
Non-linear Quantification Scheduling
in Image Computation ∗

Pankaj Chauhan1, Edmund M. Clarke1, Somesh Jha2,
Jim Kukula3, Tom Shiple3, Helmut Veith4, Dong Wang1

1 Carnegie Mellon University, Pittsburgh, PA 2 University of Wisconsin, Madison, WI
3 Synopsys Inc., Beverton, OR 4 TU Vienna, Austria

ABSTRACT
Computing the set of states reachable in one step from a given set of
states, i.e. image computation, is a crucial step in several symbolic
verification algorithms, including model checking and reachability
analysis. So far, the best methods for quantification scheduling in
image computation, with a conjunctively partitioned transition re-
lation, have been restricted to a linear schedule. This results in a
loss of flexibility during image computation. We view image com-
putation as a problem of constructing an optimal parse tree for the
image set. The optimality of a parse tree is defined by the largest
BDD that is encountered during the computation of the tree. We
present dynamic and static versions of a new algorithm, VarScore,
which exploits the flexibility offered by the parse tree approach to
the image computation. We show by extensive experimentation that
our techniques outperform the best known techniques so far.

1. INTRODUCTION
Symbolic representation of transition relations and state sets us-

ing Binary Decision Diagrams or BDDs [3, 9, 13] has led to a
breakthrough [6] in verification techniques, such as model check-
ing and reachability analysis. The transition relation R(s, w, s′),
where s and s′ are present and next states respectively and w are in-
puts, is represented by the characteristic function of the set of tran-
sitions that comprise R. Similarly, state sets are also represented
using characteristic functions of the sets.

At the core of all symbolic algorithms is image computation1

i.e., the task of computing the set of successors Img(S) of a set of

∗This research is sponsored by the Semiconductor Research Corpo-
ration (SRC), the Gigascale Research Center (GSRC), the National
Science Foundation (NSF) under Grant No. CCR-9505472, and
the Max Kade Foundation. One of the authors is also supported
by Austrian Science Fund Project N Z29-INF. Any opinions, find-
ings and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of GSRC, NSF, or the United States Government.
1The techniques presented in this paper also apply to preimage
computation. However, for ease of exposition, we restrict ourselves
to image computation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’01 San Jose, California, USA
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

states S, where

Img(S) := {s′ : ∃s.∃w.R(s, w, s′) ∧ s ∈ S}.

Image computation is one of the major bottlenecks in verification.
Often it is impossible to construct a single BDD for the transition
relation R. Instead, R is represented as a partitioned transition
relation, i.e., as the conjunction of several BDDs, each representing
a part of R. The problem is to compute Img(S) without actually
computing R.

The definition of Img involves evaluation of a quantified Boolean
formula. In the BDD representation, this amounts to quantifying
over several Boolean state variables. Early quantification [5, 17] is
based on the following Boolean equation:

∃y.f(x, y) ∧ g(x) ≡ (∃yf(x, y)) ∧ g(x) (1)

Early quantification results in smaller intermediate BDDs by re-
ducing the scope of each variable to be quantified. The success of
early quantification heavily depends upon the derivation and order-
ing of the sub-relations which comprise R. This problem has at-
tracted significant attention over the last decade. Since the problem
is known to be NP-hard [12], various heuristics have been proposed
for the problem.

This paper offers a more flexible approach to image computation
by viewing the image computation equation as a symbolic expres-
sion evaluation problem. The main contributions of this paper are
as follows:

• We formulate the problem of image computation as an ex-
pression evaluation problem where the goal is to reduce the
size of the intermediate BDDs as in [12]. This approach pro-
vides significantly more flexibility than the traditional linear
approach for ordering BDDs during image computation. We
show how this approach subsumes the linear approaches.

• We provide the VarScore heuristics for evaluating the parse
tree of image computation equation to reduce the size of
the intermediate BDDs. Our heuristics are based on scor-
ing the variables that need to be quantified and restructuring
the parse tree according to the heuristic. We provide dynamic
and static versions of our VarScore heuristics. In the dynamic
version, the parse tree is built for each image computation,
while in the static version, a single parse tree is built in the
beginning and is used for all subsequent image computations.

