A Feature Weight Adjustment Algorithm for Document
Categorization -

Shrikanth Shankar
University of Minnesota, Department of
Computer Science
Minneapolis, MN 55455

shankar@cs.umn.edu

ABSTRACT

In recent years we have seen a tremendous growth in the
volume of text documents available on the Internet, digital
libraries, news sources, and company-wide intra-nets. Au-
tomatic text categorization, which is the task of assigning
text documents to pre-specified classes (topics or themes)
of documents, is an important task that can help both in
organizing as well as in finding information on these huge
resources. In this paper we present a fast iterative feature
weight adjustment algorithm for the linear-complexity cen-
troid based classification algorithm. Our algorithm uses a
measure of the discriminating power of each term to grad-
ually adjust the weights of all features concurrently. We
experimentally evaluate our algorithm on the Reuters-21578
and OHSUMED document collection and compare it against
a variety of other categorization algorithms. Our experi-
ments show that feature weight adjustment improves the
performance of the centroid-based classifier by 2%—5% , sub-
stantially outperforms Rocchio and Widrow-Hoff and is com-
petitive with SVM.

1. INTRODUCTION

We have seen a tremendous growth in the volume of online
text documents available on the Internet, digital libraries,
news sources and company-wide intra-nets. It has been
forecasted that these documents along with other unstruc-
tured data will become the predominant data type stored
online. Automatic text categorization [15, 21, 9] which is
the task of assigning text documents to pre-specified classes
of documents, is an important task that can help people find

*This work was supported by NSF CCR-9972519, by
Army Research Office contract DA/DAAGH5-98-1-0441,
by the DOE ASCI program, and by Army High Per-
formance Computing Research Center contract number
DAAHO04-95-C-0008. Access to computing facilities was
provided by AHPCRC, Minnesota Supercomputer Insti-
tute. Related papers are available via WWW at URL:
http://www.cs.umn.edu/~karypis

George Karypis
University of Minnesota, Department of
Computer Science / Army HPC Research Center
Minneapolis, MN 55455

karypis@cs.umn.edu

information from these huge resources. Text categorization
presents huge challenges due to a large number of attributes,
attribute dependency, multi-modality and large training set.

The various document categorization algorithms that have
been developed over the years [18, 2, 4, 5, 13, 9, 10, 3, 20,
11, 7] fall under two general categories. The first category
contains traditional machine learning algorithms such as de-
cision trees, rule sets, instance-based classifiers, probabilis-
tic classifiers, support vector machines, etc., that have either
been used directly or being adapted for use in the context of
document data sets. The second category contains special-
ized categorization algorithms developed in the Information
Retrieval community. Examples of such algorithms include
relevance feedback, linear classifiers, generalized instance set
classifiers, etc. In the rest of this section we describe the
classifiers we used and their implementation details.

A general class of algorithms that has been shown to pro-
duce good document categorization performance are sim-
ilarity based. This class contains algorithms such as k-
nearest neighbor [20], generalized instance set [10] and cen-
troid based classifiers [6]. In these algorithms the class of
a new document is determined by computing the similarity
between the test document and individual instances or ag-
gregates of the training set, and determining the class based
on the class distribution of the nearest instances or aggre-
gates.

A major drawback of these algorithms is that they use all
the features while computing the similarity between a test
document and the training set instances or aggregates. In
many document data sets, only a relatively small number of
the total features may be useful in categorizing documents,
and using all the features may affect performance. A possi-
ble approach to overcome this problem is to learn weights for
different features (i.e., words). In this approach, each fea-
ture has a weight associated with it. A higher weight implies
that this feature is more important for classification. When
the weights are either 0 or 1 this approach become the same
as feature selection. We refer to such algorithms as feature
weight adjustment or just weight adjustment techniques.

