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ABSTRACT 
Online social networks, which are webs of relationships growing 
from computer-mediated interactions, have been explored in a 
wide variety of application domains, such as collaborative infor-
mation recommendation, collective decision-making, viral mar-
keting plan, etc. In these cases, it is crucial to understand how the 
networks dynamically affect the users’ behaviors. This paper 
refers to the evolving influence of social networks in the 
interaction processes as interaction dynamics, and proposes a 
probabilistic framework for it based on the Influence Model. 
Moreover, the paper presents a gradient-based algorithm to incre-
mentally learn the model from time-series interaction data, and 
shows its abilities to characterize chain dependencies through 
simulation experiments on synthetic data. We also apply the 
model to mine the dynamic influence networks from the know-
ledge-sharing sites. The experimental results demonstrate that the 
proposed model and its learning algorithm can effectively capture 
the inter-influence relationships between users, and thus can drive 
the network toward one that has a higher profit potential.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – induction; I.5.1 
[Pattern Recognition]: Models – statistical; J.4 [Computer 
Applications]: Social and Behavioral Sciences. 

General Terms 
Algorithms 

Keywords 
Online social network, interaction dynamics, the influence model, 
gradient-based learning algorithm, knowledge-sharing sites 

1. INTRODUCTION 
With the proliferation of computer networks, more and more 
interactions take place online. The online social relationship has 
been one of the most important social relationships between indi-
viduals [1]. Growing from computer-mediated interactions, online 

social networks have been widely applied to promote products in 
virtual marketing [2, 3], to enhance the collective knowledge and 
decision-making of small discussion groups [4, 5, 6], to recom-
mend information or guide the search [7], and even to generate 
new forms of social systems [8]. In these cases, it is crucial to 
understand how the networks influence the users’ behaviors. Stu-
dies on this can build a solid foundation for effective applications 
of online social networks. For example, viral marking [2] can 
take advantage of networks of influence among customers to 
inexpen-sively achieve large changes in behaviors. In [2], 
however, all people in a user’s trust web were assumed to have 
equal influ-ences on his purchasing behaviors. But as a matter of 
fact, dif-ferent trusted peoples may have different influences on 
the user’s purchasing behaviors, and event the same people at 
different times may have different influences on his probability of 
pur-chasing the same products. Therefore, this paper is concerned 
with how to quantitatively analyze and model the dynamic inter-
influence relationships between users in the interaction processes 
(we call it interaction dynamics).  

According to the interactivist perspective [9], the internal states 
of an actor (e.g., person, system, agent, etc.) need to be grounded 
in interaction histories on the one hand, and have to be related to 
future interactions on the other hand. Hence, if a state of an actor 
is characterized on the basis of a set of state properties that do or 
do not hold at a certain point in time, then an online social 
interaction process can be viewed as a dynamic process in which 
the states of all actors have influences on each other over time. In 
this paper, we therefore model the sequential states of each actor 
and their corresponding observable behaviors with a hidden Mar-
kov model (HMM). Furthermore, we employ the Influence Model 
[10] to analyze the inter-influencing relationships of all actors on 
their behaviors. Thus, the interaction dynamics can be 
represented as an influence model having two inter-influencing 
processes: the internal state-transition process of each actor and 
the dynamical inter-influencing process between actors. 

To incrementally learn the interaction dynamics, a gradient-based 
algorithm derived from Coupled HMM (CHMM) [11, 12] is 
presented in this paper. Simulation experiments show that our 
algorithm can be more appropriate for incremental learning situa-
tions where only limited training data are available at a time than 
the self-mapping transformation algorithm presented in [12, 13].  

In previous work [14], we explored the application of interaction 
dynamics in the process of information seeking from digital lib-
raries. In this paper, we apply the influence model of interaction 
dynamics to the domain of knowledge-sharing sites. By extending 
the network values mining in [2, 3], the experiment was designed 
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to mine the dynamic influence network between the customers 
from the knowledge-sharing site, Epinions (www. epinions.com). 
In this experiment, different people in a trust web were different-
iated on their network influences, and the influence of the same 
trusted person who rarely interacted with the user would decay 
over time. The interaction data of reviewing products were ex-
tracted to build the influence model of interaction dynamics. The 
profit results were compared between the Boolean marketing 
actions using the webs of trust and that using the influence 
models. The experimental results shows that our model can ef-
fecttively characterize the dynamic influence networks between 
users, thus has a higher profit potential than the static webs of 
trust. 