• We compare our dynamic and static heuristics to the best
known techniques based on linear ordering of BDDs. We
show that even with a simple heuristic such as VarScore, we
achieve impressive results. We have also contributed to the

code base of the symbolic model checker NuSMV [8] by im-
plementing our techniques.

The rest of the paper is organized as follows: In Section 2, we
introduce notations and definitions and review the current state of
the art for this problem. Section 3 describes our basic approach
and heuristics. Section 4 describes experimental results. Finally,
we conclude in Section 5 with some directions for future research.

2. PRELIMINARIES AND RELATED WORK
Notation: Every state is represented as a vector b1 . . . bn ∈ {0, 1}n
of Boolean values. The transition relation R is represented by a
Boolean function T (x1, . . . , xn, w1, . . . , wm x′

1, . . . , x′
n). Vari-

ables X = x1, . . . , xn, X ′ = x′
1, . . . , x′

n and W = w1, . . . , wm

are current state, next state and input variables respectively. T (x1,
. . . , xn, w1, . . . , wm, x′

1, . . . , x
′
n) is abbreviated as T (X, W, X ′).

Similarly, functions of the form S(X) = S(x1, . . . , xn) describe
sets of states. The set of variables on which f depends on is de-
noted by Supp(f).

Example 1. [3 bit counter. (Running Example)] Consider a
3-bit counter with bits x1, x2 and x3, where x1 is the least sig-
nificant and x3 the most significant bit. The state variables are
X = x1, x2, x3, X ′ = x′

1, x
′
2, x

′
3. The transition relation of the

counter can be expressed as

T (X, X ′) = (x′
1 ↔ ¬x1)∧(x′

2 ↔ x1⊕x2)∧(x′
3 ↔ (x1∧x2)⊕x3).

Note that the counter does not have any input variables. In later
examples, we will compute the image Img(S) of the set S(X) =
¬x1 which contains those states where the counter is even.

Partitioned BDDs: For most realistic designs it is impossible to
build a single BDD for the entire transition relation. Therefore, it
is common to represent the transition relation as a conjunction of
smaller BDDs T1(X, W, X ′), T2(X, W, X ′), . . . , Tl(X, W, X ′),
i.e.,

T (X, W, X ′) =
∧

1≤i≤l

Ti(X, W, X ′),

where each Ti is represented as a BDD. The sequence T1, . . . , Tl

is called a conjunctively partitioned transition relation. Note that
T is not actually computed, and only the Ti’s are kept in memory.
Typically, these partitions are derived from the next state functions
of state variables. However, if the BDD of a single next state func-
tion is too large, then the circuit for the next state function is fur-
ther partitioned by introducing cut-point variables C = c1, . . . , cp.
These cut-points are then quantified away in the image computa-
tion. Let Q denote the variables to be quantified, which in our case
is Q = X ∪W ∪C and |Q| = n+m+p. The equation for image
computation is then:

Img(S(X)) = ∃Q.(T (X, W, C, X ′) ∧ S(X)) (2)

= ∃Q.(
∧

1≤i≤l

Ti(X, W, C, X ′) ∧ S(X)) (3)

Example 2. [3 bit counter, ctd.] For the 3 bit counter, a very
simple partitioned transition relation is given by the functions T1 =
(x′

1 ↔ ¬x1), T2 = (x′
2 ↔ x1⊕x2) and T3 = (x′

3 ↔ (x1∧x2)⊕
x3).

Early Quantification: Usually, the size of a BDD reduces by quan-
tifying away a variable in its support. Loosely speaking, BDDs in
the partition correspond to semantic entities of the design to be ver-
ified and it is expected that not all variables appear in all clusters.

Therefore, by virtue of Equation 1, some of the quantifications in
Equation 3 may be shifted over several BDDs as follows:

Img(S(X)) = ∃Q1 · (T1 ∧ ∃Q2 · (T2 . . .

