)

using onlyO(s2 + s|D|) operations. The case where S=D is especially important for force
feedback and is discussed exclusively in the following section.

Lastly, we mention that selective evalution already provides a mechanism for mul-
tiresolution rendering of displacement fields generated using the CMA algorithm. For ex-
ample, random access allows displacements to be adaptively computed in a coarse to fine
fashion, however, this will not reduce summation costs like the wavelet fast summation
of §3.3.

2.3 Sequential Capacitance Matrix Inversion

In many physical simulations, there exists temporal coherence. Changes in BVP type are
due to only small modifications to the set of updated nodes S (see Figure 2.5). Small mod-
ifications to S result in low rank modifications to the capacitance matrix C. This temporal
coherence can be exploited by again using matrix updating techniques to reduce the cost
of matrix inversion (or factorization). In practice this “inversion” cost can be reduced from
O(s3) to O(s2) operations in the presence of temporally coherent BVP types. So not only
is the capacitance matrix algorithm useful for solving large systems of equations, but it is
also a useful tool in its own implementation [Hag89].

2.3.1 Capacitance Matrix Inverse Updating Formulae

A formula for updating a capacitance matrix inverse for a slightly modified BVP, such as
spreading contact, will now be presented. The benefit of this inversion approach is that
the cost of inverting the capacitance matrix is reduced from O(s3) to O(s2s∆) operations,
where s∆ is the number of node changes between the two BVP. In practice, it should be
expected that s∆� s. Compared with updating factorizations, it turns out that it is (about
four times) cheaper to work explicitly with the matrix inverse (shown in §2.3.2). This is
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Figure 2.5: Illustration of temporal coherence in BVP type during a contact sequence.

also convenient in practice since it provides random access to individual elements of the
inverse, e.g., for random access of force feedback stiffnesses.

Consider three BVPs: (#0) the RBVP with known GFs, (#1) the first updated BVP
with updated node list S1 for which we know the capacitance matrix inverse C−1

1 , and (#2)
the second updated BVP for which we wish to determine the capacitance matrix inverse
C−1

2 , and which has an updated node list S2 = S1 ⊕ S∆ resulting from s∆ = |S∆| distinct
nodes being added to S1. We will first only consider addition of nodes to S1 and then show
in §2.3.5 that this can be used for efficient add and delete operations. The matrix view of
the desired C−1

2 matrix with appended row and column (+) corresponding to an additional
updated node being added to four others is

C−1
2 =










× × × × +
× × × × +
× × × × +
× × × × +

+ + + + +










. (2.40)

The necessary row expansion operators are defined as

E1 ≡ ES1
E∆ ≡ ES∆

. (2.41)

Expressions for the BVP matrices are

A1 = A0 +
(
Ā0 − A0

)
E1E

T
1 (2.42)

Ā1 = Ā0 +
(
A0 − Ā0

)
E1E

T
1 (2.43)

A2 = A1 +
(
Ā1 − A1

)
E∆ET

∆ (2.44)

= A1 +
(
Ā0 − A0

)
E∆ET

∆ (2.45)

where in the last line we made use of an identity which follows from the previous two
expressions,

Ā1 − A1 =
[

Ā0 +
(
A0 − Ā0

)
E1E

T
1

]

−
[

A0 +
(
Ā0 − A0

)
E1E

T
1

]

(2.46)
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= Ā0 − A0 − 2
(
Ā0 − A0

)
E1E

T
1 (2.47)

⇓ (2.48)
(
Ā1 − A1

)
E∆ =

(
Ā0 − A0

)
E∆ (2.49)

since ET
1 E∆ = 0 (as S1

⋂
S∆ = ∅).

We will introduce a convenient shortened notation for the column differences

δA1 =
(
Ā0 − A0

)
E1 (2.50)

δA∆ =
(
Ā0 − A0

)
E∆ (2.51)

so that

A1 = A0 + δA1 ET
1 (2.52)

A2 = A1 + δA∆ET
∆ (2.53)

and the GF related quantities to be used in our final formulae are

B1 = −A−1
0 δA1 = (I + Ξ)E1 (2.54)

B∆ = −A−1
0 δA∆ = (I + Ξ)E∆. (2.55)

We define v(i) as the BVP solutions to

A0v
(0) = z (2.56)

A1v
(1) = z (2.57)

A2v = A2v
(2) = z. (2.58)

The capacitance matrix formulae (2.35) implies that they are thus related by

v(1) = v(0) + B1 C−1
1 ET

1 v(0) (2.59)

and

v(2) = A−1
2 z (2.60)

= v(1) − A−1
1 δA∆C−1

∆ ET
∆v(1) (2.61)

= v(0) +
[

B1 B∆

]

C−1
2

[

ET
1

ET
∆

]

v(0) (2.62)

where we wish to obtain C−1
2 . Substituting expression (2.59) for v(1) into expression (2.61)

for v(2), using the updating formula (2.30) for A−1
1 , and factoring terms yields

C−1
2 =

[

C−1
1 + C−1

1 ET
1 B∆ C−1

∆ ET
∆B1 C−1

1 C−1
1 ET

1 B∆ C−1
∆

C−1
∆ ET

∆B1 C−1
1 C−1

∆

]

C−1
∆ =

[
I + ET

∆( A−1
1 δA∆)

]−1

=
[
I− ET

∆B∆ − ET
∆B1 C−1

1 ET
1 B∆

]−1
.

(2.63)
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In terms of GF matrix blocks this becomes

C−1
2 =

[

C−1
1 + C−1

1 B1∆C−1
∆ B∆1C

−1
1 C−1

1 B1∆C−1
∆

C−1
∆ B∆1C

−1
1 C−1

∆

]

C−1
∆ =

[
I− B∆∆ − B∆1C

−1
1 B1∆

]−1

(2.64)

where
Bab = ET

a (I + Ξ) Eb, a, b ∈ {1,∆}. (2.65)

Notice that the formula consists entirely of precomputed quantities and row extraction op-
erations with the exception of the trivial s∆–by–s∆ matrix inversion C−1

∆ .

2.3.2 Capacitance Matrix Inverse Updating Algorithm

Explicitly forming the new capacitance matrix inverse C−1
2 instead of leaving it in the fac-

tored form of (2.64), leads to more efficient evaluation and use in later updates. By carefully
evaluating matrix subexpressions, it can be constructed at cost dominated by 3 s× s× s∆

block matrix-matrix multiplies. The sequence of operations is

1. Lookup C−1
1 ,B1∆,B∆∆,B∆1.

2. Dominant matrix-matrix multiply

D1∆ = C−1
1 B1∆. (2.66)

Cost: 54s∆s
2 flops.

3. Subdominant matrix-matrix multiply

D∆∆ = B∆1D1∆ (2.67)

Cost: 54s2∆s flops.

4. Construct C∆,
C∆ = I− B∆∆ + D∆∆ (2.68)

Cost: 9s2∆ + 3s∆ flops.

5. Compute C−1
∆ . Cost: 72s3∆ flops.

6. Two matrix-matrix multiplies (only B∆1C
−1
1 dominant)

D∆1 = C−1
∆ B∆1C

−1
1 (2.69)

Cost: 54s2∆s+ 54s∆s
2 flops. (Not all columns are required when deleting nodes.)
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7. Evaluate (required) elements of C−1
2 from the formula

C−1
2 =

[

C−1
1 + D1∆D∆1 D1∆C−1

∆

D∆1 C−1
∆

]

(2.70)

which involves the third and final dominant matrix-matrix multiply D1∆D∆1. Cost:
54s∆s

2 + 54s2∆s+ 9s2.

2.3.3 Cost Analysis of Updating Involving Node Addition

The total cost of performing this update to add s∆ nodes to a previous system with s= s1

nodes is

CostUpdate = 162(s∆s
2
1 + s2∆s1 +

4

9
s3∆) + {9(s21 + s2∆) + 3s∆} flops (2.71)

where the last set of terms in brackets are subdominant for larger problems. In order to
compare this cost to that of just performing LU decomposition (and inversion), it is useful
to write the cost in terms of the dimension of the final resulting matrix, s2, where

s2 = s1 + s∆ → s1 = s2 − s∆. (2.72)

In this notation, the cost of LU decomposition is

CostLU = 18s32 flops (2.73)

and the cost of generating the inverse as well is 4 times larger. Therefore the cost ratio of
updating to LU decomposition is

R =
CostUpdate

CostLU

= 9r(1− r +
4

9
r2) +

9s22 − 18s∆s2 + 3s∆
18s32

(2.74)

where r = s∆/s2. Neglecting the lower order fraction term which is only significant for
small problems, e.g., s2 < 10, we observe that updating is more efficient (R<1) when

9r(1− r +
4

9
r2) < 1 ⇒ r < 0.1261... ≈ 0.12 (2.75)

or when s∆ < 0.12s2. On the other hand, inverse updating for node addition always
involves fewer operations than generating the matrix inverse directly (using LU decompo-
sition and subsequent matrix inversion), since

9r(1− r +
4

9
r2) < 4 ⇒ r < 1. (2.76)

For modest updates these methods perform very well in simulations; timings are shown in
the Results chapter (§7). We will return to cost analysis for general add and delete update
operations in §2.3.6.
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2.3.4 Comparison to Factorization Updating

We note that the updated node set can be incremented more efficiently using this algorithm
for inverses than existing algorithms for factorizations. As mentioned earlier, due to piv-
oting problems LU factorizations are not suitable for updating [GL96, GGMS74, Ste79],
unlike QR factorizations which are commonly used [GL96].

For a cost comparison we refer to ([GL96], §12.4 “Updating Matrix Factorizations”)
where it is shown (in §12.5.1) that updating even a rank-one change to a QR factorization
of an n-by-n matrix requires about 26n2 flops. On the other hand, the Sherman-Morrison-
Woodbury formula can be used to construct the inverse after a rank-one change using ap-
proximately 2 matrix-vector multiplies and one vector outer product for a total cost of 6n2

flops. Similarly, the algorithm just presented also only requires about 6n2 flops to append
(or delete) a single scalar row and column to the capacitance matrix inverse.

2.3.5 Supporting Addition and Deletion of Updated Nodes

The formulae presented for updated node addition only are also useful for determining an
algorithm supporting simultaneous addition and deletion. Updated nodes may be deleted
by formally adding the node to be deleted a second time but negating the corresponding
columns in δA∆ (and therefore B∆ also). This redundant update has the effect of subtracting
the contribution to the solution produced by the undesired nodes, but conveniently provides
a formula for the new capacitance matrix inverse: it is then obtained by only calculating
those rows and columns of the large redundant capacitance matrix inverse not associated
with deleted nodes.

Specifically, let the updating node sets be

S1 = S1p ⊕ S∆− (2.77)

S∆ = S∆+
⊕ S∆− (2.78)

where

S1p : nodes to be persistent (2.79)

S∆+
: nodes to be added (2.80)

S∆− : nodes to be deleted. (2.81)

The redundant updating formula is then

v(2) = v(1) − A−1
1 δA∆C−1

∆ ET
∆v(1) (2.82)

= v(0) +
[

B1 B∆

]

C̃
−1
2

[

ET
1

ET
∆

]

v(0) (2.83)
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= v(0) +
[

B1p B∆− B∆+
(−B∆−)

]

C̃
−1
2








ET
1p

ET
∆−

ET
∆+

ET
∆−








v(0) (2.84)

where the over-sized redundant capacitance inverse C̃
−1
2 contains unnecessary row and

columns associated with the deletion process (− elements)

C̃
−1
2 =

















× × × × − + + −

× × × × − + + −

× × × × − + + −

× × × × − + + −

− − − − − − − −

+ + + + − + + −

+ + + + − + + −

− − − − − − − −

















(2.85)

(2.86)

and is not explicitly computed. Instead, the desired capacitance matrix inverse C−1
2 only

contains elements not associated with deletion

C−1
2 =












× × × × + +
× × × × + +
× × × × + +
× × × × + +

+ + + + + +
+ + + + + +












. (2.87)

The nonredundant updating formula for the BVP solution corresponding to updated nodes

S2 = S1p ⊕ S∆+
(2.88)

is then

v(2) = v(0) +
[

B1p B∆+

]

C−1
2

[

ET
1p

ET
∆+

]

v(0) . (2.89)

Note that while the inverse of the rank-deficient matrix C̃2 does not exist, applying the
algorithm of §2.3.2 to compute the nonredundant entries of C−1

2 is not only efficient but
numerically stable in practice. Finally, for implementation our updated node lists are sorted
for efficient searching, and the block structure shown in the capacitance matrix inverse
illustrations is for pedagogical purposes only.
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Lastly we mention that a more direct approach to deletion is to use updating on the
capacitance matrix to zero the interaction between deleted nodes and persistent (and added)
nodes. This is accomplished by using updating to replace the capacitance matrix’s deleted
node’s dth row and column with zeros except for a one on the diagonal,

C1 =










× × − × ×

× × − × ×

− − − − −

× × − × ×

× × − × ×










⇒ C̃2 =










× × 0 × ×

× × 0 × ×

0 0 1 0 0

× × 0 × ×

× × 0 × ×










. (2.90)

The new inverse is then only evaluated for the persistent (and added) elements. This is a
rank two update, which would seem to cost about twice as much to evaluate as the previous
approach, but because of sparsity in the update (let C = C1)

UVT = [(CddI:d − C:d) I:d][I:d (−Cd:)]
T, (2.91)

it is about the same. The advantage of the algorithm from this section is that it does not
require a sparse matrix implementation to be efficient, and the dominant updating work
only involves optimized Level 3 BLAS operations.

2.3.6 Cost Analysis of Updates Involving Addition and Deletion of Nodes

This section provides floating point operation counts for the general updating case, and is
slightly more involved than the case involving only added nodes in §2.3.3, since for deletion
not all elements of the expanded C−1

2 matrix require computation. We shall first use the
analysis of §2.3.3, and then subtract the redundant operations. As in §2.3.3, we will define
the final number of nodes,

s2 = s1 − s− + s+ → s1 = s2 + s− − s+ (2.92)

where s2 = |S2|, s1 = |S1|, s−= |S∆− | and s+ = |S∆+
| The number of updated nodes is

s∆ = s− + s+. (2.93)

Therefore from (2.71) the cost of performing the update, including the computation of re-
dundant entries associated with deletion, is (leading order terms)

CostUpdate = 162(s− + s+)

(

(s2 + s− − s+)(s2 + 2s−) +
4

3
(s− + s+)2

)

flops.

(2.94)
Some avoidable redundant deletion-related operations listed in the algorithm of

§2.3.2 are as follows:
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1. (Step 2) Avoid computing s− rows of

D1∆ = C−1
1 B1∆. (2.95)

Avoid: 54s−s∆s1 flops.

2. (Step 6) Avoid computing s− columns of

D∆1 = C−1
∆ B∆1C

−1
1 (2.96)

Avoid: 54s−s∆s1 flops.

3. (Step 7) Use row and column reduced forms of D1∆ and D∆1, respectively, to com-
pute D1∆D∆1 and D1∆C−1

∆ . Avoid: 54s−s∆(2s1 − s−) + 54s−s
2
∆ flops.

In total we may avoid

108s−s∆s1 + 54s−s∆(2s1 − s−) + 54s−s
2
∆ flops. (2.97)

Subtracting these operations from (2.94) and using (2.92) for s1, the total updating cost (to
leading order) in units of the LU decomposition cost is

R =
CostUpdate

CostLU

(2.98)

= {9 r+ + 9 r−}+
{
−9 r2+ + 6 r−r+ + 15 r2−

}
(2.99)

+
{
+4 r3+ + 3 r−r

2
+ + 9 r2−r+ + 10 r3−

}

where
r+ =

s+
s2
, r− =

s−
s2
. (2.100)

The cost function reduces to (2.74) for purely additive updating (r−=0)

R = 9 r+ − 9 r2+ + 4 r3+, (2.101)

while for updates only involving deletion (r+ =0) it is

R = 9 r− + 15 r2− + 10 r3−, (2.102)

which justifies the claim that pure deletion updates are more costly than pure addition. For
comparison, pure deletion updates are cheaper than LU decomposition (R < 1) and LU
inverse generation (R<4) when

R < 1 → r− < 0.0950... ≈ 0.095 (2.103)

R < 4 → r− < 0.2842... ≈ 0.28 (2.104)

For the general case, plots of the relative cost functional (2.99) are shown in Figure 2.6.
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Figure 2.6: Plot of capacitance matrix inverse updating costs in units of corresponding LU
decomposition. Plots of R (equation 2.99) versus the fraction of updated nodes added (r+,
“ADDED”) and deleted (r−, “DELETED”). (Left) R < 1 range associated with updates
cheaper than LU decomposition, (Right) R<4 range associated with updates cheaper than
LU decomposition followed by inverse generation. In each case, it is clearly evident that
it is more costly to delete nodes than it is to add them. In fact, updating is always more
efficient than LU inversion when deletion is not required. (Note: Shading irregularities are
artifacts of Maple 6.)

2.3.7 Prediction of Updating Costs

For real time applications, predicting the cost of updating a capacitance matrix inverse
for a set of node addition and deletion operations is an important topic. We do this by
constructing an updating cost functional ρ(S1, S2) which estimates the cost of updating
from a BVP with updated node set S1 to one with S2 (where the lists are nonempty and
unequal). This is especially useful when maintaining a cache of capacitance matrix inverses
(topic of following section), for then it can be decided which of several cached BVP inverses
may be updated most easily, or if the inverse should be constructed from scratch, or that the
fastest solution is too slow and something more dramatic must occur, e.g., multiresolution
degradation (§3.6).

Prediction of updating and direct inversion costs is performed using a polynomial
cost model calibrated using software run times on the same computer platform used for
simulation. This takes implementation into account, since flop counts are not always a
good indication of run times. The cost models for direct inversion and updating are

ρLUDInverse =
∑

0≤α≤3

aαs
α
2 (2.105)

ρUpdating =
∑

0≤α2,α+,α−≤3

aα2α+α−s
α2

2 s
α+

+ s
α−
− (2.106)

The coefficients were calibrated using preevaluated timings for a relevant range of values.
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2.3.8 Capacitance Matrix Inverse Caching Strategies

When relatively small changes occur in the capacitance node set, it is more efficient to up-
date the previous capacitance matrix inverse than it is to compute the inverse from scratch.
For situations in which the temporal coherence is reduced and larger changes occur, it can
be very useful to use a more sophisticated caching strategy than simply trying to update the
current capacitance matrix inverse.

Quickly querying a modest database of already computed updates is worthwhile if
it results in sufficiently less updating work. Given a set of candidate updating node lists

{S1, S2, . . . , Sd} (2.107)

for which inverses are cached, we compute the minimum predicted updating cost

ρmin
Updating = min

i
ρ(Si, S

′) (2.108)

to obtain the desired BVP list, S′. This minimum cost computation is very cheap, and
lookup tables can be used to reduce this cost further. The cheapest update is performed
if its estimated cost is less than that of computing the inverse from scratch, ρLUDInverse.
For large datasets, it will be important to cull “distant” elements so that time is not wasted
computing the cost functional; we suspect that this could be efficiently achieved by cross-
indexing BVPs on different criteria, e.g., using a spatial hierarchy of updated node popula-
tions.

The effectiveness of a caching strategy depends heavily on the sequence of BVPs
required by an application, however for physical simulations with temporal coherence we
have found that caching can be very useful. In the presence of extreme temporal coher-
ence, e.g., only one add/delete at a time, only the previous inverse is required, however for
larger updates caching is effective. A useful strategy is to cache each constructed inverse
with a key indicating the time it was last used. Additions are accompanied by randomized
deletion of older entries such that the total memory usage is bounded. A small nursery of
recent inverses contains the entries which are impervious to deletion and are best updating
candidates in the presence of coherence.
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Chapter 3

Enhancements for Multiresolution
Simulation

The Green’s function (GF) based capacitance matrix algorithm (CMA) has many appeal-
ing qualities for simulation, however it does suffer inefficiencies when used for complex
geometric models or large systems of updated constraints. Fortunately, these limitations
mostly arise from using dense matrix representations for the discrete GF integral operator,
and can be overcome by using multiresolution bases to control the amount of data that must
be manipulated. This chapter provides several multiresolution enhancements for the CMA
which generally extend its applicability. We begin with a summary of the multiresolution
analysis tools that will be used throughout the remainder of this work.

3.1 Summary of Fast Lifted Wavelet Transforms on Manifolds

This section provides the necessary notation and background to describe our use of second
generation biorthogonal wavelets based on the lifting scheme [Swe98, SS95a, DS96] and
a common notation to describe hierarchical bases. This section is a summary of material
presented in [Swe98, SS95a] and uses similar notation. Greater mathematical detail on
wavelets can be found elsewhere, e.g., [Dau92, CDF92]. With the exception of a very
minor clarification of the construction of filters at surface domain boundaries, we have
nothing new to add to this material.

The reader who is familiar with this material may skip this summary upon first
reading and proceed directly to “Wavelet Green’s Functions” in Section 3.2.

3.1.1 Multiresolution Analysis

This section describes the concepts and equations behind vertex-based multiresolution anal-
ysis using biorthogonal wavelets.
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Given a space L2 = L2(Γ, dΓ) describing vertex-based functions on the surface,
the first step is to construct a sequence of nested spaces Vj ⊂ L2, j≥0, where [SS95a]

• Vj ⊂ Vj+1 (finer spaces have higher index),

•
⋃

j≥0 Vj is dense in L2,

• for each level j, scaling functions φj,k corresponding to vertices k ∈ K(j) exist so
that {φj,k|k ∈ K(j)} is a Riesz basis of Vj .