The rest of this paper is organized as follows. Section 2 contains a 
survey of related work. Section 3 introduces the influence model 
to quantitatively analyze the interaction dynamics. Section 4 pre-
sents the incremental gradient-based learning algorithm for the 
influence model. Experiments on synthetic and real data are de-
scribed in Section 5. Finally, Section 6 concludes this paper. 

2. RELATED WORK 
In the last few years there has been a substantial amount of 
interest in social network dynamics. Some complex statistical 
models, e.g., discrete- or continuous-time Markov chains [15, 16, 
17, 18], were proposed for longitudinal network data. In these 
models, the network evolution is modeled as the stochastic result 
of network effects (reciprocity, transitivity, etc.). For estimating 
and testing these models, Markov chain Monte Carlo (MCMC) 
methods can be used to develop statistical procedures [15, 16, 19]. 
In [20], Emily M. Jin et al. proposed two simpler models of the 
growth of social networks based on the principles of clustering, 
limited degree and friendship decay. Generally, the above models 
only consider dichotomous relations between actors: the relation 
(e.g., friendship) from actor i to actor j either is present, denoted 

1=ijx , or absent, denoted 0=ijx  (the adjacency matrix is 
called the sociomatix). Therefore, these models cannot capture 
the more microscopic details of social dynamics [20]. 

To model the influence of social network, weighted influence 
network models were proposed by Friedkin et al. [21, 22], 
provided that opinions and attitudes of actors in a social system 
only partially depend on individual characteristics but are also 
shaped by social influence. The social influence is represented in 
an influence network, reflecting the dyadic influence of actors on 
each other. Technically, spatial autocorrelation algorithms are 
used to capture such processes [23]. 

The interaction dynamics model needs to combine the ability of 
Markov chains (or HMM) to model time-series data and the 
ability of the weighted influence networks to characterize social 
influence. A natural structure is the Cartesian product HMM [11, 
12] or Coupled HMM (CHMM) proposed by Brand, M [10], in 
which the state of one HMM model at time t depends on the 
states of all models (including itself) at time t-1. But there is no 
parameter within these models to directly characterize the inter-
action factors. In his PhD thesis [10], C. Asavathiratham deve-
loped a special dynamic Bayes net (DBN), the Influence Model, 
which describes the connections between many Markov chains 
with a simple parametrization in terms of the “influence” each 
chain has on the others. In addition, it shows rich model versati-

lity and analysis methods. Alex Pentland et al. [24] used the in-
fluence model to quantitatively estimate the interactions between 
humans in real-life conversational settings. Similarly, this paper 
employs the influence model to analyze the inter-influencing rela-
tionships of all actors on their behaviors. 

Meanwhile, many researchers have studied the issue of mining 
social networks from online interaction data, and explored the 
applications of these models to different domains. In [4], social 
networks mined from email logs were used to augment coopera-
tion between users. The ReferralWeb project [7] mined social 
net-works from a wide variety of publicly-available online infor-
mation to guide the search for users or documents in response to 
user queries. In the LambdaMOO MUD, the software agent 
Cobot [25] utilized the social statistical information gathered 
from participant interactions to answer queries about these and 
other usage statistics, and describe the statistical similarities and 
differences between users. In [2, 3], P. Domingos and M. 
Richardsons modeled the market as a social network, and used 
the influence between customers to predict their future 
purchasing behaviors so as to choose the best viral marketing 
plan. Inspired by their fruitful work, we also apply the influence 
model of inter-action dynamics to data mined from Epinions, 
which was called by them possibly the best-known knowledge-
sharing site and an ideal source for experiments on social 
networks. 

