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ABSTRACT 
Link discovery is the process of identifying complex patterns 
from (multi)-relational data. The quality of link discovery outputs 
depends on the quality of the underlying data. In this paper, we 
discuss a method for refining multi-relational data. We treat the 
data as a graph and apply global link analysis to refine the graph. 
Specifically, we re-estimate the presence of a relation between a 
pair of nodes from the evidence provided by multiple indirect 
paths between the nodes. Our approach applies to a variety of 
relations: transitive symmetric, transitive asymmetric, and 
relations inducing equivalence classes. We present preliminary 
results on a semantic network called VERBOCEAN, which contains 
22,306 relations between 3,477 verbs. 

Categories and Subject Descriptors 
I.2.4 [Knowledge Representation Formalisms and Methods]: 
Semantic networks 

General Terms 
Algorithms, Theory, Verification. 

Keywords 
Global link analysis, semantic networks, plausible inference, 
graph refinement. 

1. INTRODUCTION 
Link discovery is the process of identifying complex patterns 
from (multi-)relational data, which can be conceptualized as a 
graph where entities are nodes and relations between pairs of 
entities are edges. The quality of link discovery output depends 
on the quality of the underlying data, which is often noisy. The 
data is typically extracted on a per link basis (i.e., a link between 
two nodes is determined without regard to other nodes). Yet, a 
global view of the graph may provide additional information to 
refine local decisions by identifying inconsistencies, updating 
confidences in links and suggesting new links. 

Noisy or incomplete graphs are encountered in many areas, 
including semantic networks, social networks, citation analysis, 

and coreference resolution. A global view of such graphs can be 
used to refine them. For example, in semantic networks, 
observing �discover happens-before refine,� and �refine happens-
before exploit� provides evidence for �discover happens-before 
exploit,� because the relation happens-before is transitive. In 
social networks, observing �E1 has-coworker E2� (essentially 
stating that E1 and E2 are in the same equivalence class with 
respect to employer) and �E1 works-for O� provides evidence for 
�E2 works-for O.� 

In this paper, we investigate an approach to graph refinement, in 
which nodes represent entities and links represent relations 
between entities, using a global analysis relying on link 
semantics. Our approach is based on the observation that some 
paths (chains of relations) between a pair of nodes xi and xj imply 
the existence or absence of a particular relation between xi and xj. 
Despite each individual path being noisy, multiple indirect paths 
can provide sufficient evidence for adding, removing, or altering a 
relation between two nodes. As illustrated by the above examples, 
inference of a relation based on the presence of a certain path 
often relies on transitivity of the individual relations that make up 
the path, or on some relations on the path indicating membership 
in the same equivalence class. 

As a testbed, we use VERBOCEAN, a broad-coverage noisy 
network of semantic relations between verbs extracted by mining 
the Web. We demonstrate refinements offered by our approach on 
VERBOCEAN�s two transitive asymmetric relations and on two 
relations which induce equivalence classes between elements.  

The remainder of this paper is organized as follows. Section 2 
describes VERBOCEAN and Section 3 presents our filtering 
algorithm. Preliminary results are presented in Section 4 and 
finally, we conclude with a discussion and future work. 

2. VERBOCEAN 
We apply our global link analysis approach to VERBOCEAN, a 
resource of lexical semantics with potential applications to a 
variety of natural language tasks ranging from question answering 
and information retrieval to document summarization and 
machine translation. VERBOCEAN has been extracted from the 
web, as described in [1], and outlined in the Appendix.  

For our purposes, VERBOCEAN is a graph of semantic relations 
between verbs, with 3,477 verbs (nodes) and 22,306 relations 
(edges). As shown in Table 1, VERBOCEAN contains five types of 
relations: similarity, strength, antonymy, enablement, and 
happens-before. Senses are not discriminated and an edge 
indicates that the relation is believed to hold between some senses 
of the verbs in this relation. Similarity is a relation that suggests 
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two nodes are likely to be in the same equivalence class, although 
polysemy and sense drift make it only weakly transitive. The 
strength relation is a subtype of similarity. Unlike similarity, it is 
an asymmetric relation. Strength, or stronger-than, holds 
whenever a verb denotes a more intense, thorough, compre-
hensive or absolute action. Being narrower than similarity, it 
seems to be more strongly transitive in practice, and we treat it as 
transitive. Antonymy, a dual of similarity, is symmetric but not 
transitive. In treating antonymy, we leverage the observation that 
being the antonym of an antonym suggests similarity, e.g., adore 
opposite-of despise, despise opposite-of love, and adore is similar 
to love. Enablement is rare and is not considered here. Finally, 
happens-before is a transitive asymmetric temporal relation 
between verbs. 