For our semi-regular meshes, the nested multiresolution vertex index sets K(j) are illus-
trated in Figure 3.1; the finest level L vertex index set contains all vertices in the (domain)
set and is denoted by K(L). The measure dΓ describes differential areas on our polyhedral
boundary Γ. The fact that the spaces are nested implies that each scaling function may be
written as a linear combination of finer scaling functions using a refinement relation,

φj,k =
∑

l∈K(j+1)

hj,k,lφj+1,l, (3.1)

where hj,k,l are defined for j ≥ 0, k ∈ K(j), and l ∈ K(j + 1).

Figure 3.1: Illustration of Wavelet Vertex Sets: The image shows a simple two-level surface
mesh patch on level j+1 (here j=0). The four even vertices (solid dots) belong to the base
mesh and constitute K(j), whereas the odd vertices of M(j) all correspond to edge-splits
(“midpoints”) of parent edges. The union of the two sets is the set of all vertices on level
j + 1, namely K(j + 1) = K(j) ∪M(j).

Each MRA is accompanied by a dual MRA consisting of spaces Ṽj , with dual scal-
ing functions φ̃j,k biorthogonal to the scaling functions

< φj,k, φ̃j,k′ >= δk,k′ for k, k′ ∈ K(j). (3.2)

where < f, g >=
∫
fgdΓ is the inner product on the surface Γ. The dual scaling functions

also satisfy a refinement relation

φ̃j,k =
∑

l∈K(j+1)

h̃j,k,lφ̃j+1,l. (3.3)
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In the biorthogonal setting, it is assumed that the primal and dual scaling functions are not
equal (hence not orthogonal), and that the primal and dual spaces are also not equal (hence
not semi-orthogonal). This is useful in practice for constructing fast wavelet transforms
which have sparse filters and tunable wavelet properties.

Wavelets on level j describe the difference between adjacent levels of the multires-
olution representation by forming the basis of Wj where Vj+1 = Vj ⊕Wj . For our vertex
bases, the wavelet functions are {φj,m|j ≥ 0,m ∈ M(j)}, where M(j) ⊂ K(j + 1) is
an index set corresponding to odd vertices in K(j + 1) which are associated with “edge
split” subdivision operations (see Figure 3.2). Ideally one would like the wavelets to form
a Riesz basis for L2(Γ), and the set {φj,m|m ∈ M(j)} to form a Riesz basis of Wj . Since
Wj ⊂ Vj+1 the wavelets on level j may be written in terms of scaling functions on level
j + 1

ψj,m =
∑

l∈K(j+1)

gj,m,lφj+1,l for m ∈M(j). (3.4)

A similar relation occurs for the dual wavelet basis functions

ψ̃j,m =
∑

l∈K(j+1)

g̃j,m,lφ̃j+1,l for m ∈M(j). (3.5)

The dual wavelet basis functions are biorthogonal to the wavelets and satisfy

< ψj,m, ψ̃j′,m′ > = δm,m′δj,j′ , j, j′ ≥ 0,m ∈M(j),m′ ∈M(j′) (3.6)

< ψ̃j,m, φj,k > = < φ̃j,k, ψj,m >= 0, m ∈M(j), k ∈ K(j) (3.7)

so that for f in L2 we may write

f =
∑

j,m

< ψ̃j,m, f > ψj,m =
∑

j,m

γj,mψj,m. (3.8)

It then follows that the scaling functions satisfy the relationship

φj+1,l =
∑

k∈K(j)

h̃j,k,lφj,k +
∑

m∈M(j)

g̃j,m,lψj,m, l ∈ K(j + 1). (3.9)

The forward fast wavelet transform maps the scaling function coefficients of a func-
tion f ,

{λj,k =< f, φ̃j,k > |k ∈ K(j)}, (3.10)

at the finest level of resolution j=L to the wavelet coefficients

{γj,m|0 ≤ j < L,m ∈M(j)} and {λ0,k|k ∈ K(0)}. (3.11)

40



This is recursively computed one level at a time, from fine to coarse scales, as

λj,k =
∑

l∈K(j)

h̃j,k,lλj+1,l (3.12)

γj,m =
∑

l∈M(j)

g̃j,m,lλj+1,l. (3.13)

The inverse transform undoes this process one level at a time, from coarse to fine scales,
using

λj+1,l =
∑

k∈K(j)

hj,k,lλj,k +
∑

m∈M(j)

gj,m,lγj,m. (3.14)

3.1.2 The Lifting Scheme and Fast Lifted Wavelet Tranform

The lifting scheme provides a straightforward means of constructing small filters g, h, g̃, h̃
corresponding to wavelets with desired properties. This is done by starting from a simple
MRA and using lifting to construct a better performing set of filters.

As in [SS95a], the old quantities are denoted by “o”, so that the filters of the original
MRA are ho

j,k,l, h̃
o
j,k,l, g

o
j,k,l, and g̃o

j,k,l. Then the lifting scheme relates the old and new filters
by

hj,k,l = ho
j,k,l (3.15)

g̃j,m,l = g̃o
j,m,l (3.16)

gj,m,l = go
j,m,l −

∑

k∈K(j)

sj,k,mhj,k,l (3.17)

h̃j,k,l = h̃o
j,k,l −

∑

m∈M(j)

sj,k,mg̃j,m,l (3.18)

and guarantees that the resulting filters are biorthogonal and invertible for any values of
{sj,k,m}. The scaling functions are unchanged but the dual scaling function and the primal
and dual wavelets have all changed. The new basis functions are related by the refinement
relation

ψj,m =
∑

l∈K(j+1)

go
j,m,lφj+1,l −

∑

k∈K(j)

sj,k,mφj,k (3.19)

φ̃j,k =
∑

l∈K(j+1)

h̃o
j,k,lφ̃j+1,l +

∑

m∈M(j)

sj,k,mψ̃j,m (3.20)

It follows that the fast wavelet transform after lifting may be written as a sequence
of two steps on each level

γj,m =
∑

l∈K(j+1)

g̃o
j,m,lλj+1,l (3.21)
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λj,k =
∑

l∈K(j+1)

h̃o
j,k,lλj+1,l +

∑

m∈M(j)

sj,k,mγj,m. (3.22)

Finally the inverse fast wavelet transform is

λj+1,l =
∑

k∈K(j)

ho
j,k,l



λj,k −
∑

m∈M(j)

sj,k,mγj,m



+
∑

m∈M(j)

go
j,m,lγj,m. (3.23)

The fast lifted wavelet transform is then written factored into lifting steps as

Analysis

For level = leafLevel to rootLevel

AnalysisI (level)

AnalysisII(level)

Synthesis

For level = rootLevel to leafLevel

SynthesisI (level)

SynthesisII(level)

We shall consider specific filters in the following sections.

3.1.3 Interpolating Scaling Functions for Vertex Bases; Hierarchical Bases

The lifting scheme allows filters of interpolating transforms to be interpreted as a lifting of
the Lazy wavelet transform, a trivial orthogonal transform which simply subsamples data

ho
j,k,l = h̃o

j,k,l = δk,l and go
j,m,l = g̃o

j,m,l = δm,l. (3.24)

By application of dual lifting to the Lazy wavelet, the filters associated with interpolating
scaling functions with Dirac delta functions as their formal dual may be written as

hj,k,l =

{

δk,l l ∈ K(j)

s̃j,k,l l ∈M(j)
and g̃j,m,l =

{

−s̃j,l,m l ∈ K(j)

δm,l l ∈M(j)
(3.25)

The coefficients {s̃j,l,m}l∈K(j) interpolate data from nearby even vertices of K(j)

at the odd vertex m ∈ M(j). Let the required even vertices near m be denoted by Km.
The case of linear interpolation has the two vertex stencil Km = {v1, v2} illustrated in
Figure 3.2, with interpolation weights set to 1

2 . Other interpolants may also be used to
increase the dual wavelet’s number of vanishing moments, e.g., quadratic interpolation,
or its degree of smoothness, e.g., Butterfly interpolation [DLG90]. In practice, smoother
bases work better for smoother data, and lifted Butterfly wavelets appear to work well in
this respect [SS95a]. The Butterfly interpolant’s stencil is shown in Figure 3.3.
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Figure 3.2: The edge-split stencil for linear interpolation is used to interpolate at an odd
vertex m ∈ M(j) using the (weighted) average of values at its two aunt vertices Km =
{v1, v2} ⊂ K(j).
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Figure 3.3: The edge-split stencil for Butterfly subdivision is used to interpolate
at an odd vertex m ∈ M(j) using the (weighted) average of values in Km =
{v1, v2, f1, f2, e1, e2, e3, e4} ⊂ K(j). As with linear interpolation, the aunts of vertex
m will be defined as v1 and v2.

The interpolating transform analysis and synthesis stages are then

AnalysisI(j) :

∀k ∈ K(j) : λj,k := λj+1,k (3.26)

∀m ∈M(j) : γj,m := λj+1,m −
∑

k∈Km

s̃j,k,mλj,k (3.27)

SynthesisII(j) :

∀k ∈ K(j) : λj+1,k := λj,k (3.28)

∀m ∈M(j) : λj+1,m := γj,m +
∑

k∈Km

s̃j,k,mλj,k. (3.29)

Using these transform stages (without AnalysisII and SynthesisI from the follow-
ing section) lead to interpolating transforms. While we are not interested in using these
unlifted transforms for compressing Green’s functions, the interpolating primal basis func-
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tions {φj,k}, e.g., hierarchical basis functions [Yse86] for linear interpolation, are used
for describing hierarchical constraints in §3.4. In a slight abuse of terminology, we will
sometimes refer to interpolating basis functions as hierarchical basis functions.

3.1.4 Lifted Vertex Bases

The previous section introduced filters for interpolating scaling functions which we use to
define variants of hierarchical basis functions for the definition of hierarchical constraints
in §3.4. Unfortunately, for efficiently representing the GFs (columns of GF matrix Ξ) the
wavelets are too simple; the primal wavelets do not have any vanishing moments and actu-
ally correspond to primal scaling functions. Repeated lifting can improve the situation, and
it is used here to ensure that primal wavelet has one vanishing moment, and will have better
convergence properties and behavior when thresholding.

Following [SS95a] the lifting coefficients of the lifted wavelets (3.19) are deter-
mined by requiring that the new primal wavelets have a vanishing moment. Given the lifted
wavelet definition

ψj,m = φj+1,m − sj,v1,mφj,v1
− sj,v2,mφj,v2

(3.30)

the weights sj,v∗,m are chosen by requiring
∫

Γ
ψj,mdΓ = 0 = Ij+1,m − sj,v1,mIj,v1

− sj,v2,mIj,v2
(3.31)

where

Ij,k =

∫

Γ
φj,kdΓ (3.32)

then simply choosing

sj,k,m =
Ij+1,m

2Ij,k
(3.33)

for each coefficient. The scaling function integrals Ij,k are computed recursively in practice
since the refinement relation (3.1) implies that

Ij,k =
∑

l∈K(j+1)

hj,k,lIj+1,l (3.34)

and the values of {IL,l}l∈K(L) are trivial to compute. Here hj,k,l is given in terms of {s̃j,k,m}

by (3.25).
Once lifting coefficients {sj,k,m} are determined the primal wavelet lifting stages

of the fast wavelet transform become

AnalysisII(j) :

∀m ∈M(j) :

{

λj,v1
+ = sj,v1,mγj,m

λj,v2
+ = sj,v2,mγj,m

(3.35)
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SynthesisI(j) :

∀m ∈M(j) :

{

λj,v1
− = sj,v1,mγj,m

λj,v2
− = sj,v2,mγj,m

(3.36)

3.1.5 Adapting Transforms To Surface Domains

It remains to describe how the vertex bases’ interpolating filter coefficients {s̃j,k,m} and
lifting coefficients {sj,k,m} are determined near the boundaries of the surface domains
{Di}

d
i=1. In such cases it is possible that, respectively, an odd vertex m does not have both

its v1, v2 aunts (see Figures 3.2 and 3.3) contained in the same domain, e.g., to interpolate
from (AnalysisI or SynthesisII), or to provide a lifting update to (AnalysisII
or SynthesisI). These problems can be overcome; our use of multiresolution analyses
adapted to surface domains resulted in no complications.

Modified lifting filters at domain boundaries were constructed as follows (see also
[SS95a]). In cases for which only one aunt, v1, belongs to the domain, this aunt was used
for lifting in an analogous manner: the lifted wavelet was defined as

ψj,m = φj+1,m − sj,v1,mφj,v1
(3.37)

and the weight sj,v1,m is chosen by requiring
∫

Γ
ψj,mdΓ = 0 = Ij+1,m − sj,v1,mIj,v1

(3.38)

so that

sj,v1,m =
Ij+1,m

Ij,v1

. (3.39)

In the rare case for which both aunts are outside the domain the wavelet is currently left
unlifted.

For linear interpolants, boundary stencils lacking both aunts (v1, v2) were approx-
imated using a constant estimate: vertices with only one aunt used the aunt’s value as the
estimate, and vertices with no aunts in the domain used the nearest neighbour (on the aunt’s
level) for the estimate. For butterfly interpolants, boundary cases occur more often due
to the larger butterfly stencil. Cases for which the butterfly stencil is not contained in the
domain are handled by resorting to linear interpolation, and the aforementioned constant
approximations when linear is not possible. No interesting consequences of these boundary
approximations were observed.

3.2 Wavelet Green’s Functions

Displacement and traction fields associated with deformations arising from localized loads
exhibit significant multiscale properties such as being very smooth in large areas away from
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the loading point (and other constraints) and achieving a local maxima about the point. For
this reason, free space GFs (or fundamental solutions) of unbounded elastic media and our
boundary GFs of 3D objects are efficiently represented by multiresolution bases. And just as
this property of free space fundamental solutions allows for effective wavelet discretization
methods for a wide range of integral equations [BCR91a], it will also allow us to construct
sparse wavelet representations of discrete elastostatic GF integral operators obtained from
numerical solutions of constrained geometric models as well as measurements of real world
objects.

One could treat the GF matrix Ξ as a generic operator to be efficiently represented
for full matrix-vector multiplication, but this is inappropriate for our application. In the
CMA constraint solver, column-based GF operations such as weighted summations of se-
lected GF columns dominate the fast solution process, and GF element extraction must be
a relatively cheap operation in order for capacitance matrices to be obtained cheaply at run-
time. Because of this, during precomputation we represent individual GF columns of the
large GF matrix, Ξ, in the wavelet basis, but we do not transform across GF rows. Re-
quirements affecting the particular choice of wavelet scheme are discussed in §3.2.4, and
row-based multiresolution constraints are addressed in §3.4

3.2.1 Domain Structure of the Green’s Function Matrix

Each GF column vector describes nodal traction and displacement distributions on different
domains of the boundary, both of which have different smoothness characteristics. Inter-
faces between domains are therefore associated with discontinuities and the adjacent trac-
tion and displacement function values can have very different magnitudes and behaviors.
For these reasons, multiresolution analysis of GFs is performed separately on each domain
to achieve best results. From a practical standpoint, this also aids in simulating individual
domains of the model independently (§2.2.6).

Domains are constructed by first partitioning nodes into Λ0
u and Λ0

p lists for which
the GFs describe tractions and displacements, respectively. These lists are again split into
disjoint subdomains if the particular wavelet transform employed can not exploit coherence
between these nodes. Let the boundary nodes be partitioned into d domains

D = {D1, . . . , Dd} with
d⋂

i=1

Di = ∅ (3.40)

where Di is a list of nodes in the natural coarse to fine resolution order of that domain’s
wavelet transform.

The d domains introduce a natural row and column ordering for the GF matrix Ξ
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which results in a clear block structure

Ξ =
d∑

i,j=1

EDi
ΞDiDj

ET
Dj

(3.41)

= [ED1
ED2

. . .EDd
]









ΞD1D1
ΞD1D2

· · · ΞD1Dd

ΞD2D1
ΞD2D2

...
...

. . .

ΞDdD1
· · · ΞDdDd

















ET
D1

ET
D2

...
ET

Dd









(3.42)

where the (i, j) GF block
ΞDiDj

= ET
Di

ΞEDj
(3.43)

maps data from domain Di to Dj as illustrated in Figure 3.4.

u
0ΛD  =2

D  = Λ0
p1

1D D1
Ξ

2
ΞD D1 2D DΞ

22
ΞD D

1

Figure 3.4: Illustration of correspondence between boundary domain influences and do-
main block structure of the GF matrix Ξ: The influences between two boundary domains
are illustrated here by arrows; each arrow represents the role of a GF block, ΞDiDj

, in the
flow of information from specified BVs on domain Dj to unspecified BVs on domain Di.
The self-effect of the exposed contactable surface (red arrow at top) is of primary practical
interest for deformation visualization. Each column of ΞD1D1

represents a displacement
field on D1 which decribes the effect of a force applied over some portion of D1; this
displacement field is efficiently represented using wavelets in §3.2.
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3.2.2 Wavelet Transforms on Surface Domains

Consider the forward and inverse fast wavelet transform (FWT) pair, (W,W−1), itself com-
posed of FWT pairs

W =
d∑

i=1

EDi
WiE

T
Di

= ED (diagi(Wi)) ET
D (3.44)

W−1 =
d∑

i=1

EDi
W−1

i ET
Di

= ED

(
diagi(W

−1
i )
)
ET

D (3.45)

with the ith pair (Wi,W
−1
i ) is defined on domain Di.

3.2.3 Wavelet Green’s Functions

Putting things together, the wavelet transform of the GF matrix is then

WΞ = [(Wξ1) (Wξ2) · · · (Wξn)] =
d∑

i,j=1

EDi

(
WiΞDiDj

)
ET

Dj
(3.46)

or with a shorthand “tilde” notation for transformed quantities,

Ξ̃ =
[

ξ̃1 ξ̃2 · · · ξ̃n
]

=
d∑

i,j=1

EDi

(

Ξ̃DiDj

)

ET
Dj

(3.47)

The individual block component of the jth wavelet GF ξ̃j = Ξ̃:j corresponding to vertex i
on level l of domain d will be denoted with rounded bracket subscripts as

(

ξ̃j

)

(l,i;d)
= Ξ̃(l,i;d)j . (3.48)

This notation is complicated but no more than necessary, since it corresponds directly to the
multiresolution data structure used for implementation.

3.2.4 Choice of MRA and Fast Wavelet Transforms

By design, various custom multiresolution analyses and fast wavelet transforms can be
plugged into the framework developed here. However, there are several practical require-
ments: interactive inverse transform speeds (for fast summation), good GF compression
(even for small models given that precomputation costs quickly increase), support for level
of detail computations, ease of transform definition on user-specified surface domains Di,
as well as support for data from a wide range of discretizations.
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An interactive fast summation clearly dictates the need for a fast inverse wavelet
transform, while motivations for symmetric forward and inverse wavelet transform costs
are runtime change of constraint bases (such as with pressure masks) and reference con-
straint domain D modification, as well as reduction of precomputation time and flexibility
when initially transforming GFs into the wavelet basis. We note that, at the cost of some
runtime flexibility, it may be possible to employ a more sophisticated (and slower) forward
wavelet transform during precomputation provided it yields significantly greater compres-
sion [KSS00] and thus faster runtime BVP solution speeds. Such issues are also important
considerations for storage and transmission (the central motivation in [KSS00]), however
we specifically mention that we are separating this from the current discussion on simula-
tion methods.

Given the many constraints, we use biorthogonal lifted fast wavelet transforms
based on second generation wavelets derived from the lifting scheme of Sweldens et al.
[Swe98, DS96, SS95a], which were summarized in §3.1. We shall initially consider only
FWTs based on a single lifting of hierarchical basis functions, i.e., the dual wavelet has one
vanishing moment, as well as the smoother lifted butterfly wavelets. Intuitively, one might
expect the butterfly scheme to perform better at characterizing smooth portions of the GF,
while the linear wavelet may be better at describing their spike-like behavior. Lifted linear
wavelets have cheaper transforms than lifted butterfly, unless the compression obtained by
butterfly is significantly greater than linear, which does not seem to be the case (§7). The
compact edge-split stencil is also effective for geometric models of very modest geometric
complexity. Finally, a drawback of linear wavelets is that for very high compression ratios,
they can introduce polygonal artifacts when adding GF displacements to a very flat surface,
unlike the smoother butterfly reconstructions.

3.2.5 Tensor Wavelet Thresholding

Each 3-by-3 block of the GF matrix describes a tensor influence between two nodes. The
wavelet transform of a GF (whose row elements are 3× 3 matrix blocks) is mathematically
equivalent to 9 scalar transforms, one for each tensor component. However, in order to
reduce runtime sparse matrix overhead, it is desireable to evaluate all transforms at the
block level. For this reason, we use a thresholding operation which either accepts or rejects
an entire block.

Our oracle for wavelet GF thresholding compares the Frobenius norm of each block
wavelet coefficient1 to a domain and level specific thresholding tolerance, and sets the co-

1The Frobenius norm of a real-valued 3-by-3 matrix a is

‖a‖F =

√
∑

ij

a2
ij .

49



efficient to zero if it is smaller. Thresholding of the jth wavelet GF, ξ̃j , on a domain d is
performed for the ith coefficient iff i ∈ Dd, i ∈M(l) and

‖Ξ̃ij‖F < εl‖E
T
Dd
ξj‖∞F (3.49)

where
‖ET

Dd
ξj‖∞F ≡ max

i∈Dd

‖Ξij‖F (3.50)

is a weighted measure of GF amplitude on domain d, and εl is a level dependent relative
threshold parameter decreased on coarser levels (smaller l) as

εl = 2l−Lε, l = 1, ..., L, (3.51)

with ε the user-specified threshold parameter. We usually do not threshold base level (l=0)
coefficients even when this introduces acceptable errors because the lack of response, e.g.,
pixel motion, in these regions can be perceptually bothersome.