3. MODELING INTERACTION DYNA-
MICS 
According to the interactivist perspective [9], the states of an 
actor need to be grounded in interaction histories. Consider a set 
of C actors that are involving in interactions, and let ts c
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many cases, however, each state does not correspond to an ob-
servable event, and can be only estimated from the corresponding 
observation data. In the context of online interactions, the obser-
vation data may be the extracted statistical data, e.g., the inter-
action frequency and intensity, or the actions that are taken by the 
users, e.g., the user’s rating for the products or purchasing beha-
viors. Let )(c

tx  be the observation variable of the actor c at time t, 
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the time-series of observation variables, therefore the problem is 
how to estimate the states of the actors from the time-series of ob-
servable data, and obtain an insight in the evolution of the states. 

A fundamental point for interaction data analysis here is that a 
state variable )(c

ts  at time t is assumed to summarize all the infor-

mation it has before t, and the observation )(c
tx  at time t depends 

only on the hidden state )(c
ts . Moreover, we model the depend-

ency between the sequential states of different actors as a causal 
Markov random field (MRF). The MRF confers a spatial cor-
relation property between the stochastic structures of multiple se-



quences, thus can be used an attractive foundation for models of 
social interactions [27]. Therefore, we have: 
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In other words, each state )(c
ts  of the actor c at time t depends on 

the previous states of all actors (including himself) involving in 
interactions. According this assumption, the online social inter-
action can be viewed as a dynamic process in which the states of 
all actors have influences on each other over time.  

Furthermore, let ccd '  be the influence strength from the actor c’ 
to the actor c, which is generally called as the influence factor. 
Then we can model the joint dependency as a linear combination 
function of all marginal dependencies, i.e., 
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ts , and ccd '  determines how much it affects. 

Note that ∑ =
=C

c ccd1' ' 1 , where ccd  measures how self-reliant 
)(c

ts  is. We have also noticed that this formula has the same spirit 
as the weighted influence network models [21, 22], which assume 
that opinions and attitudes of actors in a social system only par-
tially depend on individual characteristics but are also shaped by 
social influence. 

More specifically, if the actor c’ has no influence on the actor c 
(especially, the interaction relationship between c’ and c is absent 
or unilateral), then 0' =ccd . Therefore, in the case of no any 

interaction with others, )(c
ts  evolves with transition probabilities 

that depend only on his previous state. Namely, the sequential 
states of each actor and their corresponding observable behaviors 
can be modeled as a Hidden Markov Model (HMM). The ques-
tion therefore becomes, how to choose an appropriate model to 
capture the inter-influence relationships between C HMM chains.  

As mentioned above, the evolving inter-influencing relationships 
can be represented as the influence model [10] (See Figure 1). In 
this figure, one can think of the entire interacting process as a 
DBN framework having two levels of structure: the network level 
and the local level. The network level, which is described by a 
network graph )( TDΓ  where }{ 'ccdD = is the influence matrix, 
represents the interacting relations between actors. Meanwhile, 
each actor c has a local HMM chain )( cAΓ that characterizes the 
internal state transition in the interacting process. Obviously, the 
figure 1 felicitously characterizes the dynamics model of online 
social interactions.  

The influence model is specified by the parameters ,,{ Aπλ =  

}, DB , where the initial state probability distribution }{ )(c
jππ = , 

the observation probabilities )}({ )( kbB c
j= , the state-transition 

matrix }{ 'ccAA = , and the influence matrix }{ 'ccdD = . All 
these parameters are subject to stochastic constraints, i.e., 
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Note that if we set 1' =ccd  when 0' >ccd , and 0=ccd for 

Ccc ≤≤ ',1 , then the influence matrix D becomes the socio-
matrix, i.e., the standard social network can be viewed as a 
special case of the influence model of interaction dynamics. 

4. INCREMENTAL LEARNING FOR THE 
INFLUENCE MODEL 
After the model is specified, the remaining issue is to design its 
learning algorithm from the time-series interaction data. 
In [24], S. Basu et al. proposed a learning algorithm for the 
observed influence model. However, it can be only applied to the 
cases where observed nodes are strongly interconnected and the 
hidden states are not. The Distance-Coupled HMM (D-CHMM) 
proposed by S. Zhong et al. [12, 13] provides a tractable al-
ternative for the generalized influence model. As shown in Figure 
2, the joint conditional probability in the D-CHMM is modeled as 
a linear combination of marginal conditional probabilities with 
the weights represented by coupling coefficients (which is called 
distance between two chains.). Totally, the influence model 
repre-sented by D-CHMM has 222 CNC +  transition parameters, 
CN  initial probability parameters and CNM  observation 
probability parameters, where N is the maximal number of states 
per chain and M is the maximal number of observations per chain. 