In this paper we present a fast iterative feature weight ad-
justment algorithm for the linear-complexity centroid based
classification algorithm. Our algorithm uses a measure of
the discriminating power of each term to gradually adjust

the weights of all features concurrently. Our analysis shows
that this approach gradually eliminates the least discrimi-
nating features in each document thus improving its classifi-
cation accuracy. We experimentally evaluate our algorithm
on the Reuters-21578 [12] and OHSUMED (8] document col-
lection and compare it against a variety of other catego-
rization algorithms such as Rocchio [14], Widrow-Hoff [19]
and Support vector machines [17, 9]. Our experiments show
that feature weight adjustment improves the performance of
the centroid-based classifier by 2%—5% , substantially out-
performs Rocchio and Widrow-Hoff and is competitive with
SVM.

The rest of this paper is organized as follows. Section 2
describes the centroid based classifier. Section 3 covers the
feature weight adjustment algorithm. Section 4 gives the
experimental results for this classifier and also compares its
performance against other classifiers.

2. CENTROID-BASED DOCUMENT CLAS
SIFIER

In the centroid-based classification algorithm, the documents
are represented using the vector-space model [15]. In this
model, each document d is considered to be a vector in the
term-space. In its simplest form, each document is repre-

sented by the term-frequency (TF) vector Cftf = (tfy, thy, ..., tf,),

where tf; is the frequency of the ith term in the document.
A widely used refinement to this model is to weight each
term based on its inverse document frequency (IDF) in the
document collection. The motivation behind this weighting
is that terms appearing frequently in many documents have
limited discrimination power, and for this reason they need
to be de-emphasized. This is commonly done [15] by multi-
plying the frequency of each term i by log(IN/df;), where N
is the total number of documents in the collection, and df;
is the number of documents that contain the ith term (i.e.,
document frequency). This leads to the tf-idf representation
of the document, i.e.,

difia = (tf, log(N/ df,), tf, log(N/df), . .. , tf, log(N/df,)).

Finally, in order to account for documents of different lengths,
the length of each document vector is normalized so that it
is of unit length, i.e., ||d¢sarll2 = 1. In the rest of the pa-

per, we will assume that the vector representation d of each
document d has been weighted using tf-idf and it has been
normalized so that it is of unit length.

In the vector-space model, the similarity between two doc-
uments d; and d; is commonly measured using the cosine
function [15], given by
. d; - d;
cos(d;, dj) = ———15—,
lldill2 * lldjll2

where “” denotes the dot-product of the two vectors. Since
the document vectors are of unit length, the above formula
simplifies to cos(d;,d;) = d; - d;.

(1)

Given a set S of documents and their corresponding vector
representations, we define the centroid vector C' to be

R 1 o
C:mZd, (2)

des

which is nothing more than the vector obtained by averaging
the weights of the various terms present in the documents
of S. We will refer to the S as the supporting set for
the centroid C'. Analogously to documents, the similarity
between two centroid vectors and between a document and
a centroid vector are computed using the cosine measure. In
the first case,

—, (3)
ICill2 = IC5 2

cos(C;, G)) =

whereas in the second case,
ic¢ ¢
ldllz = ICllz (IC]l2

Note that even though the document vectors are of length
one, the centroid vectors will not necessarily be of unit
length.

cos(d, C) = (4)

The idea behind the centroid-based classification algorithm
[6] is extremely simple. For each set of documents belonging
to the same class, we compute their centroid vectors. If there
are k classes in the training set, this leads to k centroid
vectors {C1,Cy,...,Ck}, where each C; is the centroid for
the ith class. The class of a new document z is determined as
follows. First we use the document-frequencies of the various
terms computed from the training set to compute the tf-idf
weighted vector-space representation of z, and scale it so ¥
is of unit length. Then, we compute the similarity between
Z to all k centroids using the cosine measure. Finally, based
on these similarities, we assign x to the class corresponding
to the most similar centroid. That is, the class of z is given
by

arg max k(cos(f, ;). (5)

Jj=1,...,

The computational complexity of the learning phase of this
centroid-based classifier is linear on the number of docu-
ments and the number of terms in the training set. The
computation of the vector-space representation of the docu-
ments can be easily computed by performing at most three
passes through the training set. Similarly, all k centroids
can be computed in a single pass through the training set,
as each centroid is computed by averaging the documents
of the corresponding class. Moreover, the amount of time
required to classify a new document x is at most O(km),
where m is the number of terms present in z. Thus, the over-
all computational complexity of this algorithm is very low,
and is identical to fast document classifiers such as Naive
Bayesian.