For our models we have observed stable reconstruction of thresholded data, e.g.,

‖ET
Dd

(

ξj −W−1ξ̃j

)

‖∞F < Cε‖ET
Dd
ξj‖∞F (3.52)

typically for some constant C near 1. Examples are shown in §7. Although there are no
guarantees that wavelet bases constructed on any particular model will form an uncondi-
tional basis, and so the thresholding operation will lead to stable reconstructions, none of
our numerical experiments with discrete GFs have suggested anything to the contrary. Sim-
ilar experiences were reported by the pioneers of the lifting scheme in [SS95a] for wavelets
on the sphere. Some formal conditions on the stability of multiscale transformations are
proven in [Dah96]. Numerous experimental results showing the relationship between error
and thresholding tolerance can be found in §7.4.

3.2.6 Multiresolution Mesh Issues

We use multiresolution triangle meshes with subdivision connectivity to conveniently de-
fine wavelets and MR constraints (§3.4) as well as provide detailed graphical and haptic
rendering (§3.7). Many of our meshes have been modeled using Loop subdivision [Loo87]
which trivializes the generation of multiresolution meshes, and some examples are shown
in Figures 1.2 (p. 5) and 7.18 (p. 117). For general meshes which have not been modeled as
subdivision surfaces, several successful reparameterization approaches for producing mul-
tiresolution meshes have appeared in the literature [EDD+95, KL96, LSS+98, GVSS00,
LMH00] and there are commercially available packages, e.g., Raindrop Geomagic [Rai]
and Paraform [Par]. For our purposes, we have implemented reparameterization algorithms
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based on normal meshes [GVSS00, LMH00], and have used the related displaced subdi-
vision surface approach [LMH00] for rendering detailed deforming models and generating
displacement map. Examples of models we have reparameterized are the rabbit model (Fig-
ures 1.1 (p. 2) and 3.9 (p. 64)) (original mesh courtesy of Cyberware [Cyb]), the dragon
model (Figure 3.5, p. 56; original mesh courtesy of the Stanford Computer Graphics Labo-
ratory), and the reality-based tiger model (Figure 6.4, p. 6.4). For the dragon model2 some
undesireable parameterization artifacts are present near sharp features such as the horns,
however this could be avoided with more care.

For good wavelet compression results, it is desireable to have many subdivision lev-
els for a given model. This also aids in reducing the size of the dense base level GF data,
if it is left unthresholded. In cases where the coarsest resolution of the mesh is still large,
reparamerization should be considered but it is still possible to consider more exotic lifted
wavelets on arbitrary point sets. To maximize the number of levels for small models, e.g.,
for the rabbit model, we resorted to manual fitting of coarse base level parameterizations, al-
though more sophisticated approaches are available [EDD+95, KL96, LSS+98, GVSS00].

Lastly we mention that adaptive meshing of geometry must be used with care since
it can limit the scales at which displacement and traction fields may resolve surface defor-
mations and constraints.

3.2.7 Storage and Transmission of Green’s Functions

Wavelets provide bases for sparsely representing GFs, but further compression is possible
for storage formats. Given the potentially vast amount of information precomputed, an
efficient file format is an important practical concern for data storage and transmission. In
this respect, efficient wavelet quantization and coding schemes [DJL92, Sha93, SP96] have
already been extended to dramatically reduce the file sizes of surface functions compressed
using the lifting scheme [KL97]. Similar approaches could be applied to GF data.

3.3 CMA with Fast Summation of Wavelet GFs

The CMA is only slightly more involved when the GFs are represented in wavelet bases.
The chief benefit is the performance improvement obtained by using the FWT for fast sum-
mation of GF and body force responses. While MR solution reconstruction for rendering
was possible previously by exploiting random access selective computation, it will be more
efficient using the sparse wavelet GFs and the following algorithm.

2The dragon model also required special care due to numerous holes present in the original mesh.
Although there are techniques to fill these [GW01], a significantly worse problem was nonphysical
interior cavity meshing on the bottom of the object, at what probably were injection moulding inlets;
these were remodeled by hand before applying the reparameterization process.
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3.3.1 Motivation

In addition to reducing memory usage, it is well known that by sparsely representing our GF
columns in a wavelet basis we can use the FWT for fast matrix multiplication [BCR91a].
For example, consider the central task of computing a weighted summation of s GFs

∑

j∈S

ξj v̄j , (3.53)

involving sn 3×3 matrix-vector multiply-accumulate operations. Quick evaluation of such
expressions is crucial for fast BVP solution (c.f. (2.15)) and graphical rendering of defor-
mations, and it is required at least once by the CMA solver. Unfortunately, as s increases
this operation quickly becomes more and more costly and as s → n eventually involves
O(n2) operations. However, by using a fast wavelet transform (FWT) it is possible to per-
form such sums more efficiently in a space in which the GF columns may be approximately
represented with sparse representations.

The weighted GF summation can be rewritten by premultiplying (3.53) with the
identity operator W−1W:

∑

j∈S

ξj v̄j = W−1
∑

j∈S

ξ̃j v̄j . (3.54)

By precomputing sparse thresholded approximations of the wavelet transformed GFs, Ξ̃, a
fast summation will result in (3.54) provided that the advantage of sparsely representing Ξ,
more than compensates for the extra cost of applying W−1 to the vector data. This occurs
in practice, due to the FWT’s speed and excellent decorrelation properties for GF data.

3.3.2 Formulae

The necessary formulae result from substituting

Ξ = W−1WΞ (3.55)

into the CMA formulae (2.35-2.38), and using the GF expression (3.47). The result may be
written as

v = v(0) +
(

E + W−1(Ξ̃E)
)

C−1
(

ETv(0)
)

(3.56)

C = −
(
ETW−1

)
(Ξ̃E) (3.57)

v(0) = W−1
[

Ξ̃
(
I− EET

)
v̄ + (WA−1

0 B)β
]

− EETv̄ (3.58)

ETv(0) =
(
ETW−1

) [

Ξ̃
(
I− EET

)
v̄ + (WA−1

0 B)β
]

− ETv̄ (3.59)

where we have taken the liberty of sparsely representing the parameterized body force con-
tributions in the wavelet basis. With these formulae, it is possible to evaluate the solution v

using only one inverse FWT evaluation and some partial reconstructions ETW−1.
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3.3.3 Selective Wavelet Reconstruction Operation, (ET
W
−1)

The operator (ETW−1) represents the reconstruction of a wavelet transformed function at
the updated nodes S. This is required in at most two places: (1) capacitance matrix element
extraction from Ξ̃; (2) evaluation of (ETv

(0)
) in cases when the first term of v(0) (in square

brackets) is nonzero. It follows from the tree structure of the wavelet transform that these
extraction operations can be evaluated efficiently with worst-case per-element cost propor-
tional to the logarithm of the domain size. In practice, several optimizations related to
spatial and temporal data structure coherence can significantly reduce this cost. For exam-
ple, portions of C are usually cached and so extraction costs are amortized over time, with
typical very few entries required per new BVP. Also, spatial clustering of updated nodes
leads to the expected cost of extracting several clustered elements being not much more
than the cost of extracting one. Furthermore, spatial clustering in the presence of tempo-
ral coherence allows us to exploit coherence in a sparse GF wavelet reconstruction tree, so
that nodes which are topologically adjacent in the mesh can expect to have elements recon-
structed at very small costs. For these reasons, it is possible to extract capacitance matrix
entries at a fraction of the cost of LU factorization. Performance results for block extraction
operations are given in §7.4.4. The logarithmic cost penalty introduced by wavelet repre-
sentations is further reduced in the presence of hierarchical constraints, and a hierarchical
variant of the fast summation CMA is discussed in §3.6.

3.3.4 Algorithm

An efficient algorithm for computing the entire solution vector v is possible by carefully
evaluating subexpressions as follows:

1. Given constraints, v̄, and list nodes to be updated, S.

2. Obtain C−1 (or factorization) for this BVP type either from the cache (Cost: Free),
using updating (§2.3) (Cost: O(s2s∆) flops), or from scratch (Cost: 2s3/3 flops).

3. If nonzero, evaluate the sparse summation

g̃1 =
[

Ξ̃
(
I− EET

)
v̄ + (WA−1

0 B)β
]

. (3.60)

(Cost: 18s̄ñ flops from first term where where ñ is the average number of nonzero 3-
by-3 blocks per wavelet GF being summed (in practice ñ� n), and s̄ is the number
of nonupdated nonzero constraints. Second body force term is similar but ignored
due to ambiguity. Cost can be reduced by exploiting temporal coherence, e.g., see
(2.21).).
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4. Compute the block s-vector

ETv(0) =
(
ETW−1

)
g̃1 − ETv̄. (3.61)

(Cost: Selective reconstruction cost (if nontrivial g1) 3sRS where RS is the effective
cost of reconstructing a scalar given S (discussed in §3.3.3; expected cost is RS =

O(1), worst case cost is RS = O(log n)), plus 3s flops for addition).

5. Evaluate the block s-vector
g2 = C−1(ETv(0)) (3.62)

(Cost: 18s2 flops).

6. Perform the sparse summation

g̃1 += (Ξ̃E)g2 (3.63)

(Cost: 18sñ flops).

7. Perform inverse FWT (can be performed in place on block 3-vector data)

v = W−1g̃1 (3.64)

(Cost: 3CIFWTn flops; where CIFWT is approximately 4 for lifted linear wavelets.).

8. Correct updated values to obtain the final solution,

v += E(g2 − ETv̄) (3.65)

(Cost: 6s flops).

3.3.5 Cost Analysis

The total cost of evaluating the solution is

Cost = 3CIFWTn+ 18(s+ s̄)ñ+ 18s2 + 3s(RS + 3) flops (3.66)

where the notable improvement introduced by fast summation is the replacement of the
18sn dense summation cost with that of the sparse summation and inverse FWT. This ex-
cludes the cost of capacitance matrix inverse construction (or factorization or updating), if
updating is performed, since this is experienced only once per BVP type and amortized over
frames.

Two interesting special cases are when nonzero constraints are either all updated
(s̄=0) or when no constraints are updated (s=0). In the case where all nonzero constraints
are updated (s̄=0), and therefore step 3 has zero g1, the total cost of the calculation is

Cost = 3CIFWTn+ 18sñ+ 18s2 + 3s(RS + 3) flops. (3.67)
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Cases in which updated nodes have zero constraints are slightly cheaper. When no con-
straints are updated (s=0) only GF fast summation is involved, and the cost is

Cost = 3CIFWTn+ 18s̄ñ flops. (3.68)

In practice we have reduced these costs by only reconstructing the solution on sub-
domains (reduces FWT cost and summation cost) where it is required, e.g., for graphical
rendering. It clearly follows that it is possible to reconstruct the solution at coarser reso-
lutions for multiple LOD rendering, i.e., by only evaluating g1 and the IFWT in step 7 for
coarse resolutions, and this issue is discussed futher in §3.7.

We found this algorithm to be very effective for interactive applications, and es-
pecially for force feedback simulation with point-like contacts (§4.2; small s̄ and s = 0).
Timings and typical flop counts are provided in the Results chapter (§7). For large models
with many updated constraints, the sñ and s2 contributions, in addition to the capacitance
matrix inversion, can become costly. This issue is addressed in the following section by
introducing multiresolution constraints which can favourably reduce the effective size of s.

3.4 Hierarchical Constraints

The MR GF representations make it feasible to store and simulate geometrically complex
elastic models by eliminating the dominant bottlenecks associated with dense GF matrices.
However, finer discretizations can introduce complications for real time simulations which
impose numerous constraints on these same fine scales: (1) even sparse fast summation will
eventually become too costly as more GF columns contribute to the sum, and (2) updating
numerous constraints with the CMA incurs costly capacitance matrix inversion costs.

We provide a practical solution to this problem which can also optionally reduce
precomputation costs. Our approach is to reduce the number of constraints by imposing
constraints at a coarser resolution than the geometric model (see Figure 3.5). This elim-
inates the aforementioned bottlenecks without sacrificing model complexity. Combined
with wavelet GFs which enable true multiresolution BVP simulation and solution output,
multiresolution constraints provide the BVP’s complementary multiresolution input con-
trol. Such an approach is well-suited to the CMA which effectively works by updating
constraints defined over finite areas; in the continuous limit, as n→∞ and scaling function
measures go to zero, the area affected by the uniresolution finite-rank-updating CMA also
goes to zero and the CMA would have no effect.

The multiresolution constraints are described by nested spaces with node interpo-
lating basis functions defined on each domain. Using interpolating scaling functions allows
hierarchical constraints to coexist with nodal constraint descriptions, which is useful for
defining the hierarchical version of the CMA (in §3.6). For our piecewise linear function
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Figure 3.5: Multiresolution Constraint Parameterizations: Two dragon meshes (L=3) with
coarser constraint parameterizations indicated for different resolutions of the Green’s func-
tion hierarchy; (left) constraints on level 0, and (right) on level 1. In this way, interactive
traction constraints can be applied on the coarse scale while deformations are rendered us-
ing fine scale displacement fields. (Reparameterized dragon model generated from mesh
courtesy of Stanford Computer Graphics Laboratory.)

spaces these correspond to “hierarchical basis functions” [Yse86] and the interpolation fil-
ters are already available from the unlifted portion of the linear FWT used for the MR GFs.

Let the scalar hierarchical basis function

φ[l,k;d] = φ[l,k;d](x), x ∈ Γ, (3.69)

correspond to vertex index k belonging to level l and domain Dd. Here the square subscript
bracket is used to indicate an hierarchical basis function; recall (equation 3.48) that rounded
subscript brackets are used to refer to row components of wavelet transformed vectors or
matrix columns. In this notation, the traditional “hat functions” on the finest scale are

φk(x) = φ[L,k;d](x), k ∈ Dd. (3.70)

In bracket notation, the refinement relation satisfied by these interpolating scaling functions
is

φ[l,k;d] =
∑

j∈K(l+1)

h[l,k,j;d] φ[l+1,j;d], (3.71)

where h is defined by (3.25) from §3.1.3. As a result, the surface hierarchical basis functions
are unit normalized

φ[l,i;d](x(l,j;d)) = δij (3.72)

where δij is the Kronecker delta function. The refinement relation for hierarchical basis
functions also means that hierarchical constraint boundary values are defined on finer con-
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straint scales by interpolating subdivision (with the h refinement filter (3.25)) as

v̄[l,:;:] = HT
l v̄[l+1,:;:], (3.73)

where we have used a brief operator notation, or simply

v̄[l] = HT
l v̄[l+1]. (3.74)

However, as we shall see in the next section, while the hierarchical constraints are described
at a coarse resolution, the corresponding deformation response computed with hierarchical
GFs involves all scales.

3.5 Hierarchical Green’s Functions

The GF responses corresponding to each hierarchical constraint basis function are named
hierarchical GFs. From a GF matrix perspective, the coarsening of the constraint scales
is associated with a reduction in GF columns (see Figure 3.6). A graphical illustration of
hierarchical GFs is given in Figure 7.1 (p. 98).

3.5.1 Notation

The hierarchical GFs are identified using the square bracket notation introduced for HBFs:
let

ξ[l,k;d] = Ξ:,[l,k;d] (3.75)

denote the hierarchical GF associated with the kth vertex contained on level l and domain
Dd. Therefore

ξ[0,k;d], ξ[1,k;d], . . . , ξ[L,k;d] (3.76)

are all hierarchical GFs associated with the kth vertex here contained on the base level of
the subdivision connectivity mesh. The hierarchical wavelet GFs (illustrated in Figure 3.6)
are easily identified by both a tilde and square brackets, e.g.,

ξ̃[l,k;d] = Ξ̃:,[l,k;d]. (3.77)

3.5.2 Refinement Relation

Hierarchical GFs and hierarchical basis functions share the same refinement filters since
each hierarchical GF is expressed in terms of a linear combination of GFs on finer levels by

ξ[l,k;d] =
∑

j∈K(l+1)

h[l,k,j;d] ξ[l+1,j;d] (3.78)
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Figure 3.6: Illustration of Hierarchical Wavelet GF Matrix Structure: Sparsity patterns and
constraint parameterizations of the coarse level 2 (L=2) rabbit model’s three level GF hier-
archy for the main Λ0

p “free-boundary” self-effect block ΞΛ0
pΛ0

p
(illustrated in Figure 3.4).

This model has 160 vertices, with the lifted linear FWT defined on a domain of 133 ver-
tices partitioned into three levels with sizes (9,25,99). The matrices are: (left) finest scale
GF square matrix block (# nonzero blocks, nnz=4444), (middle) once-coarsened constraint
scale GF block (nnz=1599), (right) twice-coarsened constraint scale GF block (nnz=671).
In each case, sparsity resulting from thresholding the wavelet transformed GF columns
clearly illustrates the wavelet transform’s excellent decorrelation ability. The multiresolu-
tion structure of the wavelet coefficients is apparent in each matrix as a result of multiresolu-
tion reordering of rows and columns; notice the dense unthresholded base level coefficients
in the top most rows. Perhaps surprising for such a small model, modest compression ra-
tios are already being obtained: here ε = 0.10 and the large block has retained nnz=4444
elements or 25% of the original size.
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or in operator notation
Ξl = Ξl+1HT

l . (3.79)

This follows from the hierarchical GF ansatz

Ξlv̄[l] = Ξl+1v̄[l+1], (3.80)

for a level l hierarchical constraint v̄[l], after substituting the hierarchical boundary condition
subdivision equation (3.74),

v̄[l] = HT
l v̄[l+1]. (3.81)

Figure 3.6 provides intuitive pictures of the induced GF hierarchy,

ξ[L,∗;d], . . . , ξ[1,∗;d], ξ[0,∗;d]. (3.82)

3.5.3 Matrix BVP Definition

While the refinement relation (3.79) can be used to compute coarse scale hierarchical GFs
from finer resolutions, it is also possible to compute them directly using the definition of
the accompanying hierarchical boundary value constraints. From (2.8), the matrix BVP
satisfied by hierarchical GFs is

0 = Aξ[l,k;d] + ĀV̄[l,k;d] (3.83)

where the right-hand side constraint matrix V̄ ∈ R
3n×3 contains all zero nodal blocks except

for nodes in the support of φ[l,k;d],

(V̄[l,k;d])i = φ[l,k;d](xi) I3. (3.84)

This provides an attractive approach to (hierarchically) precomputing (and transmitting)
very large models, and this is considered further in §6.

3.6 Hierarchical CMA

It is possible to use the hierarchical GFs to produce variants of the CMA from §2.2. The
key benefits obtained from using hierarchical GFs are related to the smaller number of con-
straints (see Figure 3.8): (1) an accelerated fast summation (since fewer weighted columns
need be summed), (2) smaller capacitance matrices, and (3) improved feasibility of caching
potential capacitance matrix elements at coarse scales. Due to the 4-fold change in vertex
count per resolution level, the expected impact of reducing the constraint resolution by J
levels is

1. 4J reduction in constraint count and number of GFs required in CMA summations,
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Figure 3.7: Example where Hierarchical GFs are Useful: A finger pad in contact with
a flat surface is a good example of where hierarchical GFs are beneficial, as is any case
where numerous dense surface constraints occur. Although the traction field may contain
little information, e.g., smooth or nearly constant, large runtime costs can result from the
number of GFs being summed and/or by the number of constraints being updated with a
CMA. Whether the deformation is computed with the finger pad’s free boundary constraints
modeled by the user specifying tractions directly, or indirectly using displacements and a
CMA, in both cases hierarchical GFs result in smaller boundable runtime costs.

2. 16J reduction in number of capacitance matrix elements and cost of updating capac-
itance matrix inverses (when s∆�s),

3. 64J reduction in cost of factoring or directly inverting capacitance matrix,

4. 4J − 64J reduction in CMA cost.

An illustration of a situation where the hierarchical CMA can be beneficial is given in
Figure 3.7.

It is relatively straight-forward to construct a nonadaptive hierarchical CMA that
simply limits updated displacement constraints to fixed levels of resolution. This is the
easiest mechanism for providing graceful degradation when large sets of nodes require up-
dating: if too many constraints are being too densely applied they may simply be resolved
on a coarser scale. This is analogous to using a coarser level model, with the exception
that the solution, e.g., displacements, are available at a finer scale. We have found this
simple approach works well in practice for maintaining interactivity during otherwise in-
tensive updating cases. One drawback of the nonadaptive approach is that it can lead to
“popping” when changing between constraint resolutions, and the investigation of adaptive
CMA variants for which this problem is reduced are future work.
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3.6.1 Hierarchical Capacitances

Similar to the nonhierarchical case, hierarchical capacitance matrices are submatrices of the
hierarchical GFs. We can generalize the capacitance node list definition to include updated
nodal constraints corresponding to hierarchical basis functions at different resolutions. We
first generalize the notation of the original (fine scale) capacitance node list and capacitance
matrix elements as

S = (k1, k2, . . . , ks) (3.85)

= ([L, k1; d1], [L, k2; d2], . . . , [L, ks; ds]) (3.86)

Cij = −Ξki[L,kj ;dj ]. (3.87)

Hierarchical constraints then follow by replacing L with the appropriate level. The CMA
corresponding to coarsened constraint scales follows immediately, as well as the fact that
hierarchical capacitance matrix inverses can be updated to add and delete hierarchical con-
straints. Furthermore, it is also possible to mix constraint scales and construct true mul-
tiresolution updates using the generalized definition

S = ([l1, k1; d1], [l2, k2; d2], . . . , [ls, ks; ds]) (3.88)

Cij = −Ξki[lj ,kj ;dj ]. (3.89)

However, due to the additional complexity of specifying adaptive multiresolution con-
straints at runtime, e.g., for an interactive contact mechanics problem, we have yet to exploit
this CMA solver functionality in practice.

Finally, due to the reduced number of constraints, there are fewer and smaller capac-
itance matrices, and this improves the effectiveness of caching strategies (see Figure 3.8).