Figure 1. Exploring the interaction dynamics with the in-
fluence model (modified from [8]). 

Figure 2. The inference graph for the influence model is 
represented by the D-CHMM. 
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Fur-thermore, the literatures [12, 13] presented an iterative 
optimi-zation procedure for learning the parameters of D-CHMM 
model based on the self-mapping transformation [12]. This 
algorithm successfully solved the problem that directly applying 
EM/GEM algorithm to estimate the D-CHMM parameters is 
fairly difficult due to the linear combination introduced to model 
the joint con-ditional dependency. However, similar with the 
Baum-Welch al-gorithm [26], it also leads to abrupt jumps in 
parameter space and thus is not suitable for online learning. 
Therefore, by extending the gradient-based learning algorithm of 
HMMs to the D-CHMM, we present a gradient-based approach 
for incrementally learning the influence model from online 
interaction data. 

In the gradient-based approach, any parameterθ  is updated ac-
cording to the standard formula: 

old
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θθθ
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where J is a quantity to be minimized, and η is the learning rate. 
We define in this case, 

))|(log( λXPJ −=                                                        (4) 

where the likelihood function )|( λXP  can be  calculated by the  
extended forward-backward procedure presented in [12, 13]: 
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tα  is the extended forward variable. Therefore, 
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Then the problem is to find the derivative 
θ∂
∂J

 for any parameter 

θ  of the model. For the influence factor jid , we have: 
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To overcome the absorption problem of 0 probabilities, Baldi and 
Chauvin [26] used a normalized-exponential representation of the 
parameters for smoothly online learning. The normalized-expo-
nential representation of ijd  with the constraints 11 =∑ =

C
j jid  

and 0≥jid  is fixed at each iteration as: 
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where µ  is a temperature parameter which can be absorbed in 
the learning rate. Then it is easy to verify the following deri-
vatives: 
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Finally, we get the jid ’s update equation as follows: 
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where µ has be merged in the learning rate η ( 10 ≤≤η , 
typically 9.0=η , See Fig. 3). Similar arguments can be made for 

BA,,π . 

Figure 3. The Graph shows the likelihood curves in learning 
process when the learning rate varies from 0.5 to 1.0. To 
trade-off the speed of convergence and stability of learning 
process, the learning rate is set to be 0.9 in our experiments.



5. EXPERIMENTS AND RESULTS 
We tested the influence model in several experiments on 
synthetic data to gauge the performance of its gradient-based 
learning algo-rithm, then on Epinions data to gather empirical 
results. 

5.1 Experiments on Synthetic Data 
To test the influence model on synthetic data, a 3-chains 
influence model with 3 hidden states and 4 observation states per 
chain was used to generate training sequences. In order that the 
training se-quences can be sampled in the queuing model (i.e., 
chain 1 is evolving randomly, and chain 2 meticulously follows 
chain 1, and in turn chain 3 follows chain 2), the parameters were 
generated as follows: The priors π were initialized at random; 

The influence matrix D was set to be 
















010
001
001

; And all chains 

used the same transition matrix and observation matrix, which 
were also gene-rated randomly. 

These training sequences were then used to train another random-
ly initialized influence model. The gradient-based algorithm was 
utilized to estimate the model parameters. Figure 4 shows a group 
of training observation sequences, the resulting influence network 
and its learning log likelihood curve. It can be seen that the learn-
ed influence factors can exactly capture the following behavior 
implied in the observation sequences. We notice that this training 
process converged fairly rapidly by only 8 iterations, as depicted 
by the log likelihood curve in the same figure. 