∃Ql · (Tl ∧ S(X)))) (4)

where Qi is the set of variables which do not appear in Supp(T1)∪
. . . Supp(Ti−1). If we look at the parse tree of this equation, we
see that it is a linear chain of conjunctions and quantifications. Gen-
eralizing this for an arbitrary parse tree, a variable can be quantified
away at a subtree node as soon as it does not appear in the rest of
the tree.
Quantification Scheduling: The size of intermediate BDDs and
effectiveness of early quantification depends heavily upon the or-
der in which BDDs are conjoined in Equation 4. For each linear
ordering of the conjunctions, there is a unique order of variable
quantifications. The problem of ordering the BDDs so as to mini-
mize the size of intermediate BDDs is known as the quantification
scheduling problem. The order of BDDs is known as the conjunc-
tion schedule. Traditionally, only linear conjunction schedules have
been considered. We generalize this concept to arbitrary parse trees
of the image computation equation. The problem of building the
parse tree and scheduling the quantifications over them is called
the quantification scheduling problem.
Related Work: Burch et al. [4] and Touati et al. [17] first rec-
ognized the importance of early quantification for image computa-
tion. Geist and Beer [10] proposed a simple heuristic algorithm, in
which they ordered conjuncts in the increasing order of the num-
ber of support variables in the conjunct. Hojati et al. were the first
to formulate the early quantification problem as an evaluation of a
parse tree and proved the NP-completeness of the problem. They
also offered a greedy strategy for evaluation of the parse tree by
evaluating the node with the smallest support set next. However,
they did not compare theire technique against other techniques, so
the effectiveness of their algorithms was unclear. Traditional tech-
niques for linear quantification schedules begin by first ordering the
conjuncts, and then clustering them, and finally ordering the clus-
ters again using the same heuristics. Ranjan et al. [16] proposed
the first successful heuristics for this problem and Yang [18] refined
their technique. Their ordering procedure linearly orders the BDDs
based on a heuristic score. The individual BDDs are then formed
into clusters by conjoining them according to the linear order until
BDD size grows beyond certain threshold. Finally, these clusters
are ordered using the same algorithm. A recent paper by Moon and
Somenzi [15] presents an ordering algorithm (henceforth referred
to as FMCAD00) based on computing the Bordered Block Triangu-
lar form of the dependence matrix to minimize the average active
lifetime of variables. Their clustering algorithm is based on the
sharing of support variables or affinity between conjuncts. We ex-
tended their notion of lifetimes and used combinatorial algorithms
to improve the performance [7].

Research has also been carried out in disjunctive decomposition
of transition relation. In [14], the authors use dependency matrix
to decide whether to introduce disjunctive decomposition. How-
ever, after the decomposition they use standard linear quantification
schedules. Gupta et al.. [11] use SAT procedures to derive finer
disjunctive decomposition of the transition relation and use a con-
junctive schedule for the subproblems corresponding to the clauses.
They also propose to use a non-linear quantification scheduling al-
gorithm similar to the one proposed in this paper for leaf image
computation. They also use variable scoring mechanism to choose
a variable. Then all BDD relations that the variable appears in are
conjoined along with quantification of the chosen variable. How-
ever, they presented experimental results in the context of using

SAT for decomposition of the overall problem, and it is difficult
to make a fair comparison against a purely BDD based approach.
Apart from this, there are some differences in the details of the al-
gorithm. One difference is in the scoring mechanism. They use
the product of the BDD sizes as the heuristic score, while we use
the sum or the sum of the squares of the BDD sizes. In the worst
case, it is true that the size of the result of the apply operation will
the the product of the sizes of two BDDs, but this is a rather pes-
simistic estimate. Better estimation of BDD sizes as a function of
the support set will improve the heuristics. We also believe that our
algorithms provides more flexibility by conjoining only two small-
est BDDs for a variable, unlike algorithm where they conjoin all
the BDDs (which is used in [11]).