3. WEIGHT ADJUSTMENT FORCENTROID
BASED CLASSIFIER

Any scheme that adjusts the weights of the various features
(i.e., terms) has to perform two tasks. First, it must rank
the various features according to their discriminating power.
Second, it must adjust the weight of the various features in
order to emphasize features with high discriminating power
and/or de-emphasize features with none or limited discrim-
inating power.

Over the years, a number of schemes have been developed
to measure the discriminating power of the various features

such as information gain, entropy , gini index , and x? statis-
tic . In our algorithm, the discriminating power of each fea-
ture is computed using a measure similar to the gini index
[1], as follows. Let m be the number of different classes, and
let {C1,Cs, ... ,Cn} be the centroid vectors of these classes.
For each term i, let T; = {C1,i,Ca,,...,Cm,} be the vector
derived from the weight of the ith term in each one of the
m centroids, and let 77; = T;/||T;||1 be the one-norm scaled
version of T; The discriminating power of the ith term P;
is given by

p=Y12, (6)
j=1

which is nothing more than the square of the length of the
T'; vector. Note that the value of P; is always in the range
[1/m,1]. The lowest value of P; is achieved when T} ; =

io=---=Tj, iec, aterm is equally distributed amongst
all the classes; whereas the highest is achieved when the
ith term occurs in only a single class. Thus, a value close to
one indicates that the term has a high discriminating power,
whereas a value close to 1/m indicates that the terms has
little if any discriminating power. In the rest of this paper,
we will refer to P; as the purity of the ith term, and we will
refer to the vector P = {Py, P»,... ,P,} of the purities of
all the n terms as the purity vector.

Having ranked the various terms using the purity as a mea-
sure of their discriminating power, the next step is to ad-
just their weights so that terms with higher discriminating
power become more important than terms with lower dis-
criminating power. A simple way of doing this, is to scale
each one of the terms according to their purity. In par-
ticular, each document vector d is transformed to a new
vector d' = {P1d1, P2ds,... ,Pd;,... Ppd,}. Given this set
of transformed document vectors, the centroid classification
algorithm will proceed to scale each document to be of unit
length, and then build a new set of centroid vectors for the
various classes. A new document will be classified by first
scaling its terms according to the purity vector and then
computing its similarity to the new set of centroids. Since
the purity values are always less or equal to one, the weight
of the various terms in each transformed document d’ will
always be equal or smaller than their original weights. How-
ever, the re-normalization operation performed by the cen-
troid classification algorithm causes the purest terms in each
document to actually gain weight, achieving the desired fea-
ture weight adjustments.

Unfortunately, this simple scheme has two drawbacks. The
first is that this weight adjustment approach may cause too
steep of a change in the weights of terms. When this happens
the weight of a document tends to get concentrated into a
very small number of terms. As a result there could a loss
of information that can negatively affect the classification
performance. The second is that in some cases, this simple
one step processes may not sufficiently change the weights
of the various terms. Consequently, the new representation
will be similar to the original one, with almost no change
in the classification accuracy. For this reason, our weight
adjustment algorithm adopts a somewhat different approach
that attempts to address these problems.

Our algorithm solves the first problem by changing the weights
of the various features by a smaller factor than that indi-
cated by their purity. In particular, for each term ¢, we

scale its weight by Pil/‘;, where 6 > 1. Since, the purities

are less than one, Pil/s will be closer to one, thus leading
to smaller changes. To address the second problem, we per-
form the weight-adjustment operation multiple times. For
each data set, we use the classification accuracy on a portion
of the training set (i.e., validation set) in order to determine
how many times to perform the weight adjustment. The
weight-adjustment process is stopped when the classifica-
tion performance on the validation set starts to decrease.
The details of the algorithm are shown in Figure 1.