3.6.2 Graceful Degradation

For real time applications, hierarchical capacitances play an important role for resolving
constraints on coarser constraint scales (or adaptively in general). Consider a simulation
with constraints resolved on level H . If it encounters a capacitance matrix inverse update
task which requires too much time it can abort and resort to resolving the problem at a
coarser constraint resolution, e.g., H − 1 or lower. In this way it is possible to find a coarse
enough level at which things can proceed quickly.

As with all variants of the CMA, these direct matrix solution algorithms provide
predictable operation counts, which may be used to choose an effective real time solution
strategy.
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L−1 L−2L L L−1 L−2
Figure 3.8: Hierarchical Capacitance Matrices: (Left) As in Figure 3.6, the matrix view of
hierarchical GF indicates an approximately four-fold reduction in columns at each coarser
constraint resolution. As a result, the number of possible capacitance matrix elements are
reduced accordingly, as represented by the blue matrix blocks. (Right) An illustration of
the corresponding spatial hierarchy for the support of a coarse level (extraordinary) “linear
hat” scaling function. Circles indicate the vertex nodes (and basis functions) required to
represent the coarse level scaling function at each level.

3.7 Detailed Graphical and Haptic Rendering

At some scale, there is little practical benefit in seeking higher resolution elastic models,
and geometric detail can be introduced by local mapping.

3.7.1 LOD and Multresolution Displacement Fields

The fast summation CMA with wavelet GFs (§3.3) immediately provides an obvious mech-
anism for real time adaptive level-of-detail (LOD) rendering [XESV97]. This process is
slightly complicated by the fact that the geometry is deforming, thereby reducing depen-
dence on statically determined geometric quantities, e.g., visibility. While we have not ex-
plored real time LOD in our implementation, it was an important algorithm design consid-
eration. It also provides an extra mechanism for real time graceful degradation for difficult
CMA constraint problems.

3.7.2 Hierachical GFs and Geometric Detail

A favourable exploitation of spatial scales is obtained by using hierarchical GFs, since in-
teractions resolved on relatively coarse constraints scales naturally allow visualization of
fine scale geometry and displacement fields. Even when coarse level constraints are used,
finer scale displacement fields are still available–possibly computed from an highly accu-
rate discretization. An important point is that detail described by hierarchical GFs is repre-
sented in a global coordinate frame due to the geometrically linear elastic approximation,
and therefore local displacement mapping is likely to be a better approximation for larger
deformations. This is considered further in the following section.
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3.7.3 Deformable Displaced Subdivision Surfaces

There is an interesting transition at some scale for which the GF displacement fields con-
tain little more information than those obtained by displacement mapping a geometrically
coarser resolution of the same model, the latter being possible in (future) graphics hard-
ware. By only storing GF detail or computing multiresolution displacement fields to a
suitable level, the deformed geometry can be mapped to finer scales via bump and/or dis-
placement mapping. We have used displaced subdivision surfaces (DSS) [LMH00] for this
purpose because it works well with deforming meshes.

A significant concern when displacement mapping coarse models is that it leads
to inexact displacement constraints. This problem is exaggerated by DSS even for small
changes due to mapping, because the Loop subdivision process converts our interpolating
constraint scaling functions into noninterpolating ones. Intuitively, this occurs because ad-
jacent vertex displacements computed by CMA for the coarse control mesh are averaged
during the subdivision process, thus leading to inexact constraint values. This is in contrast
to the interpolating constraints achieved with hierarchical GFs. Nevertheless, for finely
meshed models the mismatch caused by displacement mapping is reduced.

One setting for which we have found DSS to be still very useful is for haptic force
feedback applications involving point-like contacts. Here perceptual problems related to
surface penetration due to inaccurate surface displacement constraints are commonly over-
come by a “god-object approach” [ZS94] in which a proxy for the object in contact with
the surface is always drawn on the surface (the “god” object) regardless of whether or not
penetration occurs. We have successfully used this in several point-like contact interactive
force feedback simulations, and pictures are shown in Figures 3.9 and 6.4.

3.7.4 Force feedback Rendering of Detail

In addition to graphical rendering, surface detail may also enhance force feedback ren-
dering by using normal maps to modulate point contact friction forces [MS96] as is done
in commercial force feedback systems, e.g., [Rea]. In this way, the hierarchical GFs pa-
rameterize the coarse scale force response of the compliant surface, while the normal maps
render surface detail. Force feedback rendering of point-like contacts are considered further
in §4.2.
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Figure 3.9: Elastically Deformed Displaced Subdivision Surfaces: Displaced subdivision
surfaces provide a natural extension to an hierarchy of elastic spatial scales. In this example,
a level 2 elastic rabbit model is rendered on level 5 using displacement mapping (computed
in software). In addition to providing exact displacement constraints on detailed (or just
subdivided) surfaces, hierarchical GFs allow greater elastic content to be depicted than
simple displacement mapping of coarse geometry. In either case, such approaches can
effectively transfer the runtime simulation burden almost entirely to graphical rendering.
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Chapter 4

Haptic Interaction

4.1 Capacitance Matrices as Local Buffer Models

For force feedback enabled simulations in which user interactions are modeled as displace-
ment constraints applied to an otherwise free boundary, the capacitance matrix has a very
important role: it constitutes an exact contact force response model by describing the com-
pliance of the contact zone. Borrowing terminology from [Bal00], we say that the capac-
itance matrix can be used as a local buffer model. While the capacitance matrix is used
in §2.2.4 to determine the linear combination of GFs required to solve a particular BVP
and reconstruct the global deformation, it also has the desirable property that it effectively
decouples the global deformation calculation from that of the local force response. The
most haptically relevant benefit is that the local contact force response may be computed at
a much faster rate than the global deformation.

4.1.1 Capacitance Matrix Local Buffer Model

From (2.35), the S components of the solution v are

ETv = ET
[

v(0) + (E + (ΞE)) C−1ETv(0)
]

(4.1)

= ETv(0) +
(
ETE

)

︸ ︷︷ ︸
C−1ETv(0) +

(
ETΞE

)

︸ ︷︷ ︸
C−1ETv(0) (4.2)

↓ I − C (from (2.36))

= ETv(0) + C−1ETv(0) − ETv(0) (4.3)

= C−1
(

ETv(0)
)

. (4.4)

Consider the situation, which naturally arises in haptic interactions, in which the only
nonzero constraints are updated displacement constraints, i.e.,

v̄ = EETv̄ ⇒ v(0) = −v̄ (using (2.37)). (4.5)
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In this case, the capacitance matrix completely characterizes the local contact response,
since (using (4.5) in (4.1))

ETv = −C−1ETv̄. (4.6)

This in turn parametrizes the global response since these components (not in S) are

(I− EET)v = (I− EET)
[

v(0) + (E + (ΞE)) C−1ETv(0)
]

(4.7)

= (I− EET)v(0)

︸ ︷︷ ︸
+ (I− EET)E
︸ ︷︷ ︸

C−1ETv(0) + (I− EET)(ΞE) C−1(ETv(0))
︸ ︷︷ ︸

↓ 0 0 ETv

= (I− EET)(ΞE)(ETv) (4.8)

Such properties allow the capacitance matrix and Ξ to be used to derive efficient local
models for surface contact.

For example, given the specified contact zone displacements

uS = ETv̄, (4.9)

the resulting tractions are

pS = ETv = −C−1
(
ETv̄

)
= −C−1uS, (4.10)

and the rendered contact force is

f = aT
SpS =

(
−aT

SC−1
)
uS = KSuS, (4.11)

where
aS = (aS1

, aS2
, . . . , aSs

) T ⊗ I3 (4.12)

represents the effective nodal areas (from (2.5, p. 16)) and KS is the effective stiffness of
the contact zone used for force feedback rendering. A similar expression may be obtained
for torque feedback. The visual deformation corresponding to solution components outside
the contact zone is then given by (4.7) using pS =ETv.

4.1.2 Example: Single Displacement Constraint

A simple case that is relevant for haptics (generalized in §4.2) consists of imposing a dis-
placement constraint on a single node k which otherwise had a traction constraint in the
RBVP1. The new BVP therefore has only a single constraint switch with respect to the

1This case occurs, for instance, when the tip of a haptic device comes into contact with the free
surface of an object.
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RBVP, and so s=1 and S={k}. The capacitance matrix here is just C=−Ξkk so that the
kth nodal values are related by

pk = −C−1uk = (Ξkk)
−1 uk or uk = Ξkkpk. (4.13)

The capacitance matrix can generate the force response, f = akpk, required for haptics in
O(1) operations, and for graphical feedback the corresponding global solution is v=ξkpk.

4.1.3 Force feedback for Multiple Displacement Constraints

When multiple force feedback devices are interacting with the model by imposing dis-
placement constraints, the force and stiffness felt by each device are tightly coupled in
equilibrium. For example, the stiffness felt by the thumb in the grasping simulation shown
in Figure 4.1 will depend on how other fingers are supporting the object. For multiple con-
tacts like this, the capacitance matrix again provides an efficient force response model for
haptics.

Figure 4.1: Interactive grasping simulation using a CyberGlove data input device (manu-
factured by Virtual Technologies Inc.). The virtual hand seen here was used to interactively
deform a smooth elastostatic BEM model with approximately 900 surface degrees of free-
dom (dof) at graphical frame rates (30 frames per second) on a personal computer (dual
Pentium II 450 MHz). The capacitance matrix algorithm was used to impose displacement
constraints on an otherwise free boundary, often updating over 100 dof per frame. While
force feedback was not present, this section shows how the capacitance matrices computed
could also have been used to render contact forces at a rate much higher than that of the
graphical simulation.

The force responses for each of the contact patches can be derived from the capac-
itance matrix inverse in a manner similar to equations (4.9)-(4.12). In the simple case of
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d contact patches with updated node sets {Si}d
i=1, the block partitioned capacitance matrix

inverse, P = C−1, describes each patch’s traction response due to displacements at other
patches,

P =
d∑

i,j=1

ESiPSiSjET
Sj (4.14)

=
[
ES1ES2 . . .ESd

]









PS1S1 PS1S2 · · · PS1Sd

PS2S1 PS2S2

...
...

. . .

PSdS1 · · · PSdSd

















ET
S1

ET
S2

...
ET

Sd









(4.15)

where the (i, j) stiffness matrix block

PSiSj = ET
SiPESj (4.16)

describes traction contributions to contact nodes in Si from displacements at nodes in Sj .
The benefit of having an explicit capacitance matrix inverse, instead of a factorization, is
clearly evident in this case.

4.2 Surface Stiffness Models for Point-like Contact

Point-like interactions are commonly discussed in the haptics literature for rigid surface
models [MS94, HBS99], and also for linear elastic objects [CDA99], largely due to the
availability of hardware for rendering 3 DOF force feedback. For elastic models, the ben-
efit of point-like contacts is the convenience of the point-like parameterization of contact
and not because the contact is highly concentrated or “pin-like”. In fact, unlike their rigid
counterparts, special care must be taken with elastic models to define meaningful contact ar-
eas for point-like interactions; point-like contacts defined only as single- or adjacent-vertex
constraints will produce mesh-related artifacts when the mesh is refined (see Figure 4.2).
We present an approach using vertex pressure masks which maintains the point contact de-
scription yet distributes forces on a specified scale. This allows point contact stiffnesses
to be consistently defined as the mesh scale is refined, and provides an efficient method
for force feedback rendering of forces with regular surface variations. Such a technique is
presented here for point contacts, but could be generalized to other ill-posed or unresolved
contact situations, e.g., contact with a line.

4.2.1 Vertex Pressure Masks for Distributed Point-like Contacts

In this section, the distribution of force is described using compactly-supported per-vertex
pressure masks defined on the free boundary in the neighbourhood of each vertex.
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Figure 4.2: Point Contact Must Not be Taken Literally for Elastic Models : This figure
illustrates the development of a displacement singularity associated with a concentrated
surface force as the continuum limit is approached. In the left image, a unit force applied
to a vertex of a discrete elastic model results in a finite vertex displacement. As the model’s
mesh is refined (middle and right image), the same concentrated force load eventually tends
to produce a singular displacement at the contact location, and the stiffness of any single
vertex approaches zero (see Table 4.1). Such constraints are mathematically ill-posed for
linear models based on a small-strain assumption, and care should be taken to meaningfully
define the interaction.

(x)ρ

0

p

f

Figure 4.3: Collocated Scalar Masks: A direct means for obtaining a relative pressure
amplitude distribution about each node, is to employ a user-specified scalar functional of the
desired spatial scale. The scalar pressure mask is then given by nodal collocation (left), after
which the vector traction distribution associated with a nodal point load is then computed as
the product of the applied force vector and the (compactly supported) scalar mask (right).

Vertex Pressure Mask Definition

Scalar pressure masks provide a flexible means for modeling vector pressure distributions
associated with each node. This allows a force applied at the ith node to generate a traction
distribution which is a linear combination of {φj(x)} and not just φi(x).

In the continuous setting, a scalar surface density ρ(x) : Γ → R will relate the
localized contact force f to the applied traction p via2

p(x) = ρ(x)f (4.17)

which in turn implies the normalization condition
∫

Γ
ρ(x)dΓx = 1. (4.18)

2In a similar manner, tensor-valued masks for torque-feedback can also be computed.
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In the discrete setting, the piecewise linear surface density on Γ is

ρ(x) =
n∑

j=1

φj(x)ρj ∈ L, (4.19)

and is parameterized by the discrete scalar vertex mask vector,

ρ = [ρ1, ρ2, . . . , ρn]T . (4.20)

Substituting (4.19) into (4.18), the discrete normalization condition satisfied becomes

aTρ = 1, (4.21)

where a are the vertex areas from (2.5). Notice that the mask density ρ has units of 1
area .

In practice, the vertex pressure mask ρ may be specified in a variety of ways. It
could be specified at runtime, e.g., as the byproduct of a physical contact mechanics solu-
tion, or be a user specified quantity. We shall consider the case where there is a compactly
supported scalar function ρ(x) specified at each vertex on the free boundary. The corre-
sponding discrete vertex mask ρ may then be defined using nodal collocation (see Figure
4.3),

ρj =

{

ρ(xj), j ∈ Λ0
p,

0, j ∈ Λ0
u.

, (4.22)

followed by suitable normalization,

ρ :=
ρ

aTρ
, (4.23)

to ensure the satisfaction of (4.21).
In the following, denote the density mask for the ith vertex by the n-vector ρi,

with nonzero values being indicated by the set of masked nodal indices Mi. Since the
intention is to distribute force on the free boundary, masks will only be defined for i∈Λ0

p.
Additionally, these masks will only involve nodes on the free boundary, Mi⊂Λ0

p, as well
as be nonempty, |Mi| > 0.

Example: Spherical Mask Functionals

Spherically symmetric radially decreasing mask functionals with a scale parameter were
suitable candidates for constructing vertex masks via collocation on smooth surfaces. One
functional we used (see Figure 4.4 and 4.5) had linear radial dependence,

ρi(x; r) =

{

1− |x−xi|
r

, |x− xi| < r,

0, otherwise.
, (4.24)

where r specifies the radial scale3. The effect of changing r is shown in Figure 4.4.
3r may be thought of as the size of the haptic probe’s tip.
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Figure 4.4: Illustration of Changing Mask Scale: An exaggerated pulling deformation
illustrates different spatial scales in two underlying traction distributions. In each case,
pressure masks were generated using the linear spherical mask functional (see §4.2.1) for
different values of the radius parameter, r.

4.2.2 Vertex Stiffnesses using Pressure Masks

Having consistently characterized point-like force loads using vertex pressure masks, it
is now possible to calculate the stiffness of each vertex. In the following sections, these
vertex stiffnesses will then be used to compute the stiffness at any point on model’s surface
for haptic rendering of point-like contact.

Elastic Vertex Stiffness, KE

For any single node, i, on the free boundary, i∈Λ0
p, a finite force stiffness, Ki∈R

3×3, may
be associated with its displacement, i.e.,

f = Kiui, i ∈ Λ0
p. (4.25)

As a sign convention, it will be noted that for any single vertex displacement

ui · f = ui · (Kiui) ≥ 0, i ∈ Λ0
p (4.26)

so that positive work is done deforming the object.
Given a force f applied at vertex i ∈ Λ0

p, the corresponding distributed traction
constraints are

pj = ρi
jf . (4.27)

Since the displacement of the ith vertex is

ui =
∑

j∈Mi

ρi
jΞijf , (4.28)

the effective stiffness of the masked vertex is

Ki = KE
i =




∑

j∈Mi

ρi
jΞij





−1

, i ∈ Λ0
p. (4.29)
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Some examples are provided in Table 4.1 and Figure 4.5.
Therefore, in the simple case of a single masked vertex displacement constraint ui,

the local force response model exactly determines the resulting force, f =Kiui, distributed
in the masked region. The corresponding globally consistent solution is

v = ζif =




∑

j∈Mi

ρi
jξj



 f (4.30)

where ζi is the convolution of the GFs with the mask ρ, and characterizes the distributed
force load. The limiting case of a single vertex constraint corresponds to Mi = {i} with
ρi

j =δij/ai so that the convolution simplifies to ζi =ξi/ai.

Subdivision Level # Vertices Single vertex ‖Ktop‖F Masked vertex ‖Ktop‖F

1 34 7.3 13.3
2 130 2.8 11.8
3 514 1.1 11.2

Table 4.1: Vertex Stiffness Dependence on Mesh Resolution: This table shows vertex
stiffness magnitudes (arbitrary units) at the top center vertex of the BEM model in Fig-
ure 7.18(a), as geometrically modeled using Loop subdivision meshes for three different
resolutions. The stiffness corresponding to a single vertex constraint exhibits a large depen-
dence on mesh resolution, and has a magnitude which rapidly decreases to zero as the mesh
is refined. On the other hand, the stiffness generated using a vertex pressure mask (collo-
cated linear sphere functional (see §4.2.1) with radius equal to the coarsest mesh’s mean
edge length) has substantially less mesh dependence, and quickly approaches a nonzero
value.

Rigid Vertex Stiffness, KR

For rigid surfaces a finite force response may be defined using an isotropic stiffness matrix,

KR = kRigidI3 ∈ R
3×3, kRigid > 0. (4.31)

This is useful for defining responses at position constrained vertices of a deformable model,

Ki = KR, i ∈ Λ0
u, (4.32)

for at least two reasons. First, while it may seem physically ambiguous to consider con-
tacting a constrained node of a deformable object, it does allow us to define a response
for these vertices without introducing other simulation dependencies, e.g., how the haptic
interaction with the elastic object support is modeled. Second, we shall see in §4.2.3 that
defining stiffness responses at these nodes is important for determining contact responses
on neighbouring triangles which are not rigid.
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(a) a(x) (b) ‖K(x)‖ (c) masked ‖K(x)‖

Figure 4.5: Effect of Pressure Masks on Surface Stiffness: Even models with reasonable
mesh quality, such as this simple BEM kidney model, can exhibit perceptible surface stiff-
ness irregularities when single-vertex stiffnesses are used. A plot (a) of the vertex area, a,
clearly indicates regions of large (dark red) and small (light blue) triangles. In (b) the norm
of the single-vertex surface stiffness, ‖K(x)‖, reveals a noticeable degree of mesh-related
stiffness artifacts. On the other hand, the stiffness plotted in (c) was generated using a pres-
sure mask (collocated linear sphere functional (see §4.2.1) of radius twice the mesh’s mean
edge length) and better approximates the regular force response expected of such a model.

4.2.3 Surface Stiffness from Vertex Stiffnesses

Given the vertex stiffnesses, {Ki}
n
i=1, the stiffness of any location on the surface is defined

using nodal interpolation

K(x) =
n∑

i=1

φi(x)Ki, x ∈ Γ, (4.33)

so that (K(x))kl ∈L. Note that there are no more than three nonzero terms in the sum of
(4.33), corresponding to the vertices of the face in contact. In this way, the surface stiffness
may be continuously defined using only |Λ0

p| free boundary vertex stiffnesses and a single
rigid stiffness parameter, kRigid, regardless of the extent of the masks. The global deforma-
tion is then visually rendered using the corresponding distributed traction constraints.

For a point-like displacement constraint applied at x∈Γ on a triangle having vertex
indices {i1, i2, i3}, the corresponding global solution is

v =
∑

i∈{i1,i2,i3}

ζiφi(x)f . (4.34)

This may be interpreted as the combined effect of barycentrically distributed forces, φi(x)f ,
applied at each of the triangle’s three masked vertex nodes, which is consistent with (C.8).

4.2.4 Rendering with Finite Stiffness Haptic Devices

Similar to haptic rendering of rigid objects, elastic objects with stiffnesses greater than some
maximum renderable magnitude (due to hardware limitations) are haptically displayed as
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Figure 4.6: Geometry of a Point-like Contact: The surface of the static/undeformed geome-
try (curved dashed line) and that of the deformed elastic model (curved solid line) are shown
along with: applied force (f ), static contact location (xC), deformed elastic model contact
location (xE), haptic probe-tip location (xH), haptic contact displacement (uH = xH−xC),
elastic contact displacement (uE = xE−xC), static contact normal (nC) and elastic contact
normal (nE). Once the contact is initiated by the collision detector, the sliding contact can
be tracked in surface coordinates at force feedback rates.

softer materials during continuous contact. This can be achieved using a haptic vertex
stiffness, KH

j , which is proportional to the elastic vertex stiffness. While the stiffnesses
could all be uniformly scaled on the free boundary, this can result in very soft regions if the
model has a wide range of surface stiffness. Another approach is to set

KH
j = ηjK

E
j where ηj = min

(

1,
‖KR‖

‖KE
j ‖

)

, (4.35)

so that the elastic haptic model is never more stiff than a rigid haptic model. The sur-
face’s haptic stiffness KH(x) is then determined as before, using equation (4.33), so that
‖KH(x)‖ ≤ ‖KR‖, ∀x ∈ Γ.