3. VARSCORE ALGORITHMS
In this section, we describe the VarScore heuristic algorithms for

the quantification scheduling problem. First, we describe the dy-
namic version of VarScore algorithm, where a parse tree is built
for each image computation. Next, we describe static versions of
VarScore algorithm, where the parse tree is built only once and used
for all subsequent image computations. In static versions of our al-
gorithm the information about the state set S(X) is not available
(see Equation 3). Therefore, the heuristic scores are approxima-
tions. The basic step of our algorithms is described in Figure 1.

VARSCOREBASICSTEP(F, Q)

1 if there exists a variable q ∈ Q such that q appears in

the support of only one BDD T ∈ F

2 F ← F \ {T} ∪ {∃q.T}
3 Q← Q \ {q}
4 else

5 compute heuristic score VARSCORE for

each variable in Q

6 let q ∈ Q be the variable with the lowest score

7 let T1, T2 ∈ F be the two smallest BDDs such

that q ∈ Supp(T1) ∩ Supp(T2)

8 if q /∈
⋃

Ti∈F\{T1,T2} Supp(Ti)

// use BDDANDEXISTS for efficiency

9 F ← F \ {T1, T2} ∪ {∃q.T1 ∧ T2}
10 q ← Q \ {q}
11 else

12 F ← F \ {T1, T2} ∪ {T1 ∧ T2}
13 endif

14 endif

15 return(F, Q)

Figure 1: Basic step of the VarScore algorithms

The input to VARSCOREBASICSTEP is a set of variables Q to
be quantified, and a collection F of BDDs. First, any variable that
appears in the support of only one BDD is immediately quantified
away and the sets F and Q are adjusted accordingly (lines 1–3).
Otherwise a heuristic score is computed for the variables in Q.
The variable with the lowest score, say q, is chosen next and the
two smallest BDDs in whose support that variable appears are con-
joined. For efficiency reasons, if q appears in the support of only

those two BDDs, then we use BDDAndExists operation to conjoin
and quantify away that variable.

In the dynamic version of the algorithm, this step is called re-
peatedly for each image computation, beginning with F = {T1,
. . . , Tl, S} and Q = X ∪W ∪ C. F can also be seen as a col-
lection of parse subtrees (or forest) where the BDD operations are
carried out at the roots of the subtrees. When all the variables are
quantified (Q = ∅), remaining BDDs from F are conjoined in any
arbitrary order to compute Img(S). The scoring algorithm that we
use is very simple:

we sum up the sizes of the BDDs in which a particular
variable appears.

However, we are also investigating other more complex scoring al-
gorithms. Figure 2 illustrates the dynamic algorithm on our 3-bit
counter example.

step 1

step 2

ste
p 3

T3
=

x
′
3
↔ (x1

∧ x2
)⊕ x3

S =
¬x1

∃x3

∃x2∧

∧

∧ ∃x1

T2
=

x
′
2
↔ x1

⊕ x2

T1
=

x
′
1
↔ ¬x1

Figure 2: Dynamic VarScore algorithm in action. The dotted
lines represent the BDDs in the set F at different iterations of
the VARSCOREBASICSTEP.

First Static Approach: If there are multiple image computations
to be done, e.g., in reachability analysis where we compute im-
ages until we reach a fix-point, a lot of work is repeated. This is
especially true if the circuit partitioning is fine. In traditional lin-
ear conjunction schedules, clustering is done so that most of the
BDDs are conjoined once and for all before any image compu-
tations, however, very few quantifications are carried out at that
time. In the dynamic version, all the subtrees that do not quan-
tify away any present state variables can be evaluated in the be-
ginning (subject to the BDD size growth constraint). This is be-
cause S(X) only depends upon present state variables. Since we
don’t have any information about which particular S(X) is going
to be used, we can conservatively assume that S(X) contains all X
variables in the support. So, the overall approach is to begin with
F = {T1, . . . , Tl}, Q = W ∪ C and repeatedly call VARSCORE-
BASICSTEP until either Q = ∅ or no BDD operation can be done
without exceeding the size limit. This will leave some Frem and
Qrem. Then for each image computation, we call VARSCORE-
BASICSTEP repeatedly beginning with F = Frem ∪ {S} and
Q = Qrem ∪ X , until all the variables are quantified away. We
just conjoin all the BDDs in the final F to get Img(S). Notice that
this approach is a combination of static and dynamic schemes.