Once the number of weight adjustment iterations [has been
computed, a new test document d is classified by first ad-
justing the weights of its terms by going through the same
sequence of [weight adjustment iterations, and then using
the centroid classification algorithm on the weight-adjusted
training set to determine its class. This process can be
speeded up by using the fact that applying [iterations of
weight-adjustment followed by unit-length scaling is the same
as applying a single weight-adjustment in which the weight
of each term j is multiplied by le/(s, followed by a single
unit-length scaling ([16]).

Note that each iteration of the weight adjustment algorithms
is linear to the number of non-zeros in the document term
matrix. Furthermore the number of iterations is quite small
(less than 20 in all of our experiments), leading to an essen-
tially linear complexity algorithm.

Discussion

One way of understanding this proposed weight adjustment
scheme is to focus on how it modifies the weights of the
various terms in a particular document. In the initial it-
erations as a result of the unit-length renormalizations an
impure term may gain weight due to the presence of other
terms of even lesser purity. However as more iterations are
performed, the weight transfer process causes these terms
to have lesser weight and thus reduces the weight transfer
into higher terms. As a result of this process, initally only
the terms having the lowest purity in the document will lose
weight. As these lose weight, terms which are more pure
will no longer be able to compensate their loss of weight
from these terms and will also start losing weight. Thus the
weight of each term will have a curve that looks like Fig-
ure 3 (B). The term having low purity (Figure 3(A)) does
not show the initial increase while the purest term (Fig-
ure 3(C)) does not exhibit the final falling part. The figures
shows the change in the weight of a 3 terms with different
purities in the same document for 10 iterations.

3.1 Binary Classification

A common classification problem in information retrieval is
that of developing a classifier that can correctly identify doc-
uments that belong to a particular target class from a large
collection of documents. This is a typical binary classifica-
tion problem in which we try to develop a model for the
target class versus the rest. The weight adjustment scheme
described in the previous section can be directly used in this
kind of problems.

Split the training set A into training A’ and validation V'

Compute P using the documents in A’
=0
For each document d; € A
For each term j
_ pl/é
di,]‘ = P]— di,]'
Scale d; so that ||d;||2 =1

©E N PO W N

—
e

If accuracy does not decrease
Il=1+1
Goto 5

==
N =

Compute the accuracy on V of the centroid classifier built on A’

Compute the accuracy on V of the centroid classifier built on A’

Figure 1: The fixed weight adjustment algorithm.

0.1025 T T T T T T T T 0.0305

0102
0.1015 00304 1
0101

0.0303 [
0.1005

00302
00095
0099
00301 [

0.0085
0098 003l

00075

0007 0.0209
1 o

Figure 2: Column weight against number of iterations

The analysis presented in [6] suggest that the centroid scheme
does best when each class contains related documents. The
negative class i.e., rest is however too diffuse for this. As a
result instances of the negative class tend to get classified as
positive. We propose the following solution to handle this.
We cluster the negative set into k clusters. While comput-
ing the centroids and the purity we treat this as a k + 1
class problem. When classifying, we compute the similarity
of the document to the k negative clusters. We take the
largest value amongst these, and treat it as the similarity
of the document to the negative set. The similarity of the
document to the positive set is directly computed from the
centroid of the positive class. Similarly if we find that a
class has a multi-modal distribution we can run a clustering
algorithm to identify sub-classes within it. We could then
treat each of these sub-classes as a separate class.

4. EXPERIMENTAL SETUPANDRESULTS

In this section we experimentally evaluate the effect of using
our feature weight adjustment algorithm on the classification
accuracy of a centroid based classifier. Two different sets of
experiments are presented. Both experiments were targeted
on problems in which each document could have multiple
class labels. Accuracy was measured by counsidering binary
classification for each individual class. The effectiveness of
classification was computed using precision and recall at the
break even point.