We also compared the learning performance and the speed of 
convergence between our approach and the self-mapping trans-
formation algorithm described in [12, 13]. For learning perform-
ance, we look at the log likelihood of fitting training data to the 
trained model. The higher the likelihood, the better local maxi-
mum we think the training has converged to. The speed of con-
vergence is measured by the iteration times and processing time. 
Figure 5 shows the experimental results. Not surprisingly, the 
gradient-based approach demonstrated better performance and 
rapider convergence speed than the self-mapping transformation 
algorithm on small sizes of training sets. With more training data 
available, the self-mapping transformation algorithm gradually 
showed its advantages in the speed of convergence. But in many 
cases, it’s not easy to obtain sufficient training data for the model 
at a time so that the data need to be incrementally collected, thus 
the gradient-based algorithm is more suitable for the parameter 
training tasks in these cases. 

The learning rate and the size of data window are two most 
important parameters in the gradient-based learning algorithm. 
The former has been discussed in the previous section. And for 
the latter, figure 6 depicts the learning performance and the speed 
of convergence when the size of data window varies from 2 to 10 
in the training processes. It can be seen that despite the learning 
performance has some improvement with enlarging the size of 
data window, the convergence speed and process time go up syn-
chronously due to the increase of computational complexity of 
the forward-backward procedure in each data window. However, 
after the size is larger than 8, they will decline along with the 
decrease of total iteration times. A reasonable explanation is that 

Figure 5. Compare the likelihood, the iteration times and 
processing time between the gradient-based approach and 
self-mapping transformation algorithm on small sizes of 
training sets. 

Figure 4. Test the influence model on the synthetic training sequences: (a) the training observation sequences; (b) the learned 
influence network and its corresponding influence matrix; (c) the log likelihood curve of the training process. 

(a) (b) (c) 

Figure 6.Compare the training likelihood, the iteration 
times and processing time between different sizes of data 
windows. 
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with the enlargement of the window size, more statistical features 
captured from the observation data in each window can accelerate 
the convergence. Considering the trade-off between learning per-
formance and the speed of convergence, the size of data window 
is set to be 2 in the other experiments. 

Summarily, the simulation experiments show the abilities of the 
influence model to characterize chain dependencies. Moreover, 
the experiments also demonstrate that the gradient-based algo-
rithm can be more appropriate for incremental learning situations 
where only limited training data are available at a time than the 
self-mapping transformation algorithm. 

5.2 Experiments on Real Data 
Arguably, a decade ago it would have been difficult to make 
practical use of the interaction dynamics model for the lack of 
data to estimate the influence probabilities [3]. In previous work 
[14], we designed a small-scale experiment to explore the inter-
action dynamics in the process of information seeking from digit-
al libraries. In that context, a well-tuned influence network of on-
line interactions can enhance the group's collective knowledge 
and sharpen its ability to act on what people know in time to be 
effective. Similar application settings can be found in online edu-
cation or collective decision-making within an organization.  

In [2, 3], P. Domingos and M. Richardsons mined social networks 
from collaborative filtering databases and knowledge-sharing 
sites, and used the influence between customers to predict their 
future purchasing behaviors so as to guide viral marketing more 
targetedly. Inspired by their fruitful work, we also apply the 
influence model of interaction dynamics to data mined from 
Epinions, which was called by them possibly the best known 
knowledge-sharing sit and an ideal source for experiments on 
social networks. Different with their work, however, this paper 
concentrates on how to more accurately characterize the influence 
between the users’ purchasing behaviors, and how to trace the 
evolution of the influence networks between users from inter-
action data. Of course, the learned dynamic influence models will 
be used to calculate the network effects on the expected lift in 
profits (ELP) of viral marketing to demonstrate their advantages 
over the webs of trust. And we do not attempt to capture more 
detailed topics, e.g., continuous marketing scenarios, acquiring 
new network knowledge, and so on. 

On Epinions, members submit product reviews, and give a rating 
of zero to five stars to any product. Epinions users read these re-
views, rate them according to how helpful or accurate they are, 
and even directly write comments on them. If a user is interested 
in a product or has a high potential probability of purchasing the 
product, he can subscribe to review alerts for the product. Mean-
while, users may directly rate other users and list reviewers that 
they trust. In [2], this kind of the trust webs was directly used to 
model the network effect on the user’s purchasing behaviors. In 
Epinions, all interaction data and user data are recoded in ar-
chives according to their release date (Date added information is 
not available for members trusted/blocked prior to Jan 11, 2001). 
For simplicity, we obtained our experimental data by crawling 
through the pages of the most popular authors in the product cate-
gory “Computer Hardware”. The obtained data were divided into 
seven subsets according to their release date, i.e., )6,,0( L=tX t , 

where 0X  was the set of the data prior to Jan 11, 2001, and the 

other data between Jan 11, 2001 and Jul 1, 2003 were evenly di-
vided into six subsets (i.e., a subset per half a year).  