Second Static Approach: Note that in the first static approach, we
cannot quantify away any present state variable as we do not have
information about S. Thus the parse tree that is built in the begin-
ning does not take into account the present state variables and S.
However, introducing S as early in the Equation 3 restricts the con-
junct BDDs, often reducing their sizes [11, 14]. Moreover, the bulk
of the variables affecting the computation are these present state
variables. In fact, if we remove the BDD size constraint, we end up
with a monolithic representation of the transition relation! To alle-
viate this problem, we propose a second static approach that takes
into effect the present state variables. We build an approximation of
the parse tree but not the tree itself. Instead of working with the ac-
tual BDDs, we work only with the support sets of BDDs. The size
of a BDD Ti is estimated to be some function of |Supp(Ti)|. The
linear function size(Ti) = |Supp(Ti)| is an optimistic choice,
while the exponential function size(Ti) = 2| Supp(Ti)| is too pes-
simistic. We have determined experimentally that a quadratic func-
tion size(Ti) = |Supp(Ti)|2 is a good estimate. Let V be the
set of boolean variables. Therefore, the support set of a boolean
function Ti is a subset of V or is in the powerset of V (denoted by
2V). Any function f : 2V → N (where N is the set of natural
numbers) can be used in this approach. Intuitively, f(V ′) approx-
imates the size of the BDD of a boolean function with the support
set V ′. The following identities are used for adjusting the support
sets after conjunction/quantification.

Supp(∃q.Ti) = Supp(Ti) \ {q}
Supp(Ti ∧ Tj) = Supp(Ti) ∪ Supp(Tj)

So we build the pseudo-parse tree with these approximations by
calling VARSCOREBASICSTEP repeatedly until Q = ∅. The re-
maining subtrees in F are conjoined in arbitrary order to get a sin-
gle parse tree. Here F will denote the forest of the subtrees. We
assume that Supp(S) = X . After building this pseudo-parse tree,
we can see that all the subtrees not in the path from S to the root
can be evaluated in the beginning itself. Moreover, we do not need
to take into account the BDD size constraint, because those same
BDDs will have to be evaluated anyway. So we evaluate the re-
maining subtrees and get a linear chain from S to the root. The
quantifications for X variables are scheduled anew for each image
computation.
Third Static Approach: This approach is similar to the second
static approach, but instead of working with the support sets, we
work with actual BDDs. This provides a more accurate estimate of
the sizes (compared to approximating the sizes of BDDs as some
function of the size of support set). The BDD for S is taken to be
some reasonably complex BDD resembling the state set, e.g. the
BDD for initial states or a random BDD with almost all X variables
in support. This is the only approximation introduced. The tree is
built statically and all the subtrees not in the path from S to the root
are evaluated in the beginning. The quantifications along the path
from S to the root are scheduled for each image computation using
the actual S, as in the second approach.

4. EXPERIMENTAL RESULTS
In order to evaluate the effectiveness of our algorithms, we ran

reachability and model checking experiments on circuits obtained
from the public domain and industry. The “S” series of circuits are
ISCAS’93 benchmarks, and the “IU” series of circuits are various
abstractions of an interface control circuit from Synopsys. For a
fair comparison, we implemented all the techniques in the NuSMV
model checker. All experiments were performed on a 200MHz
quad Pentium Pro processor machine running the Linux operating