In accordance with force reflecting contact, the deformed elastic state corresponds
to the haptic force applied at the contact location xC. This produces geometric contact
configurations similar to that shown in Figure 4.6, where the haptic displacement uH can
differ from the elastic displacement uE. The geometric deformation is determined from the
applied force f and equation (4.34). Note that when the haptic and elastic stiffnesses are
equal, such as for soft materials, then so are the elastic and haptic displacements. In all
cases, the generalized “god object” [ZS94] or “surface contact point” [Sen] is defined as
the parametric image of xC on the deformed surface.
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Chapter 5

Advanced Modeling Techniques

In this chapter we describe applications of the CMA formalism to some advanced modeling
scenarios.

5.1 Multizone Kinematic Green’s Function Models

Multizone models refer to models described by several LEGFMs (“zones”) joined by some
physical constraints (see Figure 5.1 and 5.2). This type of domain decomposition is useful
because (1) certain models are easily described or constructed using separate components,
(2) it can reduce precomputation and storage costs for boundary descriptions, and (3) it is
useful for simulating kinematic structures involving elastic material, as well as for approx-
imating nonlinear strain in structures with rotation.

Multizone substructuring methods are commonly used in boundary element analy-
sis, e.g., [KKP91], to avoid the construction of large dense BEM matrices (H and G) such
as for direct solvers and also for use with Krylov iterative methods. A common strategy
is to use condensation on the system of multizone equations to arrive at a reduced system
of equations relating only boundary values belonging to interzonal interfaces. Once the
condensed system is solved, the interface values are used to construct the solution on each
domain. Such a multizone approach is centrally related to domain decomposition.

The reason multizone models are of interest here is that precomputed GFs for each
zonal LEGFM provide the condensed multizone matrix description “for free” since the re-
sponse of each zone is known in the form of the GF lookup table. The solution to these con-
densed interface equations is then used to compute the deformation of each zonal model,
similar to the capacitance matrix algorithm. Provided this can be done efficiently, large
coupled systems can be interactively simulated. It follows immediately that multiresolu-
tion GFs and constraint descriptions can be used for multizone models, and in fact our
implementation (discussed later) can transparently use the MR GF implementation to gain
speed-up and storage benefits.

75



1 2S12 S21

Figure 5.1: Two zone model with zones and interface node sets indicated.

Finally, material related to this section appears in [JP02].

5.1.1 Multizone Model Description

For the simple two zone model illustrated in Figure 5.1 consisting of zones 1 and 2, let the
quantities associated with each LEGFM zone be denoted by a superscript 1 or 2. For exam-
ple, the GFs of each zone are Ξ1 and Ξ2, the traction fields are p1 and p2, and similarly for
displacement fields. Initially, all quantities will be defined in a common coordinate system,
although this will be generalized later in §5.1.3 for more general kinematic relationships.

Let the interface between the zones be defined by two ordered lists of nodes: let
S12 denote nodes in zone 1 interfacing with zone 2, and similarly let S21 represent nodes
in zone 2 contacting zone 1. Without loss of generality, we shall assume that the interface
discretizations conform, so that the interface lists are the same size (|S12| = |S21|), and that
the jth node of each list corresponds to the same interface vertex. The interface displace-
ments and tractions for zone 1 are then the arrays u1

S12
and p1

S12
, while for zone 2 they are

u2
S21

and p2
S21

.

5.1.2 Multizone Equations and Condensation

As an example, consider the two-zone model joined along a seam containing nodes with
traction boundary conditions in the reference BVP1, i.e., seam nodes in Λ0

p for each system.
The interface displacements and tractions are governed by

u1
S12

= û1
S12

+ Ξ1
S12S12

p1
S12

(5.1)

u2
S21

= û2
S21

+ Ξ2
S21S21

p2
S21

(5.2)

where the interfaces’ self-influence matrices are

Ξ1
S12S12

= ET
S12

Ξ1ES12
(5.3)

Ξ2
S21S21

= ET
S21

Ξ2ES21
(5.4)

and û1
S12

and û2
S21

describe the displacement contribution at the interface due to constraints
outside the seam, e.g., a zone 1 nonzero traction constraint p1

j1
at node j1 6∈ S12 would

1We will consider displacement reference BVP conditions in the following section.

76



0 n

j j+1j-1 Sj,j-1 Sj+1,jSj-1,j-2 Sj-1,j Sj,j+1 Sj+1,j+2

S1,0 S
n,n-1

S0,1

S
n-1,n

... ...

Figure 5.2: Multizone elastic kinematic chain model schematic with zones and interface
node sets indicated. Here interface nodes have displacement constraints in each zone’s
RBVP, and external constraints are not shown.

imply
û1

S12
= ET

S12
ξ1j1p

1
j1
. (5.5)

The benefit of the multizone approach when combined with LEGFMs is immedi-
ately apparent from (5.1-5.2): condensed interface equations are available practically “for
free” when given the precomputed GFs. Similar to the force feedback application, the ma-
jor benefit is that the equilibrium can be determined by solving problems involving only
interface variables. For example, in order to physically bond the zonal LEGFM models at
the interface one may use the interface boundary conditions

u1
S12

= +u2
S21

(Continuity condition) (5.6)

p1
S12

= −p2
S21

(Newton’s 3rd law). (5.7)

Substituting these conditions in (5.1-5.2) yields the linear system to be solved to determine
the interface constraints required to simulate the bonded material

(
Ξ1

S12S12
+ Ξ2

S21S21

)
p2
S21

= û1
S12

− û2
S21
. (5.8)

Once the interface constraints are determined from this condensed interface equation they
are applied to the LEGFMs in the usual way to compute the desired deformation. Because
such condensed equations are available via a GF lookup operation, constructing such matrix
systems is trivial.

5.1.3 Elastic Kinematic Chains

In many ways, LEGFMs should be thought of as nearly rigid objects with an inherent
frame of reference. Attaching the elastostatic model to a kinematic structure, such as a
rigid “bone” in a skeleton-based character animation (discussed in §5.1.4), is a natural way
to associate this relationship in a simulation. By connecting LEGFMs with multiple frame
of references together, much larger relative deformations can be achieved than would other-
wise be possible with a single LEGFM attached to multiple moving bones. While LEGFMs’
linear Cauchy strain approximation of Green strain is not invariant under rotation, it is quite
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possible to rotate LEGFMs relative to each other. As an example, later in §5.1.4 we shall
consider secondary animation of finger pad deformation during interactive grasping and
contact tasks with a simplified finger model.

In this section, we shall consider a multizone kinematic chain of coupled LEGFMs
as schematically shown in Figure 5.2. This multizone kinematic configuration results in a
block tridiagonal system of equations comprising a nonlinear compliance equation relating
the interface displacements defined in each LEGFM’s inherent coordinate frame. The stiff-
ness response is nonlinear in the sense that it depends on the configuration of the joints in
the chain, but for any single configuration it is linear.

We will describe kinematic chains only for notational simplicity, but the same argu-
ments apply to more general multizone interface topologies and kinematic structures. The
practical consequence is that the solution of the seam equations will cease to be block tridi-
agonal, but may still be efficiently solved. The issues, and means of handling them, are
similar to those in multi-rigid body dynamics [APC97, LNPE92, Bar96, Fea87].

Similar boundary influence equations for coupling elastic bodies in equilibrium
arise when computing contact constraints between multiple elastic objects [AB93, MAR93,
EO89]. Using the precomputed GF models, the contact response could be efficiently com-
puted and integrated at high rates to solve simplified contact problems interactively with
haptic force feedback.

The LEGFM’s zonal frames of reference are related by coordinate transformations:
let the operator j

j+1F map quantities from frame j+ 1 to j, and j+1
j F from j to j+ 1. A left

superscript will denote the frame of reference of a quantity, e.g., jai represents a quantity a
of zone i in frame of zone j. Some illustrative coordinate transformations of quantities in
zone j from frame j to j + 1 are

j+1u
j
S = j+1

j F ju
j
S (5.9)

j+1Ξj
SS = j+1

j F jΞj
SS. (5.10)

Taking the RBVP of each zone to have specified displacement boundary conditions
for seam constraints (see Figure 5.2), the LEGFM equations describing the traction response
on both sides (j and j + 1) of seam j = 0, 1, . . . , n− 1 are

jp
j
Sj,j+1

= j p̂
j
Sj,j+1

+ jΞj
Sj,j+1Sj,j+1

ju
j
Sj,j+1

+ jΞj
Sj,j+1Sj,j−1

ju
j
Sj,j−1

j+1p
j+1
Sj+1,j

= j+1p̂
j+1
Sj+1,j

+ j+1Ξj+1
Sj+1,jSj+1,j

j+1u
j+1
Sj+1,j

+ j+1Ξj+1
Sj+1,jSj+1,j+2

j+1u
j+1
Sj+1,j+2

where the node sets S0,−1 and Sn,n+1 may be taken as the empty set to yield the end seam
equations

0p0
S01

= 0p̂0
S01

+ 0Ξ0
S01S01

0u0
S01

(5.11)
npn

Sn,n−1
= np̂n

Sn,n−1
+ nΞn

Sn,n−1Sn,n−1

nun
Sn,n−1

. (5.12)
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The seam bonding conditions, accounting for transformations between zone frames
of reference, are

jx
j
Sj,j+1

+ ju
j
Sj,j+1

= j
j+1F

(
j+1x

j+1
Sj+1,j

+ j+1u
j+1
Sj+1,j

)

(Continuity) (5.13)

0 = jp
j
Sj,j+1

+ j
j+1F

j+1p
j+1
Sj+1,j

(Newton’s 3rd law) (5.14)

where jx
j
∗ represent undisplaced vertex positions. These seam conditions may be rewritten

for substitution as

j+1u
j+1
Sj+1,j

= j+1
j F

(
jx

j
Sj,j+1

+ ju
j
Sj,j+1

)

− j+1x
j+1
Sj+1,j

(5.15)

j+1p
j+1
Sj+1,j

= −j+1
j F jp

j
Sj,j+1

. (5.16)

Substituting the bonding conditions into the LEGFM equations by eliminating variables
with non-increasing interface index pairs2 we obtain the nonsymmetric block tridiagonal
seam equations relating each set of seam displacements (each in its natural frame of refer-
ence) to adjacent seams,

0 =
(

jΞj
Sj,j+1Sj,j−1

j
j−1F

)
j−1u

j−1
Sj−1,j

(5.17)

+
(

jΞj
Sj,j+1Sj,j+1

+ jΞj+1
Sj+1,jSj+1,j

j+1
j F

)
ju

j
Sj,j+1

(5.18)

+
(

jΞj+1
Sj+1,jSj+1,j+2

)
j+1u

j+1
Sj+1,j+2

(5.19)

+ j p̂
j
Sj,j+1

+ j p̂
j+1
Sj+1,j

(5.20)

+ jΞj
Sj,j+1Sj,j−1

(
jx

j−1
Sj−1,j

− jx
j
Sj,j−1

)

(5.21)

+ jΞj+1
Sj+1,jSj+1,j

(
j+1x

j
Sj,j+1

− j+1x
j+1
Sj+1,j

)

(5.22)

for j = 0, 1, . . . , n− 1 and S0,−1 = Sn,n+1 = ∅.
This system of equations may be efficiently solved using block tridiagonal LU fac-

torization [GL96] which is effective given small sets of interface variables. However, the
system matrix’s nonlinear dependence on chain orientation means that this factorization
must be performed for each orientation, or that suitable interpolation must be used.

Two means for accelerating this process, both based on reducing the total number
of interface variables, are as follows. The first approach, useful for thin seams, is to only
constrain degrees of freedom near or on the surface. This approach was tried for the finger
example after discovering that the difference was visually undetectable. A second and
more general approach is to apply hierarchical GFs in seam regions to coarsen the seam
constraints, thereby specifiably reducing the effort required to solve the coupled interface
equations as well as simulate the LEGFM zone.

2For example, eliminate uSj+1,j
but keep uSj,j+1

.
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5.1.4 Implementation: Secondary Deformation for Character Animation

Multizone kinematic descriptions can make LEGFMs a useful tool for interactive animation
of plausible body tissue deformations: not only does the model respond plausibly to skeletal
motions, but the physical model also supports interaction. Just as clothing is draped over
scripted animations of moving characters for secondary animation, deformations associated
with motion, contact tasks and other forms of interaction may also be added. Considering
only secondary animation avoids limitations associated with linear strain and a linear stress-
strain relationship because the physical model is only used to compute plausible deforma-
tions for scripted motions and not to compute the motions themselves. Since LEGFMs are
sufficiently fast, it is possible for them to be used in interactive applications such as video
games. The interface-only feature of precomputed LEGFMs allows them to be easily com-
bined with other types of physical models, e.g., a sophisticated model for wrinkled skin
regions, as well as more traditional character animation approaches like vertex blending.

Figure 5.3: Finger with elastic finger pads used for interactive simulation: A simplified
finger model composed of three individual multiresolution elastostatic finger pads (L= 3)
with internal structure visible. The distal bone’s fingertip pad is also drawn inset for clarity.
Each finger pad is defined in a frame of reference rigidly attached to its corresponding
“bone” and this allows large relative strains to be simulated during interactive character
animation (see Figure 5.4). Significant wavelet compression of the finger pad models is
also possible (§7.4).
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Figure 5.4: Simulation of finger with elastic finger pads: An illustrative bone-based skele-
tal animation of a finger modeled using three individual multiresolution elastostatic finger
pads. The finger extension motion shown was computed using the fast summation CMA
with hierarchical wavelet GFs, and runs at near 60 FPS in our ARTDEFO simulator. The
model may also be interacted with directly, and this is shown in Figure 3.7.

We have implemented a multizone model for interactive finger animation and this
is described further in Figures 5.3 and 5.4. Precomputed multiresolution LEGFMs are
used for each finger pad zone, with displacement constraints specified at seams (shown in
Figure 5.4) in each zone’s reference BVP. The finger pads are connected using continuity
constraints at interface seams, e.g., located near kinematic joints. Imposing seam bonding
constraints as in the previous section leads to a nonlinear interface compliance system.

For real time animation applications such as video games, we suggest an alterna-
tive approximation which decouples each zone and thus avoids the solution of a changing
system matrix. This is achieved by specifying interface position constraints kinematically
using bone-weighted vertex blending, a technique commonly used for character anima-
tion. As the kinematic joints move, the displacement constraints applied in each LEGFM’s
frame of reference also change. Because the constraints are determined kinematically, ad-
jacent zones are decoupled from each other and this makes it unnecessary to solve for seam
constraints. In this manner, incorporating LEGFMs into skeletal animations is a straight-
forward task, and the resulting system may be simulated in real time. This approach is
discussed further in Figure 5.4 for the finger example.

5.1.5 Hybrid Models

Just as LEGFMs may be attached together, so may other physical models. Such hybrid
models allow a larger variety of deformable objects to be constructed, with more expensive
or accurate models used in areas where they are needed. Such approaches have been used in
the surgical simulation community to allow more costly dynamic models to be used in re-
gions of interest where dynamic tissue cutting is to be performed [HL98, CDA99]. It seems
also possible to perform such decompositions adaptively using a hierarchy of multizone
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models, as well as with adaptive constraint resolution for each zonal interface.

5.2 Relationship of CMAs to Simulation of Nonlinear Physics

This section briefly mentions two relationships that CMA has with simulating nonlinear
equilibrium physical systems. We remind the reader that material in this section has not
been implemented, and is the subject of future work.

5.2.1 Interpretation of CMA as Sensitivity Analysis

It is possible to generalize the CMA to nonlinear elastostatics by interpreting GFs as local
system responses obtained by sensitivity analysis methods. For example, a given RBVP has
solutions characterized by the linear equation (2.15),

v = Ξv̄.

This is a linear approximation of the nonlinear relationship

v = G(v̄) (5.23)

whose Taylor series expansion about v̄=0 is

v = G(0) + (∇v̄G(0)) v̄ + . . . (5.24)

= (∇v̄G(0)) v̄ + . . . (5.25)

(since G(0)=0 in the undeformed state), which implies the numerical approximation

Ξ ≈ (∇v̄G(0)) . (5.26)

By expanding about a nonzero deformed state (w, w̄), where

v = w + δv (5.27)

v̄ = w̄ + δv̄, (5.28)

and w=G(w̄), the expansion

v = w + δv = G(w̄) + (∇w̄G(w̄)) δv̄ + . . . , (5.29)

implies the local linear approximation

δv = (∇w̄G(w̄)) δv̄ (5.30)

= Ξ(w̄)δv̄. (5.31)
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While it is not practical to precompute all Ξ(w̄) arising in a simulation3 for arbitrary w̄,
with sufficient computing resources, sensitivities due to changes in the BVP input, or GF
responses such as Ξ(w̄):j could be computed. Temporal coherence and multiresolution
approximations could make this process more feasible. By computing selected local GF
sensitivites, the CMA can be used to update this subspace of constraints, and the provide
stable haptic force feedback.

In this manner, a precomputed LEGFM and CMA could be used for fast simulation
of small strain responses, including (sliding) contact, while a nonlinear CMA with runtime
generated sensitivites is used to handle large deformations, and so interpolate between the
more costly solutions and also derive local buffer models for force feedback.

5.2.2 Nonlinear Reanalysis

The idea of adaptively modifying zones to simulate nonlinear material response is directly
related to recent developments in nonlinear reanalysis [AGH01] for which nonlinear mate-
rial modifications for individual elements can be updated, e.g., to account for yielding or
buckling. It is shown that the Sherman-Morrison and Woodbury formulas can be extended
to allow for nonlinear changes in matrix quantities. In [AGH01], it is shown that a FEM
stiffness equation

Kd0 = f . (5.32)

can be updated efficiently to account for both linear and nonlinear modifications. In general,
the modified equilibrium equation resulting from s members behaving nonlinearly takes the
form

Kd +
s∑

i=1

ai(d)wi = f , (5.33)

where the volumetric displacement solution is of the form

d = d0 −Rα (5.34)

and
R = K−1W, W = [w1, . . . ,ws], α = [α1, . . . , αs]

T . (5.35)

Substituting (5.34) into (5.33) and using (5.32) and (5.35), lead to the condition

s∑

i=1

(ai(d)− αi)wi = 0. (5.36)

If the vectors wi are linearly independent, this leads to s coupled nonlinear equations in αi

ai(d0 −Rα)− αi = 0, i = 1, . . . , s. (5.37)
3For simplified interactions such as point-like contact, limited forms of precomputation may be

possible, but this is not true in general.
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If not all the changes are nonlinear then the problem is simpler: first a linear updating
problem is solved and then a smaller nonlinear system of equations.

In order to produce a form of this that is suitable for interactive simulation, we
observe that it may be possible to precompute quantities such as K−1W and efficiently
represent them in volumetric wavelet bases for efficient storage, fast summation and matrix
element extraction.

5.3 Multiresolution Constraint Generation

In this section we briefly address the problem of determining what constraints are to be
imposed on multiresolution models during a simulation.

Currently our ARTDEFO simulator supports two modes for constraint generation.
The first mode has been used to model displacement constraints for unilateral contact with
rigid objects, and this uses a node-based collision and CMA constraint generation approach.
Hierarchical constraints are easily supported given the nodal definition of contact. This
works well provided contact zones are sufficiently well resolved by the constraint resolution
so that significant interpenetration does not occur.

The second constraint generation mode supports spatially localized contacts using
pressure masks, and currently this is used for force feedback rendering of point-like con-
tacts. For hierarchical constraints, the distribution of contact forces is not determined by the
barycentric coordinate of contact within a single triangle, but by the parametric barycen-
tric coordinate within a triangular constraint patch at the appropriate constraint resolution.
Triangular constraint parameterizations are illustrated in Figure 3.5 for the dragon model.
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Chapter 6

Generation of Green’s Functions

Two significantly different approaches exist for constructing GF models. The first approach
is to use numerical methods for linear elasticity to precompute the required GFs, while the
second approach [PvdDJ+01] is based on the direct measurement of real physical objects.

6.1 Numerical Precomputation of Green’s Functions

Precomputation of discrete GFs is a straightforward application of standard direct or iter-
ative “black box” BVP solution techniques for any suitable discretization technique, e.g.,
FEM, BEM, FDM, FVM. For example, finite element formulations with direct and itera-
tive solvers were used in [BC96, CDA99], and direct BEM solution in [JP99a]. For very
large models, direct approaches eventually become less appealing and fast preconditioned
iterative matrix solvers, such as multigrid [Hac85], can be used. However, because very
many, e.g., O(n), GFs may be precomputed, factorization costs for direct solution methods
are offset by the large number of solves the factorizations are used for, whereas iterative
methods typically become competitive only for very large models in which direct matrix
factorizations are infeasible, e.g., due to memory limitations.

6.1.1 Direct Solution Using BEM

Our implementation is based on the Boundary Element Method (BEM) [BTW84, JP99a]
for discretizing boundary integral equation descriptions of Navier’s equation of homoge-
neous, isotropic linear elastostatics. BEM provides an appealing and direct approach, since
only the boundary geometry must be considered, and the A and Ā matrices correspond to
the columns of the BEM’s G and H matrices. The fact that many GFs are computed makes
direct matrix factorization approaches quite effective relative to iterative approaches even
for moderately sized problems, e.g., n = 2500; once the LU decomposition of A is con-
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structed it may be reused to solve (in parallel) for every single GF1. In practice it is only
necessary to store the one large dense matrix (A or its LU factors) in memory at once, and
the size of this matrix is the one practical limitation of the method. Despite the relatively
common comments in the literature deriding BEMs dense matrix, this is one application in
which the dense factorization is well used. Precomputation times are presented in §7.6, and
are for example significantly faster than those presented in [CDA99].

6.1.2 Nonoverlapping Block Preconditioned Multiresolution BEM Iterative
Solver

Due to the limitations of the direct BEM solver for very large models, a more sophisticated
solver is required. For this purpose, we have implemented an iterative boundary integral
equation solver for constructing (hierarchical) GFs.