In our experiments, we compared the performance of our
weight adjustment scheme against the performance achieved
by the following classifiers. We obtained results using two
linear classifiers which used Rocchio and Widrow-Hoff re-
spectively to learn the weight vectors. In the case of Rocchio
we used o = 0,8 = 16,y = 4 [13], whereas in WH we used
n = 0.5. We also ran SVM'"**® [9] using a polynomial kernel
with d = 1 and a RBF kernel with v = 0.8 against the data
sets. Also the parameter 0 in the feature weight adjustment
algorithm is set to 8.

4.1 Reuters

The first data set that we used was the Reuters-21578 [12]
text collection. In particular, we used the “ModApte” split
to divide the text collection into a set of 9603 training doc-
uments and 3299 test documents. After eliminating stop-
words and removing terms that occur less than two times,
the training corpus contains 11,001 distinct terms.

Table 1 shows the performance of the classifiers on the 10
most frequent classes in the Reuters data set. The columns
labeled “Rocchio” and “WH” shows the performance achieved
by a linear classifier using the Rocchio and Widrow-Hoff al-
gorithms respectively to learn the weights. The next two
columns show the performance of the SVM classifier using
a degree one polynomial kernel and a RBF kernel. The
fifth column labeled “Centroid” shows the performance of

the centroid classifier. The last column shows the perfor-
mance of the centroid classifier after feature weights have
been adjusted by our feature-weight adjustment (FWA) al-
gorithm. Note that this algorithm was run without using
clustering. Table 1 also shows the the micro-average [20]
over all classes, the micro-average over the top 10 classes
and the macro-average over the top 10 classes.

A number of interesting observations can be made from the
results in this Table 1. First, comparing Rocchio, Widrow-
Hoff and the basic centroid scheme (the three fastest schemes),
we see that overall the centroid scheme performs substan-
tially better than the rest followed by WH and then Roc-
chio. In 6 of the top 10 categories the centroid scheme does
best with WH dominating in the remaining 4. Second, we
see that the weight adjustment scheme improves the per-
formance of the centroid classifier, sometimes dramatically.
Third, SVM using a RBF kernel is the overall winner doing
about 5% better than the other schemes.

In addition to this we also tested the effect of clustering of
the negative set (as described in section 3.1). These results
are presented in table 2 for 5, 10, 15 and 20 clusters. As can
be seen clustering has a dramatic improvement in the perfor-
mance of the scheme. The number of clusters only slightly
affects overall performance but using 10 clusters gives the
best results. Comparing the results after clustering with
the SVM results we see that the SVM (poly) scheme now
has an overall micro-average about one percent less than us-
ing weight adjustment. SVM (rbf) does better by about 2%
now. The weight adjustment scheme dominate SVM(rbf) in
3 of the top 10 classes.

FWA
5 10 15 20
earn 95.58 | 95.76 | 94.94 | 94.66
acq 94.02 | 94.16 | 91.93 | 92.9
money-fx 72.07 | 771 | T7.1 | 77.65
grain 85.23 | 91.28 | 87.92 | 88.59
crude 85.71 | 84.66 | 86.24 | 86.24
trade 77.78 | 79.49 | 79.49 | 78.63
interest 71.76 | 73.28 | 74.05 | 74.05
wheat 87.32 | 87.32 | 85.92 | 85.92
ship 82.02 | 85.39 | 84.27 | 84.27
corn 76.79 | 87.5 | 85.71 | 87.5
Micro-average (top 10) | 89.56 | 90.71 | 89.67 | 89.88
Micro-average (all) 83.16 | 84.69 | 84.25 | 84.33
Average (top 10) 82.83 | 85.59 | 84.76 | 85.04

Table 2: Effect of clustering

4.2 OHSUMED results

Table 3 gives the same data in Table 1 for the OHSUMED [8]
data set. We used from the OHSUMED data, those docu-
ments with id’s between 100000 and 120000 which had either
the title or both the title and the abstract. The classifica-
tion task considered here is to assign the document to one
or multiple categories of the 23 MeSH “diseases” categories..
There were 19858 entries in the data set. The first 12000
of these were used in the training set and the remaining
formed the test set. A total of 6561 documents did not have
class label assigned to them. 6199 documents belonged to
multiple classes.