system with 1GB of main memory. We restricted the memory us-
age to 900MB, but did not set a time limit. The two performance
metrics we measured are running time and peak number of live
BDD nodes. We provided a prior ordering to the model checker
and turned off the dynamic variable reordering option. This was
done so that the effects of BDD variable reordering do not “pol-
lute” the result. We also recorded the amount of time spent before
any image computation is done. The cost of this phase is amortized
over several image computations performed during model check-
ing and reachability analysis. In Table 1, we compare the three
static techniques presented in this paper with FMCAD00 [15] and
simulated annealing based techniques that appeared in [7]. The
first column shows the name of the Circuit. The second column
(marked as #FF) shows the number of state variables in the circuit.
The next two columns (marked as #inp and log2of#reach) show
the number of inputs and log of the number of reachable states in
the various circuits. Subsequent columns show the performance re-
sults. Columns marked as FMCAD and SA refer to the algorithm
presented in [15] and [7] respectively. The results corresponding
to the three static strategies appear in the columns marked as VS-I,
VS-II, and VS-III respectively.

We observe that VarScore algorithms is better in most of the
cases against best of the simulated annealing and FMCAD00 meth-
ods. The margin of improvement is more in space than for time.
Also observe that we spend significantly more time in the initial
ordering phase (some time about 20% of the total time). Thus we
have very good results when the number of image computations to
be done are large, so that the cost of the initial phase is amortized.
The average time speedup we observe is about 20% over the best of
FMCAD00 and simulated annealing, while space savings are even
better, about 40% for VS-III and about 20-30% on average for VS-I
and VS-II.

5. CONCLUSIONS AND FUTURE WORK
We have proposed simple yet effective quantification schedul-

ing algorithms for the image computation problem. We view the
problem of quantification scheduling for symbolic image computa-
tion as a quantified Boolean formula evaluation problem. We have
also proposed heuristic algorithms based on scoring of quantifica-
tion variables to reduce the size of the intermediate BDDs. We
have demonstrated that our simple yet flexible approach yields bet-
ter experimental results for many reachability analysis and model
checking problems.

There are a number of directions for future research. We can
view the problem of building an optimal parse tree as a combi-
natorial optimization problem and apply techniques like simulated
annealing to get better quantification schedules. A middle ground
between dynamic and static techniques seems promising. For ex-
ample, we believe that beginning with some static schedule, the
schedule can be tuned for a particular image computation with a
little effort. We also want to investigate techniques of approximat-
ing sizes of BDDs based on the size of support sets, which will
definitely improve all image computation heuristics. Additional
experiments are required to understand the relative performance
of heuristics. We would also like to apply the techniques devel-
oped for quantification scheduling to other related problems, like
splitting orders in SAT checkers [2] and hierarchical model check-
ing [1].

6. REFERENCES
[1] R. Alur and M. Yannakakis. Model checking of hierarchical

state machines. In Proceedings of the 6th ACM Symposium
on Foundations of Software Engineering (FSE), 1998.

C
ir

cu
it

#F
F

#i
np

.
lo

g
2

of
To

ta
lT

im
e

(s
ec

s)
Pe

ak
L

iv
e

B
D

D
N

od
es

(K
)

St
at

ic
ph

as
e

tim
e

(s
ec

s)
#r

ea
ch

FM
C

A
D

SA
V

S-
I

V
S-

II
V

S-
II

I
FM

C
A

D
SA

V
S-

I
V

S-
II

V
S-

II
I

FM
C

A
D

SA
V

S-
I

V
S-

II
V

S-
II

I

ID
L

E
73

0
14

.6
3

15
9

18
2

37
86

73
28

9
22

3
22

5
29

19
2

29
19

17
19

G
U

ID
91

0
47

.5
8

14
24

54
18

35
13

7
13

8
14

95
95

4
19

28
24

27
S9

53
29

16
8.