Very recently, progress has been made on generalizing the fast multipole method
(FMM) for Laplace’s equation to 3D elastostatics [PN95, FKR+98, YNK01], and the work
of Nishimura et al. [YNK01] is particularly promising. However, after a preliminary investi-
gation and partial software implementation, this approach was aborted because it appeared
that solving for hundreds, let alone thousands, of GFs would be impractical2. While the
FMM achieved optimal O(n) memory and O(n(log n)α) (α ≥ 0) CPU complexity, the
CPU constant was too large for our precomputation needs.

Instead, a relatively simple, engineering accuracy, fast iterative solver was imple-
mented by computing the unlifted wavelet coefficients of the columns of the BEM’s G

and H matrices to a specified level of accuracy. This resulted in sparse matrix representa-
tions, so that fast summation, for A and Ā, was possible using the unlifted inverse FWT.
For a given iterative solver (discussed below) a preconditioner is highly effective here, and
we used a nonoverlapping block preconditioner [NH97] based on an adaptive octtree par-
titioning of nodes. Matrix A influences are assembled between nodes contained within
each octtree leaf cell, and these square blocks are inverted and used as a diagonal block
preconditioner. Preliminary investigation suggested that overlapping block preconditioners
did perform slightly better [NKLW94], however the minor improvement did not merit the
additional construction cost. It makes sense to construct a relatively large preconditioner
for this application since larger blocks can improve convergence rates, and the construction

1Similarly, building a sparse Cholesky factorization for FEM models would likely have led to a
more efficient solver than the condensation solver used in [BC96] or the conjugate gradient solver
in [CDA99], especially considering the modest sizes of liver models considered.

2The borehole geometry example in [TKN99] (and similar problems in [YNK01]) required more
than 5 minutes per matrix multiply for 30000 DOFs in Fortran 77 on a DEC Alpha 21164 (600MHz).
At this cost, the comparable L= 3 dragon model’s hierarchical GF calculation (assuming average
number of preconditioned GMRES multiplies was 500 (based on experiment), and 123 block GFs
or 369 solves) would require over six hundred days for iterative solver matrix multiplication alone!
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cost is amortized over multiple GF solves. Regarding the choice of iterative method, pre-
liminary experiments with Matlab suggested that GMRES [SS86] required fewer iterations
than other available methods, e.g., BiCGSTAB, QMR, CGS, and with the block precon-
ditioner, GMRES without restarts was most effective; this was consistent with the choice
of [YNK01]. Further large model precomputation details are discussed in §7.6.2.

An interesting practical point is that iterative solvers for BEM discretizations on our
Loop subdivision surfaces may be exaggerating iteration counts due to problems introduced
by the steep mesh grading at extraordinary vertices [KKP91], e.g., valence 3. This problem
might be reduced by the preconditioner used, but we plan to investigate this issue in the
future.

6.1.3 Hierarchical GF

Fast iterative solution methods can reduce the cost of computing a GF from a large models,
while using hierarchical GFs for coarse constraint scales can reduce the total number of GFs
that must be precomputed. Instead of computing coarse scale GFs from the GF refinement
relations (3.78), here it is desireable to iteratively solve (3.83), e.g., see the dragon model
in §7. This provides an attractive precomputation alternative that is particularly suited to
interactive applications such as games which are unlikely to require tens of thousands of
constraint DOFs (see Figure 3.9). This approach could also be used for modeling to pro-
vide support for semi-interactive modification of the model. Hierarchical GFs also provide
a practical mechanism for computing GFs at very fine resolutions to ensure numerical con-
vergence.

6.2 Reality Based Deformation Modeling

A promising alternative to numerical GF precomputation is the active robotic measurement
and estimation of GFs corresponding to real deformable objects. The boundary-only input-
output description provided by linear elastostatic GFs is a convenient and natural model to
estimate. By applying known contact forces to the surface of an object, such as the stuffed
toy tiger in Figure 6.1, it is possible to estimate the associated displacement of the free
surface using computer vision techniques, while the fixed (bottom) portion of the surface
is assumed to have zero displacements specified. From a GF matrix perspective, this corre-
sponds to applying nonzero tractions nodes to, and measuring displacements of nodes in Λ0

p.
By applying spanning tractions to enough surface nodes, it is possible to estimate the corre-
sponding free surface GF block, ΞΛ0

p,Λ0
p

(see Figure 3.4). We have discussed this approach

in [PvdDJ+01], and greater detail can be found in the Ph.D. thesis of Jochen Lang3 [Lan01]
3Also advised by Dr. Dinesh Pai.
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whose research addressed the robotic scanning and estimation of deformable models using
the UBC Active Measurement (ACME) Facility [PLLW99] (shown in Figure 6.2).

Aside from a very brief overview of the modeling process, we illustrate how mul-
tiresolution techniques may be exploited during the GF measurement, estimation, and sim-
ulation phases. As with numerical precomputation of multiresolution models, the first stage
of the process is the construction of a multiresolution surface mesh, and this is described
in §6.2.1.

Figure 6.1: Robotic measurement of deformable objects: A stuffed tiger toy is being in-
spected by the force probe attached to ACME’s Puma 260 robotic arm. The robot system-
atically contacts vertices of an associated multiresolution triangle mesh in order to measure
displacement responses for related GFs. Stereo vision is used to measure surface movement
during contact events.

Figure 6.2: ACME Facility Overview: The UBC Active Measurement (ACME) Facility
is a highly automated robotic measurement facility consisting of a variety of sensors and
actuators, all under computer control.

Once a reality based GF model has been acquired it can be interactively simulated
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(with force feedback) using the previously mentioned CMA framework. Frames from an in-
terative simulation using our ARTDEFO simulation software are shown in Figure 6.3. Point-
like contact force responses are computed using vertex pressure masks (§4.2). In general
the results are quite satisfactory, capturing non-local effects such as the movement of the
head when the back of the tiger is poked. The model does show some of the limitations of
the linear model structure for large input displacements, with somewhat exaggerated defor-
mations. However, for moderate input displacements (approximately < 15% of the tiger’s
diameter), the scanned model behaves quite realistically.

6.2.1 Multiresolution Mesh Construction and GF Measurement

Before deformation measurements are acquired, a geometric representation of the object is
first scanned and later used to register GF data. It is convenient to acquire a semi-regular
mesh with subdivision connectivity in order to use multiresolution techniques for measure-
ment, data processing, and simulation. For this reason, an initial triangle mesh is first
acquired using standard techniques described in [PvdDJ+01], and then this mesh is repa-
rameterized using normal mesh algorithms described in §3.2.6. For rendering purposes,
extra geometric detail is mapped on to the model using a displaced subdivision surface
[LMH00] approach, as described in 3.7.3. During robotic measurement, the multireso-
lution mesh structure is used when the robot probes surface locations corresponding to
vertices of the geometric model at the desired reconstruction resolution, l. Multilevel GF
interpolation techniques are then used to approximately predict some odd vertex GFs in
M(l + 1) for improved rendering quality (described in §6.2.3). Images of the multiresolu-
tion tiger model, and contact sampling patterns are shown in Figure 6.4. Because measured
displacement fields and the applied force distributions may involve different spatial scales,
this multiresolution scanning process is inherently related to hierarchical GFs and surface
pressure masks.

6.2.2 Scattered Displacement Data Reconstruction

After measuring the displacement field components of ΞΛ0
pΛ0

p
, it is common that several ma-

trix elements are unestimated due to missing observations of the deformed surface (shown
in Figure 6.5). This problem can be minimized by obtaining more measurements but not
entirely avoided. We use scattered data reconstruction to fill in elements for each column
individually. One approach is to interpolate missing displacements by solving Laplace’s
equation over the set of unestimated vertices. The result of this interpolation process is
shown in Figure 6.5.
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Figure 6.3: Interactive force feedback simulation of the reality-based tiger model: Four
image sequences are shown (3 with 2 images, and one with 6) with the flow of time indicated
by arrows connecting related frames. (Toy tiger model scanned by Jochen Lang [Lan01].)
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Figure 6.4: Multiresolution Mesh and Contact Sampling Pattern: (left) Coarse L= 0 pa-
rameterization of model, used for active contact measurement, displayed on finest L = 2
displaced subdivision surface mesh sued for simulation (see Figure 6.3); (right) yellow
points drawn on the L= 1 resolution mark the nodes at which the system’s displacement
response to applied tractions was either measured (even vertices) or inferred (odd vertices).

Figure 6.5: Plots of estimated displacement responses: (left) Missing observations on the
L = 1 mesh result in unestimated response components (shown in black); the remaining
nodes are color coded with red indicating the greatest displacement and blue the least.
(right) These values are estimated by an interpolating reconstruction to obtain the final
deformation responses. (Images courtesy of Jochen Lang [Lan01])
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6.2.3 Green’s Function Interpolation

In order to improve rendering quality and reduce measurement and estimation time we
exploit the multiresolution mesh structure to optionally infer Green’s function responses
for unmeasured vertices. This is done by actively poking the model at a resolution (l − 1)

one level coarser than the resolution l used to estimate displacement fields (illustrated in
Figure 6.4). The kth odd vertex on level l has a response ξk inferred if both even vertices
(k1, k2) of its parent edge have responses. If so, the kth response ξk is linearly interpolated
from the two parent responses, (ξk1

, ξk2
). The local responses, Ξkk and Ξjk when vertex j

is a one-ring neighbor of k, are handled differently.
Unlike long range displacement influences which are smoothly varying, these local

values are associated with a cusp in the displacement field. Simple interpolation for these
values is biased and leads to incorrect contact forces during rendering. Instead, the local
values are computed as the weighted average of parent responses which have had their
local parameterizations smoothly translated from even vertex k∗ to odd vertex k, e.g., Ξkk

is linearly interpolated from (Ξk1k1
,Ξk2k2

) not (Ξkk1
,Ξkk2

). This shifting of the parent’s
local response before averaging yields a good estimator of the local response at vertex k.
The resulting displacement field Ξ:k is also linearly independent of Ξ:k1

and Ξ:k2
.

Lastly, we note that this linear GF estimator could be used to construct an inter-GF
wavelet transform. This would be useful for obtain compression for file storage purposes,
and could be combined with wavelet GFs (in next section). Currently, we only benefit from
avoiding storage of the unmeasured interpolated GFs.

6.2.4 Wavelet Green’s Functions

Since it is possible to measure complex models and obtain GFs with high resolution dis-
placement fields, the wavelet GFs presented in this thesis may be used to obtain compres-
sion and fast summation benefits. While this was not considered in [PvdDJ+01], it is a
straight-forward application of the methods from Chapter 3. Compression results for the
reality based tiger model are presented in §7.7.
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Chapter 7

Results

In addition to the images and examples already presented, several more examples and nu-
merical results are available which confirm the effectiveness of the presented methods.

7.1 Note on Numerical Timings

In addition to flop counts, some timings are performed using unoptimized Java code on a
single processor Intel Pentium III, 450MHz, 256MB computer with Sun’s JDK 1.3 client
JVM for Windows 98. Special care was taken to eliminate timing artifacts such as garbage
collection, however, results still show several artifacts, e.g., cache effects. Based on hand-
coded 3-by-3 blocked dense matrix-vector multiplication (see Figure 7.11), this Java com-
puting environment is rated at 51 MFlops. By using hardware-optimized matrix libraries
and current hardware, the performance of the core matrix operations can be dramatically
improved1.

7.2 Capacitance Matrix Algorithm Performance

The runtime performance of the basic CMA from §2.2 is shown in Table 7.1 for capacitance
matrix LU factorization and substitution, and GF response summation costs. All of these
times are substantially smaller than direct solution and precomputation costs (see Table 7.7).
Despite their attractive timings, the limitations such as poor scaling in the capacitance ma-
trix factorization/inversion for large s and the GF vector product summation for both s and
n are evident, and these are contrasted by improvements in following sections.

1 While it is difficult to make a general statement regarding Java numerical performance, com-
parisons with Matlab 6’s optimized LAPACK library calls suggest that some of our timings, e.g., of
capacitance matrix LU decomposition, may be divided by a factor of approximately 5.

93



# Updates, s LUD Factor (ms) LUD Solve (ms) (ΞE)(ETv̄) for n=100 (ms)

10 0.54 0.03 0.38
20 2.7 0.15 0.74
40 19 0.58 1.7
100 310 5.7 5.7

Table 7.1: Timings of CMA Suboperations such as LU decomposition and back-substitution
of the capacitance matrix, as well as the weighted summation of s GFs are shown for dif-
ferent constraint sizes, s.

7.3 Sequential Capacitance Matrix Inverse Updating

Large reductions in capacitance matrix inversion costs for sequential temporally coherent
BVPs are possible with the sequential updating algorithm from §2.3. Tables 7.2, 7.3, and 7.4
show the typical costs required to perform various node addition and deletion operations in
order to update various starting inverses to compute a particular solver. Each table shows
that sequential updating is an attractive means for computing inverses in the presence of
temporal coherence. The theoretical predictions for updating breakeven in the special cases
of node addition (2.75,2.76) or deletion (2.104) are apparent in the numerical results. For
small changes in updated node sets it is faster than computing LU decompositions as well as
inverse matrices, with greatest benefits being obtained for large capacitance matrices. Using
updating it is very efficient to maintain capacitance matrix inverse matrices for simulation.

We have successfully integrated the CMA with sequential updating in simulations.
For example, it was used in the interactively simulated grasping task illustrated in Figure 4.1
corresponding to the LEGFM from Figure 7.18(a). While new capacitance matrices are not
encountered at each frame of the simulation, when new inverses are required, the speedup
obtained using sequential updating directly results in simulation frame rate speedups.

s2 =20 Delete, s−
Add, s+ 0 1 2 5 10

0 - 1.1 2.7 (9.9) [27]
1 0.9 2.2 (4.2) (11) [29]
2 1.9 (3.5) (5.5) [13] [32]
5 (4.7) (6.5) (8.7) [16] [36]
10 (7.8) (9.9) [12] [21] [43]

Table 7.2: Times to update capacitance matrix inverses: Times (in milliseconds) to compute
a single inverse of size s2 =20 using different starting BVP inverses of size s1 =s2 + s− −
s+. For comparison, times worse than the 2.7 ms required for LU factorization of the 60-
by-60 matrix are shown in round brackets, whereas those 4 times worse (11 ms for LU
Inverse) are shown in square brackets.
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s2 =40 Delete, s−
Add, s+ 0 1 2 5 10

0 - 6.1 12 (32) [77]
1 5.5 11 17 (38) [84]
2 11 16 (22) (43) [90]
5 (23) (29) (35) (57) [107]
10 (40) (47) (54) [78] [129]
20 (63) (70) (78) [106] [166]

Table 7.3: Times to update capacitance matrix inverses: Times (in milliseconds) to compute
a single inverse of size s2 =40 using different starting BVP inverses of size s1 =s2 + s− −
s+. For comparison, times worse than the 19 ms required for LU factorization of the 120-
by-120 matrix are shown in round brackets, whereas those 4 times worse (76 ms for LU
Inverse) are shown in square brackets.

s2 =100 Delete, s−
Add, s+ 0 1 2 5 10 20

0 - 37 70 174 (374) (865)
1 36 68 101 206 (410) (908)
2 67 98 131 243 (440) (941)
5 154 186 220 (329) (536) (1045)
10 286 (322) (358) (469) (684) (1212)
20 (520) (555) (595) (712) (940) [1410]

Table 7.4: Times to update capacitance matrix inverses: Times (in milliseconds) to compute
a single inverse of size s2 =100 using different starting BVP inverses of size s1 =s2 +s−−
s+. For comparison, times worse than the 310 ms required for LU factorization of the 300-
by-300 matrix are shown in round brackets, whereas those 4 times worse (1240 ms for LU
Inverse) are shown in square brackets.

7.4 Multiresolution Enhancements

This section describes results related to wavelet GF compression and the related fast sum-
mation speedup, as well as compressions achieved for hierarchical GFs. All multiresolution
analysis is performed on the Λ0

p domain, and GF compression is concerned with the ΞΛ0
pΛ0

p

GF self-effect block, since it is of greatest practical importance in simulations. As a re-
minder, this GF block describes surface displacments on Λ0

p due to tractions applied to Λ0
p.
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Several models have been analyzed and are described in Table 7.5. A fair estimate2 of the
number of tetrahedra in corresponding uniform tetrahedralizations are also stated.

Model Tetra Face Vertex,n |Domain| |M(l)| MB

Rabbit 2 872 320 162 133 (9,25,99) .64
Rabbit 3 6903 1280 642 537 (9,26,101,401) 10
Rabbit 4 54475 5120 2562 2145 (9,26,100,404,1606) 166
Dragon 3 176702 19840 9920 7953 (123,372,1495,5963) 2277

Finger 2 976 416 210 129 (6,23,100) .60
Finger 3 7829 1664 834 545 (6,23,100,416) 11

Tiger 1 5751 1176 590 509 (126,383) 9.3

Table 7.5: Properties of models used in multiresolution experiments: rabbit, dragon, fin-
gertip and reality-based tiger models. Columns are provided for the number of triangles and
vertices on the boundary, an estimate of the number of tetrahedra for a uniform tetrahedral-
ization, and the size of the Λ0

p domain along with its partitioned level structure on which the
wavelet GFs are analyzed. For comparison, the last column indicates the memory size (in
MB) of the otherwise uncompressed dense ΞΛ0

pΛ0
p

matrix of 32-bit floats.

7.4.1 Wavelet GF Compression and Error Examples

This section shows that substantial GF compression can be obtained at the cost of introduc-
ing very practical levels of approximation error. The practical consequence is that specifying
the level of simulation error allows the speedup of our interactive simulations to be directly
controlled, and this is extremely useful for real time applications.

Measures of Error

For a given level of compression, we give two measures of the error in the reconstructed
GF matrix block Ξ̂Λ0

pΛ0
p

relative to the exact value ΞΛ0
pΛ0

p
. The first error estimate is based

on the relative Frobenius (or Euclidean) norm of the error, here called the “RMS” error:

RMS =
‖Ξ̂Λ0

pΛ0
p
− ΞΛ0

pΛ0
p
‖F

‖ΞΛ0
pΛ0

p
‖F

, (7.1)

2 Tetrahedra counts are based on dividing the volume of the model, V , by the volume of a regular
tetrahedron,Vtet, with triangle face area equal to the mesh’s mean face area, a:

Vtet =
192

1
4

9
a

3
2 ⇒ #Tetrahedra ≈ d

V

0.4126a
3
2

e.
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and is a robust estimate of the average GF matrix element error. The second estimate
provides a measure of the maximum relative blockwise error over all GFs, here called the
“MAX” error:

MAX = max
j∈Λ0

p

‖ET
Λ0

p

(

ξ̂j − ξj

)

‖∞F

‖ET
Λ0

p
ξj‖∞F

(7.2)

where ‖ · ‖∞F is defined in (3.50, p. 50).

Rabbit Model

Compression results for the three (L = 2), four (L = 3) and five (L = 4) level rabbit
models are shown in Figures 7.2, 7.3 and 7.4, respectively. An image of the compressed
GF matrix for the smaller L=2 rabbit model was also shown earlier in Figure 3.6 (p. 58)).
In general, the compression results indicate a trend toward greater compression ratios for
larger models (this is characterized further in §7.4.2). In order to illustrate the performance
benefit of lifting the Linear and Butterfly wavelets, results obtained using the unlifted bases
are also shown for reference. To avoid clutter in our plots, the generally less effective
unlifted wavelet results are plotted in a lighter color for clarity. Graphical depiction of the
errors associated with GF compression are shown in Figure 7.1.

The relationship of relative RMS and MAX errors to the relative thresholding tol-
erance, ε, for various wavelets, are shown for rabbit models in Figures 7.5 (L = 2), 7.6
(L = 3) and 7.7 (L = 4). Interestingly, the behavior of errors for Linear and Butterfly
wavelets are nearly identical for respective lifted and unlifted types. In both cases, the
inverse FWT reconstruction process is stable.

Fingerpad Model

Compression results for the three (L=2) and four (L=3) level fingertip models are shown
combined in Figure 7.8, where we have allowed thresholding of the base level wavelet
coefficients. Dependence of the errors on threshold tolerance is shown in Figure 7.9 for the
finer model. A useful degree of compression is observed in each case for modest error, e.g.,
5-10% MAX error, with dramatic improvements for the L=3 model.