We considered the following principles for conducting our ex-
periment. In [2], all trusted people of a user were always assumed 
to have equal influences on him. However, different trusted peo-
ple may have different influences on the user’s purchasing beha-
viors, and even the same people at different times may have dif-
ferent influences on his probability of purchasing the same pro-
ducts. Therefore, we emphasized here that different people in a 
trust web were differentiated on their network influences, and the 
influence of the same trusted person who rarely interacted with 
the user would decay over time. The latter assumption is based on 
the obvious mechanism in real-life acquaintanceship [20]: Even 
after two people become acquainted, they still need to meet regu-
larly in order to maintain that acquaintance. In cases of networks, 
the trust friendship even decays at a higher rate, especially for in-
dividuals who have not been acquainted with each other in real-
life. In Epinions, a kind of good informative data for the activity 
of the relationship among two users is the times that they delibe-
rated or compared reviews about the products in recent past. For 
example, it’s reasonable to assign a high influence weight from 
the user j to i if the user i often gives comments or direct ratings 
on j’s reviews that are related to some products the user i would 

(a) The webs of trust 

(b) The influence networks with 05.0≥jid  

(c) The learned influence networks with 1.0≥jid  
Figure 7. Compare the leaned influence networks with the 

webs of trust for the 100 most popular reviewers in the 
Computer Hardware category from the year of 2000 to 2002.



like (In our collected data, the average number of comments per 
review is 2.9). 

We also placed a limit on the number of trusted people who could 
influence a user’s purchasing behaviors. In real-life, there is a 
recurring cost in terms of time and effort to maintaining a friend-
ship [20]. Though the cost will be decrease dramatically in cases 
of networks, and the distribution of trust relationships in the web 
of trust in Epinions is Zipfian [2], we can not imagine that when a 
user is inclined to purchase a product, his decision is affected by 
as many as 506 trusted users (which is the maximal size of trust 
web in our gathered data). Therefore, this experiment used the 
evolving influence networks rather than the webs of trust to 
model the inter-influence relationships between customers, and 
set 50 as the maximal in-degree of each node (the in-degree of a 
node indicates how many nodes affect it). Though might be ini-
tialized by the webs of trust, the influence network has three dis-
tinct features, i.e., limited in-degree of nodes, weighted influence, 
and decay of influence. Figure 7 depicts the comparison between 
the learned influence networks with two kinds of influence thres-
holds and the webs of trust for the 100 most popular reviewers in 
the Computer Hardware category from the year of 2000 to 2002. 
Note that for the limitation of drawing space, the figure 7(a) only 
depicted the interconnected network generated by partial trust 
webs for top 20 users, each of which only contained the newly-
added 50 trusted people in each year, and the figure 7 (b) and (c) 
ignored some small clusters that were disconnected with the main 
components of the influence networks. 

To apply the influence model to Epinions, we needed to estimate 
some parameters, including the priors, the transition probabilities, 
the observation probabilities and the influence factors. The mean-
ing of the variables in the Epinions is similar to that described in 
[2] and [3]: )(c

ts )6,,0( L=t  is whether the user c buys the 

product at time t being considered. )(c
tx contains the observation 

data related to the user c at time t, such as his rating given to the 
product, )(c

tr , the interaction statistics data, )(c
tis , and the product 

attributes tY . We assumed that given )(c
ts , the three variables 

)(c
tr , )(c

tis  and tY  were independent, i.e.,  

)|()|()|()|( )()()()()()()( c
tt

c
t

c
t

c
t

c
t

c
t

c
t sYPsisPsrPsxP =                (14) 

For simplicity, we also assumed that all users in the same product 
category had the similar behavior manners so that we could need 
to estimate only one state-transition matrix and one observation 
matrix for them. In our experiments, all parameters except the 
influence factors could be initialized by the similar methods pro-
posed in [2, 3]. For instance, the prior )( )(