98
1

3
4

2
2

15
15

14
19

16
1

3
2

1
1

IU
30

30
13

8
18

.0
7

28
63

25
46

38
29

0
29

0
32

4
25

0
22

6
3

34
12

10
10

IU
35

35
18

3
22

.4
9

13
11

25
17

19
25

7
20

2
18

3
24

1
22

2
4

6
19

15
15

IU
40

40
15

9
25

.8
5

13
14

38
13

18
35

3
23

2
29

2
21

4
17

0
5

5
15

10
12

IU
45

45
18

3
29

.8
2

M
O

ut
16

5
18

6
15

8
15

7
M

O
ut

48
3

56
6

56
4

43
9

10
39

24
20

22
IU

50
50

61
5

31
.5

7
47

6
54

0
70

1
42

7
56

1
16

27
16

02
16

55
20

20
23

84
16

77
23

8
20

8
25

0
IU

55
55

62
5

33
.9

4
98

2
87

0
10

11
61

4
58

5
46

83
32

98
49

23
41

89
31

00
14

84
32

2
22

4
22

3
IU

65
65

63
2

39
.3

2
M

O
ut

10
83

11
61

80
9

75
1

M
O

ut
67

93
69

65
67

11
54

40
18

10
0

40
6

41
4

36
1

IU
70

70
63

5
42

.0
7

53
98

28
55

35
96

23
71

29
47

17
35

5
99

64
82

25
96

19
85

70
38

12
9

94
3

88
5

96
6

IU
75

75
32

2
46

.5
9

53
67

38
22

49
11

28
28

25
22

16
53

8
94

04
13

09
87

07
64

14
45

14
0

13
95

11
18

10
57

IU
80

80
35

0
49

.8
0

M
O

ut
48

24
54

18
45

52
43

02
M

O
ut

17
99

3
20

19
3

16
01

8
12

06
2

49
13

6
19

75
17

28
19

64
IU

85
85

36
2

52
.1

4
M

O
ut

69
33

M
O

ut
55

58
62

89
M

O
ut

25
66

1
M

O
ut

22
93

8
23

65
9

59
15

4
26

33
19

50
27

04
T

C
A

S
13

9
0

10
6.

87
50

58
45

98
41

39
37

81
36

46
11

93
1

91
40

84
63

77
92

64
94

27
16

5
69

57
70

S1
26

9
37

18
30

.0
7

21
09

18
75

19
39

17
03

15
40

14
40

89
3

85
8

66
5

53
8

10
24

33
1

29
9

31
8

S1
51

2
57

29
40

.5
9

79
9

65
1

69
4

50
5

43
1

15
9

13
5

16
7

12
2

80
15

30
19

3
14

0
17

7
S5

37
8

17
9

35
57

.7
1*

18
03

6
10

16
8

10
18

4
88

62
80

92
16

32
12

79
10

39
93

6
88

9
42

67
45

39
29

58
38

51
S4

86
3

10
4

49
72

.3
5

35
65

30
13

36
30

21
11

17
47

11
24

91
0

92
4

98
6

66
3

38
56

65
3

41
5

56
5

S3
27

1
11

6
26

79
.8

3
42

34
33

99
47

23
29

47
28

38
86

35
62

03
90

23
56

01
41

05
33

30
81

5
73

2
71

0
S3

33
0

13
2

40
86

.6
4

23
65

9
24

56
3

M
O

ut
18

89
3

16
94

6
12

83
7

11
38

1
M

O
ut

99
27

76
26

69
15

0
43

1
39

4
44

5
SF

E
†

29
3

69
21

8.
77

86
3

76
2

89
2

51
9

43
8

14
7

13
0

15
3

10
1

71
14

76
94

92
88

S1
42

3
74

17
37

.4
1*

*
23

32
5

35
87

6
M

O
ut

29
91

6
M

O
ut

65
21

5
48

36
6

M
O

ut
M

O
ut

49
87

3
10

35
89

91
10

5

Ta
bl

e
1:

C
om

pa
ri

ng
ou

r
th

re
e

st
at

ic
al

go
ri

th
m

s
V

S-
I,

V
S-

II
an

d
V

S-
II

I
ag

ai
ns

t
F

M
C

A
D

00
an

d
Si

m
ul

at
ed

an
ne

al
in

g
(S

A
)

al
go

ri
th

m
.(

M
O

ut
)–

O
ut

of
m

em
or

y,
(†

)–
SF

E
IS

T
E

L
,

(*
)–

af
te

r
8

re
ac

ha
bi

lit
y

st
ep

s,
(*

*)
–a

ft
er

14
re

ac
ha

bi
lit

y
st

ep
s.