7.4.2 Dependence of GF Compression on Model Complexity

To better understand how compression or fast summation speedup rates depend on the Λ0
p

domain resolution of a model, the ratio of fast summation speedup factors for models of
adjacent resolutions, (L+1) and L, are shown in Figure 7.10 as a function of relative RMS
error. Given a model with m vertices in its Λ0

p domain, the fast summation speedup factor
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ε=0.01 ε=0.05 ε=0.20

Figure 7.1: Rabbit model (L=4) approximate wavelet GF reconstructions for lifted linear
wavelets at three thresholds, ε = (0.01, 0.05, 0.20), corresponding to compression factors
of (8.4, 25, 68). Three hierarchical GFs are shown with constraint levels 2 (top row),3 (mid-
dle row) and 4 (bottom row), and were computed using the refinement relation from fine
scale (level 4) thresholded GFs. Relative errors proportional to the threshold are visible,
especially in the neighbourhood of the rabbit’s nose where an exaggerated normal displace-
ment constraint has been applied to each model.
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Figure 7.2: Rabbit model (L=2): Wavelet GF error versus compression
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Figure 7.3: Rabbit model (L=3): Wavelet GF error versus compression
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Figure 7.4: Rabbit model (L=4): Wavelet GF error versus compression
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Figure 7.5: [Rabbit model (L=2): Wavelet GF error versus thresholding tolerance] Rabbit
model (L = 2): Wavelet GF error versus thresholding tolerance: (Top) Linear wavelets;
(Bottom) Butterfly wavelets.
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Figure 7.6: Rabbit model (L= 3): Wavelet GF error versus thresholding tolerance: (Top)
Linear wavelets; (Bottom) Butterfly wavelets.
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Figure 7.7: Rabbit model (L=4): Wavelet GF error versus thresholding tolerance: (Top)
Linear wavelets; (Bottom) Butterfly wavelets.
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Figure 7.8: Fingerpad models (L = 2, 3): Wavelet GF error versus compression: (Top)
L= 2 model; (Bottom) L= 3 model. In each graph, the upper set of smoother curves are
the RMS errors, while the lower set are the MAX errors.
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Figure 7.9: Fingerpad model (L = 3): Wavelet GF error versus thresholding tolerance:
(Top) Linear wavelets; (Bottom) Butterfly wavelets.
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is defined as the ratio of the number of dense GF elements, m2, to the number of nonzero
wavelet GF blocks, nnz, or

speedup(m) =
m2

nnz(m, ε)
. (7.3)

The ratio of speedup for two adjacent levels with m and 4m vertices is therefore

speedup(4m)

speedup(m)
=

(4m)2

nnz(4m, ε)

nnz(m, ε)

m2
=

16nnz(m, ε)

nnz(4m, ε)
. (7.4)

To provide intuition, linear dependence of the number of nonzeros, nnz(m, ε), onm would
yield a ratio of 4, whereas for nnz(m, ε)=Cεm logm one would obtain

speedup(4m)

speedup(m)
=

4 log(m)

log(4m)
< 4. (7.5)

While the limited information in Figure 7.10 does not allow us to confidently estimate the
exact dependence of nnz on m, it does provide a very useful observation regarding the
dependence of the ratio of fast summation speedups on error. It establishes that in practice
there is little improvement in relative speedup between resolutions once the RMS error level
has increased to a certain level.
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Figure 7.10: Rabbit model: Dependence of GF compression on model resolution
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7.4.3 Verification of Fast Summation Speedup

Fast summation speedups are directly related to the compression achieved using wavelets.
Our runtime simulations experienced close to a proportional speed-up, with the inverse
lifted Linear wavelet transform being approximately as costly as an extra normal computa-
tion. We do not use Butterfly wavelets for our interactive simulation because the negligible
compression benefits (if any) do not outweigh the increased cost of the inverse wavelet
transform3. As the number of constraints increases and GF response summations dominate
the graphics simulation cost, speedups from wavelet fast summation directly translate into
speedups for interactive simulations. For example, consider the ARTDEFO force feedback
simulator we have implemented (§7.5). The graphics loop simulation time per frame tframe

is equal to the sum of our fast summation cost tsum and other graphics related factors tother.
For simulations of large-scale models, the simulation frame rate

fframe =
1

tsum + tother

=
1

tsum
+O(

tother

t2sum

) (7.6)

is dominated by the rate of summation. Therefore speedup in fast summation times results
in proportional speedup for frame rates. Experimental evidence for the linear dependence
of fast summation speedup on GF compression is illustrated in Figure 7.11.

7.4.4 Timings of Selective Wavelet Reconstruction Operations, (ET
W
−1)

The performance of inverse FWT operations for the extraction of GF block elements (§3.3.3)
are shown in Table 7.6 for an unoptimized recursive element reconstruction implementation
using linear wavelets. The implementation’s reconstruction of each element involves redun-
dant calculation overhead of approximately a factor of two. Nevertheless, these pessimistic
times are sufficiently fast for practical use and can be optimized further using the approaches
mentioned in §3.3.3.

# Levels 2 3 4
Time/block, µsec 8 20 36

Table 7.6: Pessimistic timings of selective reconstruction operations for GF 3-by-3 block
element extraction. Block extraction times are listed as a function of the number of resolu-
tion levels (# Levels) that must be adaptively reconstructed to obtain the element.

3Butterfly subdivision requires averaging of 4 times as many values as Linear, however it can be
efficiently implemented to be only twice as costly.
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Figure 7.11: Fast summation cost per GF summed: Comparison of wavelet GF fast sum-
mation timings (in milliseconds) of a rabbit model (L= 3, 537 vertex domain) with dense
GF matrix multiplication (horizontal line, time=0.19ms/GF) for full matrix multiplication.
The linear dependence on nonzero GF matrix elements confirms the cost analysis of §3.3.5
(equation 3.68, p. 55): fast summation costs are directly proportional to the number of
nonzero wavelet GF elements. Timings are for the lifted Linear wavelets, for which the in-
verse FWT requires 0.38 ms. Based on the 3-by-3 dense matrix multiplication performance
(18*537 flop in .19 ms) this Java computing environment is rated at 51 MFlops.
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7.4.5 Wavelet Compression of Hierarchical Green’s Functions

Rabbit Model

Wavelet compression results are shown in Figure 7.12 for hierarchical GFs correspond-
ing to the rabbit model. Compression behaviors for each level of the GF hierarchy are
approximately the same, although the coarser and therefore smoother GF levels result in
only slightly better compression for a given RMS error, with this being more apparent for
the smoother lifted Butterfly basis. Figure 7.13 displays RMS reconstruction error ver-
sus thresholding tolerance for each level of the hierarchy. The approximately equivalent
compression rates for GFs across constraint scales implies that a fourfold reduction in con-
straints per coarsened constraint level results in approximately a fourfold speedup in fast
summation for a given level of error.

Dragon Model

The four-level dragon (L = 3) is our largest model, with 19840 faces, 9920 vertices, and
7953 vertices in the Λ0

p domain partitioned across four levels of sizes (123, 372, 1495, 5963).
In order to reduce the precomputation time, we only computed hierarchical GFs at the coars-
est (l=0) constraint scale (illustrated in Figure 3.5, p. 56), which only required 123 GFs to
be precomputed instead of 7953 (discussed further in §7.6, p. 116). The deformations asso-
ciated with these coarse level constraints are very smooth (shown in Figure 7.16 (p. 115),
and for this reason the compression achieved for these GFs is quite good for a given RMS
error; compression results are shown in Figure 7.14, and error versus threshold is shown in
Figure 7.15.

7.5 Force feedback for Point-like Contacts

Our current force feedback implementation is based on the point-like contact approach dis-
cussed in §4.2. Forces are rendered by a 3 dof PHANToMTM haptic interface (model 1.0
Premium), on a dual Pentium III computer running Windows 2000. The haptic simula-
tion was implemented in C++, partly using the GHOST c© toolkit, and interfaced to our
ARTDEFO elastostatic object simulation written in JavaTMand rendered with Java 3DTM.
Collision detection and the frictional contact problem are entirely computed on the haptic
servo loop running at 1 kHz, which enables very high fidelity contact force feedback even
for very slow graphical simulations. The haptic loop caches state values which are used
to prescribe boundary conditions for the slower graphical simulation, e.g., running at 25–
80 Hz. For a point-like contact, it was only necessary to perform collision detection on the
undeformed model, so this was done using the GHOST c© API. A photograph of the author
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Figure 7.12: Rabbit model (L = 4): Hierarchical wavelet GF error versus compression:
(Top) Lifted Linear; (Bottom) Lifted Butterfly.
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Figure 7.13: Rabbit model (L = 4): Hierarchical wavelet GF error versus thresholding
tolerance: (Top) Lifted Linear; (Bottom) Lifted Butterfly.
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Figure 7.14: Dragon model (L=3): Hierarchical wavelet GF error versus compression:

113



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

Threshold Tolerance, ε

R
el

at
iv

e 
E

rr
or

Linear Wavelet GF Reconstruction Error

RMS, Unlifted
RMS, Lifted
MAX, Unlifted
MAX, Lifted
THRESHOLD, ε

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

Threshold Tolerance, ε

R
el

at
iv

e 
E

rr
or

Butterfly Wavelet GF Reconstruction Error

RMS, Unlifted
RMS, Lifted
MAX, Unlifted
MAX, Lifted
THRESHOLD, ε

Figure 7.15: Dragon model (L = 3): Hierarchical wavelet GF error versus thresholding
tolerance: (Top) Linear wavelets; (Bottom) Butterfly wavelets.
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Figure 7.16: Deformed dragon model (L = 3): (Top) Undeformed model; (Bottom) hi-
erarchical GF model deformed due to a downward force applied to top side of head on
constraint level 0. This very large model compresses extremely well (approx. factor of 100
at 5% RMS error) and is suitable for interactive force feedback simulation.
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demonstrating the simulation is shown in Figure 7.17, and a number of screen shots for
various models presented in [JP01] are shown in Figure 7.18.

Figure 7.17: : Photograph of force feedback simulation in
use: Users were able to push, slide and pull on the surface
of the model using a point-like manipulandum. Addition-
ally, it was possible to change the surface friction coeffi-
cient, as well as the properties of the pressure mask, with
noticeable consequences. The PHANToMTM (here model
1.0 Premium) was used in all force feedback simulations,
and is clearly visible in the foreground.

We found vertex pressure masks (from §4.2) produced noticeable improvements in
the smoothness of the sliding contact force, especially when passing over regions with ir-
regular triangulations (see Figure 4.5). We have not conducted a formal human study of the
effectiveness of our simulation approach. However, the haptic simulation has been demon-
strated to hundreds of users at several conferences: the 10th Annual PRECARN-IRIS (In-
stitute for Robotics and Intelligent Systems) Conference (Montreal, Quebec, Canada, May
2000, best poster) and in the ACM SIGGRAPH 2000 Exhibition (New Orleans, Louisiana,
USA, July 2000). More recently, an invited demonstration of the multiresolution rabbit
model was well received at ACM1 (invited demonstration, San Jose, March 2001), and our
demonstration of the tiger reality-based model at the 11th Annual PRECARN-IRIS Confer-
ence (Ottawa, Ontario, Canada, June 2001) won the first prize for technology demonstra-
tion. Users reported that the simulation felt realistic. In general, the precomputed LEGFM
approach was found to be both stable and robust for real time simulation.

7.6 Precomputation Times

7.6.1 Direct BEM Solver

Timings for the direct isoparametric linear element BEM precomputation stage are shown
in Table 7.7 for several models, including those shown in Figure 7.18. While these times
are not excessive, they are several thousand times larger than the simulation times shown
for comparison. Since the precomputation phase involves “pleasantly parallel” computa-
tions, our BEM solver is multithreaded and capable of computing H and G matrix elements,
and performing LU back-substitution in parallel; LU factorization could be performed in
parallel using block LU decomposition (which maximizes level-3 flops) [GL96], however
we have not implemented this. For simplicity, all times given in Table 7.7 are for single
processor calculations with the exception of “Rabbit 4” which took approximately 9 hours
as an overnight job on an 8-way SMP server (8 Pentium III 450MHz CPUs, 1 GB shared
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(a) A simple nodular shape with a fixed base region.

(b) A kidney-shaped model with position constrained vertices on part of the occluded side.

(c) A plastic spatula with a position constrained handle.

(d) A seemingly gel-filled banana bicycle seat with matching metal supports.

Figure 7.18: Screenshots from real time haptic simulations: A wide range of ARTDEFO

models are shown subjected to various displacements using the masked point-like contacts
of §4.2. For each model, the middle of the three figures is uncontacted by the user’s inter-
action point (a small green ball).

memory, Solaris, Java JDK 1.2.2) with much of the time (about 4 hours) spent performing
the uniprocessor LU factorization. Using optimized native code, it may have been possible
to precompute the “Rabbit 4” model significantly faster (in approximately 2 hours assuming
the speedup of 5 mentioned in footnote on p. 93).
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Model Tetra Face Vertex,n |Domain| Precomp LUD % Sim (ms)

Nodule 820 256 130 89 1.1 min 1 0.05
Kidney 2690 640 322 217 7.7 min 3 0.13
Spatula 1514 1248 620 559 45 min 6 0.34
Banana Seat 3013 1088 546 245 25 min 20 0.15
Rabbit 2 872 320 162 133 1.8 min 1 0.07
Rabbit 3 6903 1280 642 537 40 min 9 0.33

Rabbit 4 54475 5120 2562 2145 *9 hours N/A 1.3

Table 7.7: Green’s Function precomputation and simulation times for BEM models (some
depicted in Figure 7.18). All GFs corresponding to moveable free vertices (in Λ

(0)
p ) were

computed, and the precomputation time (Precomp) of the largest model is less than an hour
(see text for “Rabbit 4”). As is typical of BEM computations for models of modest size,
the O(n2) construction of the matrices (H and G in equation 2.13) is a significant portion
of the computation, e.g., relative to the O(n3) cost of performing the LU decomposition
(LUD %) of the A matrix. The last column indicates that (sub)millisecond graphics-loop
computations (Sim) are required to determine the point-like contact deformation response
of each model’s free boundary for force feedback simulations.

For comparison, published LEGFM precomputation times appear in [CDA99] for
FEM models of comparable complexity. A modest volumetric liver model with 6500 tetra-
hedra and 1400 internal nodes took approximately 8 hours to precompute on a Dec Alpha
400 MHz machine using a preconditioned conjugate gradient iterative method. In compar-
ison, the direct BEM solver precomputation times given in Table 7.7 are quite appealing,
e.g., compare “Rabbit 3,” and especially since they are computed in Java. This is partly
due to the fact that the number of boundary nodes n is smaller than the expected number
of volume nodes O(n

3

2 ); for comparison, estimated tetrahedra counts are also given (see
footnote on page 96 for calculation).

7.6.2 Iterative Multiresolution BEM Solver

For larger models and cases where only a few (hierarchical) GFs are desired, the mem-
ory and processing overhead associated with constructing large factorizations is onerous.
Nevertheless, compared with the iterative solution alternatives, we have found direct meth-
ods to be sufficiently good when computing O(n) GFs, provided that the factorizations fit
into main memory. However, in order to construct the L=3 dragon model (19840 triangles,
9920 vertices), whose dense linear BEM matrix would be 29760-by-29760 and require over
3.5 GB of RAM, the GMRES iterative solver (see §6.1.2) was used. Using BEM matrices
adaptively constructed with unlifted linear wavelet transformed columns (ε=0.04), and an
adaptively partitioned octtree block preconditioner, each Ã matrix-vector multiply and pre-
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conditioner iteration required approximately 11 seconds. The unrestarted GMRES solves
used an average of 470 matrix-vector multiplies per solve (to visual tolerance), so that each
solve was approximately 90 minutes long, and therefore the 369 multithreaded BVP solves
required 23 days of CPU time. This process would benefit from further optimization. Using
the ARTDEFO force feedback simulator, the entire 23 days of CPU time can be experienced
in just a few seconds (see Figure 7.16, p. 115).

7.7 Multiresolution Reality-based Models

GFs estimated from real physical models can also benefit from compressed wavelet respre-
sentations, although this was not considered by us in [PvdDJ+01]. As an example, consider
the sparse representation of the GF matrix for the scanned tiger model shown in Figure 6.4.
Unlike the rabbit model, the measured tiger model’s subdivision connectivity mesh has only
2 levels, with a relatively large base resolution; the measured surface domain has 509 ver-
tices partitioned into two levels with (126,383) vertices. As a result, limited benefit can be
obtained from thresholding when all base-level vertex values are retained; in the best case,
only base level elements will remain, i.e., approximately 25% nonzero. This behavior is
evident in the compression graph of the related Figures 7.19 and 7.20. By allowing the base
resolution to be thresholded, better compression can be obtained, e.g., for a practical 10%
RMS error, and this result is shown in Figures 7.21 and 7.22. In all cases, lifted Linear
wavelets perform best, with Butterfly wavelets noticeably worse; a partial explanation is
that this geometric model is very coarse, so (a) the compactness of the Linear interpolant is
more favourable than the larger Butterfly stencil, and (b) the benefit of Butterfly’s smooth
interpolation can not yet be observed on this scale of the displaced subdivision mesh.

An interesting observation is that maximum relative max norm GF error for lifted
Linear wavelet GFs (see Figure 7.22) is significantly less than the thresholding tolerance
ε, whereas for BEM models, e.g., “Rabbit 4” in Figure 7.7 (p. 104), the opposite was true
except for very small models, e.g., “Rabbit 2” in Figure 7.5 (p. 102). This behavior is
likely related to the two level mesh, but perhaps also to the fact that the Laplacian regular-
ized scattered data reconstruction approach (§6.2.2) has introduced GF displacement field
smoothing of a less elastic nature.
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Figure 7.19: Reality-based tiger model (L= 1): Wavelet compression of two-level model
with unthresholded base resolution. Compression is limited to below a factor of approxi-
mately four. (Top) Relative RMS error; (Bottom) Relative MAX error.
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Figure 7.20: Reality-based tiger model (L = 1): Wavelet GF error versus thresholding
tolerance of two-level model with unthresholded base resolution. (Top) Linear wavelets;
(Bottom) Butterfly wavelets.

121



0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Compression Factor (Summation Speedup)

R
M

S
 E

rr
or

Wavelet GF RMS Error Versus Compression

Linear
Linear lifted
Butterfly
Butterfly lifted

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Compression Factor (Summation Speedup)

M
A

X
 E

rr
or

Wavelet GF MAX Error Versus Compression

Linear
Linear lifted
Butterfly
Butterfly lifted

Figure 7.21: Reality-based tiger model (L= 1): Wavelet compression of two-level model
with thresholded base resolution. Compression can exceed a factor of four with moderate
error. (Top) Relative RMS error; (Bottom) Relative MAX error.
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Figure 7.22: Reality-based tiger model (L=1): Wavelet GF error versus thresholding toler-
ance of two-level model with thresholded base resolution. (Top) Linear wavelets; (Bottom)
Butterfly wavelets.
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Chapter 8

Conclusion

8.1 Summary and Conclusions

This thesis has outlined a framework for interactive simulation of large scale Green’s func-
tion (GF) based physical models which is a significant improvement over previously known
approaches. The Capacitance Matrix Algorithm (CMA) formalism for efficiently simulat-
ing precomputed GF models allows arbitrary discretized approximations of linear elliptic
partial differential equations to be simulated using a common framework, and this is useful
conceptually and also from a software perspective. The easy access to capacitance matrix
compliance models has proven highly effective for supporting haptic and force feedback in-
teraction using ordinary personal computers and our ARTDEFO interactive simulator writ-
ten in JavaTM. Efficient methods introduced for sequential updating cached capacitance ma-
trix inverses were highly effective and provided significant speedups during our ARTDEFO

simulations of unilateral contact. Numerous multiresolution enhancements were presented
(hierarchical wavelet GFs, fast summation CMA, multiresolution constraints) and shown
to offer dramatic improvements in CMA effectiveness. These multiresolution improve-
ments greatly extend the complexity of models that can be interactively simulated and also
precomputed. In particular, the fast summation simulation enhancements which exploit
wavelet GF compression were highly successful; we have shown how to achieve hundred-
fold reductions in interactive simulation costs for geometrically complex elastic models
(dragon L=3) at acceptable levels of error (5% RMS). We also showed that similar com-
pression rates could in fact be achieved using a wide range of second-generation lifted
wavelet schemes. New approaches for hierarchically precomputing large scale models, and
also acquiring multiresolution GF models using reality based robotic measurement tech-
niques turned out to be highly effective. Several suggestions have been made to address
the limitations associated with linear strain and material properties: the interpretation of
the CMA as a sensitivity analysis method extends it to nonlinear elastostatics; multizone
domain decomposition methods can also provide for nonlinear simulation by using hybrid
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nonlinear models, as well as more general kinematic relationships which can support large
relative strains; precomputed nonlinear reanalysis can also be used to simulate nonlinear
material properties. With these improvements in efficiency and extensions for large scale
simulation, interactive Green’s function based models will be of much greater use in inter-
active computer graphics, computer haptics, and related applications such as virtual pro-
totyping, video games, character animation, surgical simulation, and interactive assembly
planning.

8.2 Future Work

There are a number of promising directions for future research with perhaps the largest
area being the simulation and visualization of other physical systems not directly related
to elastostatics, e.g., thermostatics, hydrostatics, electrostatics, etc. The benefit of other
wavelet schemes should be studied for compression improvements and practical concerns
such as the accommodation of common discretizations and definitions on irregular (base)
meshes. Other issues related to smoothness of discretization spaces, larger models, and high
accuracy tolerances should also be considered. Recently it has been shown that smooth
wavelets based on Loop subdivision achieve excellent compression for complicated ge-
ometry [KSS00] at the cost of an expensive (but here affordable) forward transform, and
these schemes have desireable properties for compression, summation and visual smooth-
ness; this is an avenue for future research, however we note that our results do not initially
suggest that such wavelets will provide significant speedup for GF compression. The com-
pression of GF matrix blocks other than the free surface self-effect (illustrated in Figure 3.4,
p. 47), should be investigated; preliminary studies indicate that this is also effective. Al-
gorithms for adaptive multiresolution approximations of contact constraints for real time
simulation are needed, e.g., to avoid “popping” artifacts. A careful study of nonsmooth
contact mechanics should be done to determine approximate yet plausible (frictional) con-
tact models suitable for dynamic or purely kinematic interactive applications. Incorporating
LEGFMs into a dynamic simulator, possibly with modeled contact sounds, would of course
be a natural extension. Methods for multizone kinematic elastostatic models appears to be
very promising for interactive simulation of constrained multibody flexible structures, and
should be investigated further. Several of the nonlinear material and strain extensions briefly
mentioned hold promise, but will require significant study to determine their utility in dif-
ferent settings. Collision detection for deformable objects can be optimized for LEGFMs
given the efficient random access to state values. Effective strategies for precomputation of
very large models can also be further improved; investigation of block iterative methods for
solving systems with multiple right hand sides [SG96], and the effects of subdivision mesh
grading on iterative solves should both be considered. Issues related to the stable simula-
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tion of models which contain errors need to be better understood; this is centrally related
to the simulation of wavelet compressed models and also models acquired with physical
measurement. Lastly, the methods presented here are suitable for hard real time simulation
environments and could be further studied in such a context.
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Appendix A

Boundary Integral Formulation of
Navier’s Equation

A.1 Navier’s Equation

Linear elastostatic objects with isotropic and homogeneous material properties, have dis-
placements satisfying the well-known Navier’s equation on Ω,

G

3∑

k=1

(
∂2ui

∂x2
k

+
1

1− 2ν

∂2uk

∂xk∂xi

)

+ bi = 0, (A.1)

which is conveniently written in a vector operator form as

(Nu) (x) + b(x) = 0, x ∈ Ω. (A.2)

Here ν is Poisson’s ratio and G is the shear modulus. These are material properties which
can be found in handbooks for many materials. Suitable values for Poisson’s ratio are
0 < ν ≤ 1

2 , with ν = 1
2 corresponding to an incompressible material. The shear modulusG

is positive, with larger values resulting in larger forces accompanying a given deformation.
Figure A.2 shows the effect of changing ν; see also Figure A.1.