Once again comparing Rocchio, Widrow-Hoff and the cen-
troid scheme we see that the centroid scheme performs the
best among the three on this data set. Rather surprisingly
Widrow-Hoff has a very poor performance on this data set
and is dominated completely by Rocchio, performing better
in only 2 of the 23 categories. The centroid based scheme
dominates both of them in all 23 categories. The weight
adjustment scheme again improves the accuracy of basic
centroid scheme by about 3%. Even without clustering the
scheme achieves a higher micro-average than the SVM(poly)
scheme and perform better than it in 16 of the 23 classes.
SVM(rbf) again performs the best. It achieves a micro-
average about 5% higher than the FWA scheme and per-
forms better in 22 of the 23 categories.

The results for the weight-adjustment schemes after cluster-
ing are shown in Table 4. Clustering has almost no effect on
accuracy. In fact in some cases it actually reduces accuracy.
Overall using 5 clusters gives the best result for this data
set and the results are about 4%—5% lower than those for
the SVM(rbf) scheme. One interesting result in this table
is that each of the different levels of clustering improves ac-
curacy in some of the data sets For example, for FWA no
clustering gives the best results for classes ¢23 and c0, while
using 5 clusters gives the best result for classes c14 and c04.
Similarly trends can be seen in the other classes.

FWA
5 10 15 20
c23 50.19 | 43.37 | 42.73 | 41.14
c20 59.97 | 55.38 | 48.16 | 42.26
cl4 71.99 | 69.98 | 65.74 | 65.29
c04 60.21 | 56.06 | 55.88 | 47.23
c06 64.96 | 64.07 | 62.48 | 58.23
c21 61.05 | 56.29 | 55.34 | 54.63
cl0 54.79 | 54.11 | 46.92 | 45.21
c08 53.36 | 50.00 | 48.66 | 51.01
cl9 69.20 | 70.25 | 70.04 | 63.71
cl7 58.66 | 58.66 | 56.54 | 56.18
c01 56.71 | 56.20 | 60.76 | 57.97
c05 53.01 | 51.37 | 50.82 | 48.09
cl3 52.66 | 52.37 | 55.03 | 54.44
cl2 54.11 | 54.34 | 55.71 | 55.38
clb 49.72 | 45.86 | 43.82 | 41.98
cl6 51.88 | 54.27 | 49.83 | 49.49
cl8 40.17 | 37.18 | 36.32 | 29.49
cll 60.00 | 58.18 | 60.91 | 62.73
c07 42.11 | 40.79 | 42.11 | 40.79
c09 64.57 | 61.42 | 65.35 | 66.93
c22 17.91 | 17.91 | 14.93 | 13.43
c03 42.86 | 41.18 | 47.90 | 48.74
c02 43.90 | 47.56 | 48.78 | 53.75
average 53.79 | 52.03 | 51.51 | 49.92
micro-average | 57.51 | 54.57 | 53.21 | 50.78

Table 4: OHSUMED clustering

4.3 Efficiency

One of the advantages of our weight adjusted centroid scheme
is its speed. As discussed in Section 3 model learning time
is linear in the number of non zero terms in the document-
term matrix and classification time is linear in number of
classes. A comparison of running time was performed be-
tween the svm_lite [9] code with the polynomial kernel, the
RBF kernel and the centroid based scheme with FWA and
is reported in Table 5. These times were obtained on a P3