0
csP  could be esti-

mated simply as the fraction of products rated by the user c; 
)|( )(c

tt sYP  could be obtained by counting the number of occur-

rences of each value of 0Y with each value of )(
0
cs  at time 0t ; 

)|( )()( c
t

c
t srP  could be estimated by the piecewise-linear model; 

and transition probability )|( )(
1

)( c
t

c
t ssP −  might be initialized at 

random. For the influence factors, we initialized them in the fol-
lowing two cases:  

y The self-reliance ccd  was initialized to 0.5, as in [2]. 

y The influence factor ccd '  from the user 'c  to c was estima-
ted by counting the frequency of the comments or ratings that the 
user c gave on the reviews of the user 'c . That is, if ),'(

0
ccf  

denoted the times of the comments or ratings that the user c gave 
on the reviews of the user 'c at time 0t , and ∑

∀
=

"

),"(
0

)(
0

c

ccc ff , 

then ccd ' was initialized as follows: 
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Note that 0' =ccd  for any 'c , if c was an inactive user who 
rarely wrote any own review or comment. So for any inactive 
user c, we simply set |)|/1(*5.0 )(

'
c

cc Nd =  if )(' cNc ∈ , and 

0' =ccd  if )(' cNc ∉ , where )(cN  was the user set in the c’s trust 
web. 

Once all the parameters are initialized, the gradient-based learn-
ing algorithm was performed to iteratively re-estimating probabi-
lities until they all converged. The figure 7 (b) and (c) illustrate 
the influence networks learned in the incremental leaning process. 
It should be noted that the dependencies between nodes in the 
learned influence networks are much less than those in the webs 
of trust. This is because our mode exactly captures the dynamic 
changes of the influences between individuals from the inter-
action data. And with more interaction information available as 
time passed, more influence relationships were captured so that 
the learned influence networks appeared a little more complex. In 
this process, some new influence relationships would come forth, 
and some old ones would strengthen further while some would 
decay. 

Table 1: The Boolean viral marketing profit results for the 
two network effect models 

1,1,2 10 === rrα  

c=0.1 c=0.01 c=0.001

Using the web of trust 6.31 7.79 10.27 

Using the influence model 7.28 8.73 10.85 

Lift in profit 0.97 

(15.4%) 

0.94 

(12.1%)

0.58 

(5.6%) 

We also repeated the Boolean marketing experiments described 
in [2], respectively using the webs of trust and the influence 
models to calculate the network effects. The data =tX t (  

)5,,0 L were used as the training set, and the data 6X  was used 
as the test set. All the parameters of the Boolean viral marketing 
model were set similarly with those in [2]. Table 1 shows the viral 
marketing pro-fit results for the two network effect models. It can 
be seen that viral marketing using the influence models had 
obtained some increase in profit over the case using the webs of 
trust. However, with decreasing c, the rate of lift in profit 



declined gradually. A possible reason is that a lower cost of 
marketing will increase the profit obtained by marketing to those 
with small influences on the others. 

The experimental results shows that our model and its learning 
algorithm can effectively capture the changing influence network 
structure between customers during online social interactions, 
thus drives the network toward one which has a higher profit 
potential [2]. However, the lift would be higher if more infor-
mative interaction data are available, especially for those inactive 
users who rarely wrote any own review or comment. We will ex-
plore this issue in the future work. 

6. CONCLUSION 
In this paper, we aim at developing a probabilistic framework to 
model the interaction dynamics for online social interactions and 
investigating its effective learning algorithms. We employed the 
influence model to analyze the dynamic inter-influencing rela-
tionships between actors, and proposed a practical incremental 
learning algorithm for our model. Experiments on simulated and 
real data verified that the proposed model could effectively 
characterize the dynamic inter-influence between users during 
on-line interaction processes. 

We believe that our work is an important step towards further 
understanding the roles of interactions and social networks, 
though it is impossible to capture all of the subtleties with a 
simple model. In future, we will further study how to exploit this 
model to analyze the influence of a substantial amount of infor-
mation access behaviors on the document semantic space of the 
multimedia database from the viewpoint of the interaction be-
tween the user and the system. 
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