The traction at a point on the surface is

pi = pi(x) = G
3∑

j=1

(
∂ui

∂xj
+
∂uj

∂xi

)

nj +
2Gν

1− 2ν
ni

(
3∑

k=1

∂uk

∂xk

)

(A.3)

where ni are the direction cosines of the outward normal. In a vector operator notation this
becomes

p(x) = (Pu) (x), x ∈ Γ. (A.4)
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(a) (b)

Figure A.1: A test nodule is pinched between two fingers. The nodule is a Loop subdivi-
sion surface, whose control polyhedron is an octahedron. The boundary of one face of the
octahedron is tagged as “sharp” [HDD+94] and leads to a sharp edge around the bottom
face of the object. We impose a zero-displacement boundary condition on this face, and
zero traction everywhere else, except for the two finger contacts.

A.2 Boundary Integral Formulation

Similar to Laplace’s equation, Navier’s equation on a domain may be converted to an in-
tegral equation defined on the boundary of that domain. At the heart of the derivation is
integration by parts, which produces boundary integrals from volume integrals. The end
result is that Navier’s equations (A.1) on, for example, a bounded domain may be converted
into a set of integral equations. The direct boundary integral equation formulation yields
the vector integral equation

c(x)u(x) +

∫

Γ
p∗(x,y)u(y) dΓy (A.5)

=

∫

Γ
u∗(x,y)p(y) dΓy +

∫

Ω
u∗(x,y)b(y) dΩy

valid at a point x on the boundary Γ [BTW84]. Three matrix functions occur in this equa-
tion:

c = c(x) = [cij ],

u∗ = u∗(x,y) = [u∗ij ],

p∗ = p∗(x,y) = [p∗ij ].

The integral kernel functions u∗ij(x,y) and p∗ij(x,y) are known fundamental solutions and
tractions, respectively, and are provided in the next section. The coefficient cij(x) depends
on the smoothness properties of the boundary at x, but is not needed explicitly (see Ap-
pendix B.2.2).
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(a) (b) (c)

Figure A.2: Poisson’s ratio, ν, provides an easy way to describe the compressibility of a
material. Figure (a) shows the example nodule in its rest state. A coarse reference mesh
is also shown in white on the surface. In figure (b), ν = 0.01, making the material very
compressible; the nodule exhibits a sponge-like behavior, deforming mainly in the vicinity
of the contact. In Figure (c) ν = 0.5, making the material incompressible; the sides of the
nodule bulge to conserve volume.

A.2.1 Fundamental Solutions

The fundamental solutions of Navier’s equation, u∗ij(x,y), correspond to the displacement
in the jth direction at a field point, y, as produced by a unit point load applied in each of
the i directions at a specified load point, x, in an infinite linear elastic medium. This cor-
responds to the fundamental solution due to Kelvin [Lov27]. Conceptually, this point load
fundamental solution plays an analogous role in elasticity as the familiar 1

r
Coulomb poten-

tial solution accompanying a point charge in electrostatics. In both cases, the fundamental
solutions are highly localized and decay very quickly, e.g., the fundamental displacements
have a typical 1

r
character while the fundamental tractions behave like 1

r2 . Mathematically,
u∗ij(x,y) is the jth component of the displacement solution to

(Nu) (y) + δ(x− y)êi = 0, (A.6)

where the vector operator notation from (A.2) has been used. The fundamental tractions are
related to the fundamental displacements via (A.4), that is

p∗ = Pu∗. (A.7)

Expressions for the fundamental solutions are [BTW84]

u∗ij(x,y) =
1

16π(1− ν)G

{
(3− 4ν) δij

r
+
rirj
r3

}
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p∗ij(x,y) =
(1− 2ν)

8π(1− ν)

[
(rinj−rjni)

r3
−

{
δij
r2

+
3rirj

(1− 2ν) r4

}
∂r

∂n(y)

]

where
r = y−x

ri = (r)i

r=|r|

∂r

∂n(y)
=

r · n(y)

r

(A.8)

and n(y) is the outward unit normal at y ∈ Γ.

A.2.2 Internal Body Forces

Any user-specified body forces mildly complicate the boundary-only character of the in-
tegral equations, as they introduce a volume integral term in (A.5). However, for certain
classes of functions, e.g., polynomials, it is possible to analytically convert the volume inte-
gral into a boundary integral using essentially repeated integration by parts via the Multiple
Reciprocity Method [BTW84]. For example, a constant gravitational force, b=ρg, may be
evaluated as a boundary integral. More simply, concentrated force loads, b=b0δ(x−x0),
are trivial to integrate, and are useful for introducing internal body articulation. Due to
space limitations, the body force term will not be mentioned hereafter.
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Appendix B

Boundary Element Method (BEM)
Tutorial

B.1 The Boundary Element Method

The Boundary Element Method (BEM) is a straight-forward approach to discretizing in-
tegral equations defined on the boundary via a collocation method. There are three main
steps when implementing the BEM in 3D:

1. Discretize the boundary Γ into a set of N non-overlapping elements which repre-
sent the displacements and tractions by functions which are piecewise interpolated
between the element’s nodal points.

2. Apply the integral equation(s) at each of the n boundary nodes, and perform the
resulting integrals over each boundary element in order to generate an undetermined
system of 3n equations involving the 3n nodal displacements and 3n nodal tractions.

3. Apply the boundary conditions of the desired boundary value problem, fixing n nodal
values (either displacement or traction) per direction. The remaining linear system of
3n equations is determined and may be solved to obtain the unknown nodal boundary
values.

Drawing on the notation from [BTW84], the discretization of (A.5), dropping the
body force, may be summarized as follows. The piecewise interpolated displacement and
traction functions evaluated at the point x may be written as

u = u(x) = (u1, u2, u3)
T = Φ(x)u (B.1)

p = p(x) = (p1, p2, p3)
T = Φ(x)p
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where Φ(x) is an interpolation matrix and u and p are n-vectors of the nodal displacement
and traction 3-vectors, respectively, e.g., u = [u1, . . . , un]T .

The displacement, traction and c vectors at the ith node, xi, will be denoted by

ui = u(xi), pi = p(xi), ci = c(xi),

respectively. Substituting (B.1) into the elasticity integral equation (A.5) applied at xi and
converting the surface integrals into sums of integrals over each boundary element, one
obtains

ciui +
N∑

j=1

(
∫

Γj

p∗(xi,y)Φ(y) dΓy

)

u

=
N∑

j=1

(
∫

Γj

u∗(xi,y)Φ(y) dΓy

)

p

which, in an obvious notation, may be written as

ciui +

n∑

j=1

ĥijuj =

n∑

j=1

gijpj . (B.2)

For convenience, define off-diagonal hij as ĥij , but let

hii = ci + ĥii. (B.3)

Assembling the equations at all nodes into a block matrix system yields

n∑

j=1

hijuj =
n∑

j=1

gijpj or Hu = Gp. (B.4)

The final step is to specify the boundary conditions at each of the n nodes, then bring the
unknowns to the left-hand side, and the knowns to the right-hand side to obtain the final
linear system

Av = z, (B.5)

which may be solved for the unknown nodal quantities, v.
All that remains is to determine the integrals for the matrix entries of H and G.

Indeed, this is the part of the BEM which takes the majority of a computation. Complete
formulae for constant boundary elements, are provided in the Appendix for those who are
interested in constructing their own elasticity solver. It is the simplest element for the reader
to implement and understand. Formulae for linear elements may be found in [Har89]1

1Unfortunately there is a string of misprint corrections in the literature here. Hartmann [Har89]
corrects a misprint in the source, but accidentally introduces another. Fortunately, the false correc-
tion is noticeable upon comparison.
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B.1.1 Constant Element Case

Analogous to the midpoint rule for integrating a univariate function, integration of a trian-
gular constant element is accomplished using data located at the centroid. This corresponds
to a centroid collocation scheme, as the jth node, xj , is identified as the centroid of the
jth element, and is where the elastic state is represented accurately. In this case n = N .
Since the collocation node lies in the element’s interior, it is called a nonconforming ele-
ment. This happens to make the element particular easy to implement, as connectivity is
not required. It also has the convenient casual property that special care need not be taken
to accommodate corners or sharp edges [BTW84].

B.2 Constant Element Influence Coefficients

When implementing boundary elements, there are always a number of singular integrals
which the user must acquire or spend some time calculating. In the relatively simple case
of triangular constant elements with centroid collocation, there are only a few integrals, and
they are presented here for completeness.

B.2.1 Inter-element Effects

These are integrals corresponding to interactions where the load point lies at the centroid of
a triangle other than the one being integrated over, i.e., xi /∈ Γj . This includes the elements
of the 3 × 3 matrices gij and ĥij , for i 6= j, and therefore corresponds to the majority of
the integrals. Since r = |xi − y| is never zero, these are nonsingular integrals which may
easily be calculated using standard numerical quadrature (see Brebbia [BTW84]).

B.2.2 Self-effects

Self-effects correspond to the integrals in the diagonal terms of equation B.4 such as gii and
ĥii. Since the load point lies in the center of the triangle being integrated over, these are
singular integrals, as the fundamental solutions are unbounded as r → 0. The first integral
is only weakly singular, while the second integral is strongly singular and only exists in a
Cauchy principal value sense.

Calculation of hii

Despite ĥii being strongly singular, it is easy to calculate indirectly using rigid body trans-
lations by considering a bounded object with all nodes subjected to any arbitrary constant
displacement boundary conditions, uj = ū, ∀j. Since this body necessarily experiences no
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induced surface tractions, pj = 0, ∀j. It follows from (B.4) that

hii = −
∑

j 6=i

hij (B.6)

and therefore neither ĥii nor ci need be calculated explicitly. Note that (B.6) implies that
H is a singular matrix.

Calculation of gii

The elements of

(gii)kl =
1

16π(1− ν)G

∫

Γi

(
(3− 4ν) δkl

r
+
rkrl
r3

)

dΓy

will be expressed for a triangle ∆, using the notation in figure B.1, i.e., with vertices at q1,
q2, q3, centroid at qc, areaA, and an outward unit normal n̂. Omitting any constant factors,
the first integral is J∆

1 , and the second is

X̂kX̂lJ
∆
1 +

1

2

(

X̂kŶl + X̂lŶk

)

J∆
2 +

(

ŶkŶl − X̂kX̂l

)

J∆
3 .

with
X̂ =

q2 − qc

|q2 − qc|
, Ŷ = n̂× X̂, (B.7)

and

J∆
m =

2A

3

[
Jm (θ1, α2, 0)

r23
+
Jm (θ2, α3, 0)

r31
+
Jm (θ3, α1, θ1 + θ2)

r12

]

(B.8)
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where

J1 (∆θ, α, θmin) = ln

[

tan
(

∆θ+α
2

)

tan
(

α
2

)

]

J2 (∆θ, α, θmin) = sin

(
θmin − α

2

)

ln

[

tan
(

∆θ+α
4

)

tan
(

α
4

)

]

+cos

(
θmin − α

2

)

ln

[[
1− tan

(
α
4

)] [
1 + tan

(
∆θ+α

4

)]

[
1 + tan

(
α
4

)] [
1− tan

(
∆θ+α

4

)]

]

J3 (∆θ, α, θmin) = 2 sin

(

2θmin − α+
∆θ

2

)

sin

(
∆θ

2

)

− sin2 (θmin − α) ln

[

tan
(

α
2

)

tan
(

∆θ+α
2

)

]

.
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Appendix C

Justification of Interpolated Traction
Distributions for Point Contact

This section derives the nodal boundary conditions associated with a localized point con-
tact at an arbitrary mesh location. The practical consequence is that the discrete traction
distribution may be conveniently interpolated from suitable nearby nodal distributions or
masks.

Given a continuous surface traction distribution, p(x), a corresponding discrete
distribution Φ(x)p may be determined by a suitable projection into L of each Cartesian
component of p(x). For example, consider the projection of a scalar function on Γ defined
as the minimizer of the scalar functional E : R

3n 7→ R,

E(p) =

∫

Γ

[
‖p(x)− Φ(x)p‖2

2 + ‖BΦ(x)p‖2
2

]
dΓx, (C.1)

where B : L 7→ R is some linear operator that can be used, e.g., to penalize nonsmooth
functions, and Φ(x) : R

3n 7→ R
3 is a nodal interpolation matrix defined on the surface,

Φ(x) = [Φ1(x)Φ2(x) · · ·Φn(x)] = [φ1(x)φ2(x) · · ·φn(x)]⊗ I3, x ∈ Γ, (C.2)

with Φj(x)=φj(x)I3 and I3 the 3-by-3 identity matrix. The Euler-Lagrange equations for
this minimization are

n∑

j=1

(∫

Γ
[φi(x)φj(x) + (Bφi(x)) (Bφj(x))] dΓx

)

pj =

∫

Γ
φi(x)p(x)dΓx, (C.3)

i = 1, 2, . . . , n, which, in an obvious notation, is written as the linear matrix problem

Ap = f (C.4)

to be solved for the nodal traction values p. Note that A has units of area.
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The relevant traction distribution for point-like contact is a scale-independent con-
centrated point load

p(x) = pδ(x) = f δδ(x− xδ) (C.5)

which models a force f δ delivered at xδ ∈ Γ. The force n-vector in equation (C.4) has
components

fi = φi(x
δ)f δ (C.6)

and the corresponding pressure distribution’s nodal values are

p = A−1f. (C.7)

For compactly supported basis functions, φi(x), f has only a small number of nonzero
components for any given x. Hence φi(x

δ) are the interpolation weights describing the
contribution of the nearby nodal pressure distributions, here specified by the columns of
A−1.

As an example, consider the important case where L is a continuous piecewise
linear function space with φi(xj)=δij . This was the space used in our implementation. In
this case, at most only three components of f are nonzero, given by the indices {i1, i2, i3}
which correspond to vertices of the contacted triangle τ δ, i.e., for which xδ∈τ δ. The values
φi(x

δ) are the barycentric coordinates of xδ in τ δ. The pressure distribution’s nodal values
are then

p = A−1f =
3∑

k=1

(
A−1

)

:ik
fik =

3∑

k=1

φik(xδ)
[(
A−1

)

:ik
f δ
]

=
3∑

k=1

φik(xδ)p(ik), (C.8)

where p(ik) is the pressure distribution corresponding to the application of the load directly
to vertex ik. Therefore the piecewise linear pressure distribution for a point load applied
at a barycentric location on a triangle is equal to the barycentric average of the pressure
distributions associated with the point load applied at each of the triangle’s vertices. This
may be recognized as an elastic generalization of force shading [MS96] for rigid models.

Note that the jth column of A−1 is a vertex mask that describes the nodal distribu-
tion of the load applied to the jth vertex. By modifying the penalty operator B it would be
possible to engineer masks that exhibit varying degrees of smoothness and spatial localiza-
tion.
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Appendix D

Software System Overview

This research project also involved the development of several software packages for the
precomputation and simulation of LEGFMs. These systems were implemented in Java and
graphically rendered with Java3D, with the exception of native interfaces to C++ code for
the support of haptic devices. Using high-level object-oriented languages helped reduce the
complexity and amount of code required. Nevertheless, the total size of the entire research
code base is approximately 125000 lines of Java code, and a few thousand lines of C++
code. Code is grouped into several Java packages, which aid in code reuse and reduce
intermingling of unrelated code. Within each package, strong use of object-oriented design
(OOD) patterns [GHJV95] was made to increase the general usability of data and algorithm
implementations.

The final design is considerate of various Java performance issues. Because of the
often high cost of garbage collection for creational patterns in Java, new objects are cre-
ated sparingly in numerical computations, and every attempt is made to preallocate objects
where possible, especially for “real time” simulation. In practice, it was possible to avoid
many of the performance pitfalls commonly associated with naive Java programming.

D.1 Subdivision Geometric Modeling and Wavelets

The complexity of implementing multiresolution algorithms has been eased by designing a
geometric modeling package based on geometric subdivision [Sub00], with other members
of our Interactive Simulation group. A half-edge data structure [MP78, GS85] is used to
represent all polyhedral mesh models as a set of connected faces, edges, and vertices; each
simplex is implemented as a separate Java object. Geometric subdivision algorithms are
then easily implemented as operations on these primitives. For example, support is provided
for traversing the multiresolution subdivision mesh hierarchy, and rendering of subdivided
deforming meshes can be performed “in place” for interactive applications. Simplicies
may be indexed to support random access to these primitives, e.g., vertices, and ordering
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of associated data. Collision detection and proximity queries are supported, including a
sphere tree approach [Hub95] and a standard octtree space partitioning. The subdivision
package also provides support for subdivision connectivity mesh reparameterization and
displacement mapping based on displaced subdivision surfaces [GVSS00, LMH00]; the
normal piercing phase is accelerated using the octtree spatial hierarchy.

Multiresolution analysis of data defined on the surface geometry is handled by a
second package. Most notably it includes lifted fast wavelet transform [Swe98] implemen-
tations for processing various surface function data types, as well as methods for accessing
multiresolution/hierarchical basis functions and their associated refinement relations.

D.2 Green’s Function Precomputation

Precomputation of GFs is implemented for boundary integral equations, e.g., associated
with Laplace and Navier’s equations. Discretization is handled by a very general object-
oriented Petrov-Galerkin framework, and we refer the reader to [Lag97] for similar de-
sign details. Collocation integral equation discretization schemes, such as the BEM, are
a subclass of schemes described by this approach, and implementations exist for constant
(centroid-based) and isoparametric linear (vertex-based) elements. GF matrix solvers for
both direct and iterative methods implement a common GF iterator interface which allows
for easy parallel/distributed GF precomputation; for multiresolution models, GFs can be
sequentially transformed and thresholded as they become available to avoid memory bottle-
necks. Multithreading (for machines with SMP support) is supported in the matrix element
computation, and both the direct and iterative GF solution stages. In order to handle very
large problems, care is taken to never unnecessarily store or copy large matrices.

D.3 Interactive Simulation

D.3.1 Simulation of Green’s Function Models

Interfaces are used to describe the various GF data objects, and provide seamless element
access and (fast-)summation support for data associated with dense, wavelet and hierarchi-
cal GF matrices of assorted floating point formats. The interfaced GF object is used by a
BVP solver object to efficiently implement the CMA, seamlessly taking advantage of fast-
summation and parallel processing if available. BVPs are specified using a rank-update
BVP object which internally compares the BVP to the RBVP. A common interface is im-
plemented by BVP solver objects with different capacitance matrix inversion and caching
capabilities. An interface is also used to encapsulate GF models of different underlying
representations for use in simulations. For example, the finger model can be represented as
a single GF model even though it is actually composed of three connected GF models. No
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special support for simulating reality-based models is required as this is implicit in the GF
model description, however extensive software for acquiring these models was developed
in a separate project [PvdDJ+01, Lan01].

D.3.2 ARTDEFO Simulator

Our simulator, named ARTDEFO [JP99a], provides support for contact interactions using
point-like and convex rigid manipulandums whose motion may be specified by mouse and
haptic interfaces, as well as more general means. A contact mediator object resolves con-
tacts and applies appropriate nodal boundary conditions to the deformable object(s) in con-
tact. Convex rigid manipulandums help simplify node collision detection issues, and con-
tact states are currently determined using a “trial and error” approach. At present friction is
only implemented for point-like contacts, so that nodes of deformable objects do not slide
on rigid objects when in contact. Contact states can be monitored by other objects using a
contact observer interface; for example, this is used to implement (unilateral) compliance
in the mouse and CyberGlove user interfaces so that large nonphysical forces can not be
exerted on the deformable object.

D.3.3 Haptic Interfaces

Access to native C++ software APIs for haptic interfaces is provided by corresponding
wrapper classes which encapsulate Java Native Interface (JNI) calls to the C++ API layer.
For example, CyberGlove grasping applications employ a wrapper object which uses JNI to
communicate with the VirtualHand SDK [Imm] to instantiate and access a C++ virtual hand
object. During simulation, the wrapper object provides read access to finger joint angles and
transforms. The accessed hand state is then used to control a second hand with compliant
joint kinematics which is resisted by the deformable object. Each 3D finger link’s mesh is
associated with a convex rigid manipulandum in the ARTDEFO contact simulator.

PHANToM force feedback applications use a larger C++ layer consisting of several
objects involved in the simulation of point-like frictional contact. The GHOST SDK’s [Sen]
gstForceField class is entended to render contact forces computed by our pressure mask
formalism. The collision detection, contact sliding and contact force computation are all
performed at approximately 1 kHz by the C++ layer running on a separate thread from the
graphics simulation. One-way communication of the contact state information is achieved
by writing to a thread-safe object accessible by the Java graphics simulation. The Java
layer is responsible for computation and graphical rendering of the surface deformation
corresponding to the point contact. In this way, even objects which are too large to be
rendered at interactive rates, can still be felt with the force feedback interface due to the
loose coupling of force feedback and graphical simulation threads.
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