Rocchio | WH | SVM(poly) | SVM(rbf) | Centroid | FWA
earn 96.23 95.86 98.62 98.71 93.74 96.32
acq 79.00 87.60 91.24 95.27 91.79 91.93
money-fx 55.31 67.04 70.39 78.21 63.68 66.48
grain 77.85 79.19 91.94 93.29 77.85 77.85
crude 75.66 72.49 86.77 89.42 85.71 84.12
trade 73.5 68.38 70.94 76.92 77.78 77.78
interest 70.23 66.41 63.36 74.81 75.56 75.56
wheat 74.65 85.92 78.87 84.51 74.65 80.28
ship 79.77 73.03 77.53 85.39 85.39 84.27
corn 60.71 64.29 80.36 85.71 62.5 62.5
Micro-average (top 10) 82.81 85.25 89.37 92.5 87.01 88.23
Micro-average (all) 76.73 76.57 83.49 86.62 80.62 81.4
Average (top 10) 74.29 | 76.02 81.00 86.22 78.87 79.71

Table 1: Precision / Recall break even points on Reuters

rocc wh | SVM(poly) | SVM(rbf) | centroid | FWA
c23 38.65 | 42.16 47.70 56.38 51.59 53.19
c20 46.72 | 37.80 57.48 70.08 53.81 64.83
cl4 58.26 | 56.03 67.41 75.11 69.53 71.99
c04 48.96 | 46.19 51.21 64.19 59.34 60.21
c06 47.26 | 38.23 59.82 68.32 62.83 66.37
c21 47.51 | 42.04 52.02 58.57 57.96 60.10
cl0 31.16 | 25.00 45.55 57.53 41.10 51.71
c08 43.96 | 37.92 51.34 58.72 52.35 54.36
cl9 54.85 | 36.08 62.45 73.20 60.13 61.39
cl7 31.45 | 20.49 50.53 59.72 51.94 58.30
c01 40.25 | 36.96 52.66 61.52 52.15 52.15
c05 29.51 | 24.59 46.45 56.83 42.08 43.17
cl3 39.65 | 34.62 50.89 61.83 51.48 53.25
cl2 46.12 | 38.36 52.97 61.64 50.91 51.37
cl5 16.57 | 7.73 46.41 53.89 40.33 51.93
cl6 43.34 | 33.10 47.44 58.36 50.85 52.21
cl8 23.08 | 9.40 41.45 45.30 27.35 32.05
cll 52.73 | 14.55 60.91 66.36 62.73 63.63
c07 35.52 | 19.74 36.84 46.05 42.11 42.11
c09 56.69 | 24.41 63.78 66.93 58.27 62.20
c22 13.43 | 20.90 13.64 16.42 17.91 16.42
c03 36.13 | 21.85 42.86 50.42 37.81 37.82
c02 34.15 | 12.20 51.22 56.10 50.00 50.00
average 39.82 | 29.58 50.13 58.41 49.76 52.64
micro-average | 43.30 | 36.98 53.12 62.23 53.89 57.04

Table 3: OHSUMED results

500MHz workstation running Redhat 6 with 1 Gig of mem-
ory, under similar load conditions. Looking at this table we
can see that FWA is about 2-10 times faster than SVM(rbf)
in the learning phase and about 10-20 times faster in the
classification phase.

5. CONCLUSION

In this paper we showed how a weight adjustment scheme
improves the accuracy of a centroid based classifier. This
scheme retains the power of the centroid based classifier
while further enhancing its ability. Also it retains much
of the speed of the original scheme. In terms of future
work, clustering has been shown to be useful in improving
the accuracy of this scheme. Clustering is needed in order
to handle multi-modal distributions which this scheme can-
not handle in its current form. Automatically determining
whether a class needs to be clustered and how many clusters
it should be divided into would be an interesting problem.
As it stands the analysis of the algorithm is still incomplete.
It would be beneficial to have a more rigorous analysis of

this scheme and its strengths and weaknesses.