To
ta

lt
im

e
in

cl
ud

es
th

e
ti

m
e

fo
r

th
e

st
at

ic
ph

as
e.

T
he

ci
rc

ui
ts

co
ul

d
ru

n
ou

to
fm

em
or

y
at

di
ff

er
en

ts
ta

ge
s

(m
ar

ke
d

as
“m

em
or

y
ou

t”
),

so
re

su
lt

s
ar

e
pr

ov
id

ed
fo

r
th

e
st

ag
es

th
at

w
er

e
fin

is
he

d,
e.

g,
fo

r
s1

42
3,

V
S-

II
I

ru
n

ou
tm

em
or

y
du

ri
ng

re
ac

ha
bi

lit
y

an
al

ys
is

,s
o

th
e

B
D

D
N

od
es

st
at

is
ti

c
is

fo
r

in
it

ia
lp

ha
se

.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of
BDDs. In 36th ACM/IEEE Design Automation Conference
(DAC), pages 317–320, 1999.

[3] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers,
C-35(8):677–691, August 1986.

[4] J. R. Burch, E. M. Clarke, and D. E. Long. Representing
circuits more efficiently in Symbolic Model Checking. In
28th ACM/IEEE Design Automation Conference (DAC),
1991.

[5] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model
Checking with partitioned transition relations. In A. Halaas
and P. B. Denyer, editors, Proceedings of the International
Conference on Very Large Scale Integration, Edinburgh,
Scotland, August 1991.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170, June
1992.

[7] P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and
D. Wang. Using combinatorial optimization methods for
quantification scheduling. In Proceedings of the 11th
Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME),
September 2001.

[8] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: A new Symbolic Model Verifier. In N. Halbwachs
and D. Peled, editors, Proceedings of International
Conference on Computer-Aided Verification (CAV’99),
number 1633 in LNCS, pages 495–499. Springer, July 1999.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[10] D. Geist and I. Beer. Efficient Model Checking by automated
ordering of transition relation partitions. In D. L. Dill, editor,
Sixth Conference on Computer Aided Verification (CAV),
volume 818 of LNCS, pages 299–310, Stanford, CA, USA,
1994. Springer-Verlag.

[11] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based image
computation with application in reachability analysis. In
W. A. H. Jr. and S. D. Johnson, editors, Proceedings of the
Formal Methods in Computer Aided Design (FMCAD),
volume 1954 of LNCS, pages 354–371, November 2000.

[12] R. Hojati, S. C. Krishnan, and R. K. Brayton. Early
quantification and partitioned transition relations. In
Proceedings of the International Conference on Computer
Design (ICCD), pages 12–19, Austin, TX, October 1996.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Boston, MA, 1994.

[14] I. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To split or
to conjoin: The question in image computation. In
Proceedings of the 37th Design Automation Conference
(DAC), pages 26–28, Los Angeles, June 2000.

[15] I. Moon and F. Somenzi. Border-block triangular form and
conjunction schedule in image computation. In W. A. H. Jr.
and S. D. Johnson, editors, Proceedings of the Formal
Methods in Computer Aided Design (FMCAD), volume 1954
of LNCS, pages 73–90, November 2000.

[16] R. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. Brayton.
Efficient BDD algorithms for FSM synthesis and
verification. In IEEE/ACM International Workshop on Logic
Synthesis, Lake Tahoe, 1995. IEEE/ACM.

[17] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit enumeration of finite
state machines using BDDs. In Proceedings of the IEEE
international Conference on Computer Aided Design
(ICCAD), pages 130–133, November 1990.

[18] B. Yang. Optimizing Model Checking Based on BDD
Characterization. PhD thesis, Carnegie Mellon University,
Computer Science Department, May 1999.