6. REFERENCES
[1] C. C. Aggarwal, S. C. Gates, and P. S. Yu. On the merits
of building categorization systems by supervised clustering.
In Proc. of the Fifth ACM SIGKDD Int’l Conference on
Knowledge Discovery and Data Mining, pages 352-356,
1999.

M. B. Amin and S. Shekhar. Generalization by neural
networks. Proc. of the 8th Int’l Conf. on Data Eng., April
1992.

L. Baker and A. McCallum. Distributional clustering of
words for text classification. In SIGIR-98, 1998.

D. S. D. Michie and C. Taylor. Machine Learning, Neural
and Statistical Classification. Ellis Horwood, 1994.

D. E. Goldberg. Genetic Algorithms in Search,
Optimizations and Machine Learning. Morgan-Kaufman,
1989.

E. Han and G. Karypis. Centroid-based document
classification algorithms: Analysis & experimental results.
In European Conference on Principles of Data Mining and

[12]

(13]

14]

[15]

[16]

(17]

(18]

(19]
20]

21]

SVM (poly) SVM (rbf) FWA (10 clusters)
learn | classify | learn | classify | learn classify
earn 66 17 136 36 19 1
acq 103 17 190 42 20 1
money-fx | 125 10 144 23 24 1
grain 33 8 71 19 29 1
crude 46 9 78 20 21 1
trade 63 9 88 23 22 2
interest 146 7 119 15 23 1
wheat 39 5 55 11 24 2
ship 30 5 59 15 25 1
corn 25 6 41 11 31 1

Table 5: Run time comparison (all times in seconds)

Knowledge Discovery (PKDD), 2000. Also available on the
WWW at URL http://www.cs.umn.edu/ "karypis.

E.-H. Han. Texzt Categorization Using Weight Adjusted
k-Nearest Neighbor Classification. PhD thesis, University of
Minnesota, October 1999.

W. Hersh, C. Buckley, T. Leone, and D. Hickam.
OHSUMED: An interactive retrieval evaluation and new
large test collection for research. In SIGIR-94, pages
192-201, 1994.

T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In Proc.
of the European Conference on Machine Learning, 1998.

W. Lam and C. Y. Ho. Using a generalized instance set for
automatic text categorization. In SIGIR-98, 1998.

B. Larsen and C. Aone. Fast and effective text mining
using linear-time document clustering. In Proc. of the Fifth
ACM SIGKDD Int’l Conference on Knowledge Discovery
and Data Mining, pages 16-22, 1999.

D. D. Lewis. Reuters-21578 text categorization test
collection distribution 1.0.
hitp://www.research.att.com/~lewis, 1999.

D. D. Lewis, R. E. Shapire, J. P. Callan, and R. Papka.
Training algorithms for linear text classifiers. In
Proceedings of the 19 th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages pages 298-306, 1996.

J. J. Rocchio. The SMART retrieval system: Experiments
in automatic document processing. In G. Salton, editor,
Relevance feedback in information retrieval. Prentice-Hall,
Inc., 1971.

G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley, 1989.

S. Shankar. Feature weight adjustment schemes for centroid
based classifiers. Master’s thesis, Department of Computer
Science, University of Minneapolis, Minneapolis, MN, 2000.

V. Vapnic. The Nature of Statistical Learning Theory.
Springer, 1995.

S. Weiss and C. A. Kulikowski. Computer Systems that
Learn: Classification and Prediction Methods from
Statistics, Neural Nets, Machine Learning, and Ezpert
Systems. Morgan Kaufmann, San Mateo, CA, 1991.

B. Widrow and S. Stearns. Adaptive Signal Processing.
Prentic-Hall, Inc., 1985.

Y. Yang and X. Liu. A re-examination of text
categorization methods. In SIGIR-99, 1999.

Y. Yang and J. Pederson. A comparative study on feature
selection in text categorization. In Proc. of the Fourteenth
International Conference on Machine Learning, 1997.