When outputting VERBOCEAN relations, the extraction algorithm 
enforces link-level unidirectionality of asymmetric links between 
two nodes (i.e., it ensures that if there is an edge xi happens-
before xj, then there is no edge xj happens-before xi). Larger 
cycles, however, are possible, as extraction is strictly local. The 
extraction algorithm also outputs at most one of similarity, 
strength, antonymy, enablement. The most strongly manifested of 
similarity, antonymy, and enablement is preferred, and strength, if 
detected, is preferred over similarity. When strength relation is 
output, an edge explicitly indicating similarity is not created. 
Happens-before, being complimentary to other relations, is 
allowed to be present along with another relation between a pair 
of nodes. For example, �wrap� and �unwrap� are antonyms, and 
also �wrap happens-before unwrap.� 

Precision of the detected relations, based on evaluating a random 
sample of 100 verb pairs for which extraction of a relation is 
attempted, is given in Figure 2. The Tags Correct column 
represents the percentage of verb pairs whose system output 
relations were deemed correct. The Preferred Tags Correct 
column gives the percentage of verb pairs whose system output 
relations matched exactly the human�s preferred relations. 
Precision of relations varies, with asymmetric relations generally 
being more precise (possibly because asymmetric relations, when 
being detected, must pass an additional test for the ratio of 
frequency in the forward vs. reverse direction). 

3. GLOBAL REFINEMENT 
Our approach uses a global view of the graph to refine a relation 
between a given pair of nodes xi and xj. The refinement relies on 
multiple paths between xi and xj. The analysis processes triples < 
xi, r, xj> consisting of nodes xi and xj and relation r. The analysis 

outputs the relation r, its opposite (which we will denote r'), or 
neither. The opposite of happens-before and stronger-than is the 
same relation in the reverse direction, and the opposite of 
similarity is antonymy and vice versa.  

In the remainder of this section, we explain how triples are 
selected and processed to refine the graph, what paths are used as 
evidence, and present the statistical model for combining 
evidence from multiple paths. 

3.1 Testing for relations 
In this section, we present our method for extracting the set of 
triples <xi, r, xj> to process. Although more extensive sets of 
triples can be considered, we focus on the set of triples <xi, r, xj> 
such that r is one of {similarity, antonymy, happens-before and 
stronger-than} and the relation r is present between xi and xj in 
the original graph. 
We now introduce some notation. Let Ri,j denote the event that the 
relation r is present between nodes xi and xj in the original graph 
(i.e., the graph indicates the presence of the relation r between xi 
and xj, but it might be an error). Let ri,j denote the event that the 
relation r actually holds between xi and xj. Let Ci,j denote an 
acyclic path from xi to xj of (possibly distinct) relations {Ri,i+1 .. Rj-

1,j}. For example, the path �x1 happens-before x2 happens-before 
x3� can be written as C1,3. If the edges of Ci,j indicate the relation r 
between the nodes xi and xj, we say that Ci,j indicates ri,j. 

Given a triple <xi, r, xj>, we identify the set C of all paths Ci,j 
which may have arbitrary intermediate nodes but which must 
match one of the allowed sequences of relations (allowed 
sequences of relations for every r are described in Section 3.2). 
For each Ci,j in C, we compute its score, which is the estimated 
probability that ri,j holds given the observation of edges of Ci,j. 
The statistical model for estimating these probabilities is given in 
Section 3.3.1. Longer paths and paths made up of less reliable 
edges will have lower scores.  
Next, we filter C to form the set C' of paths which indicate ri,j and 
which have no common intermediate nodes. This is done using a 
greedy approach by processing all paths in C in order of 
decreasing score, placing each in C' iff it does not share any 
intermediate nodes with any path already in C'. 
Next, the total score Sc(ri,j) for presence of ri,j is calculated from 
the scores of the nonintersecting, nonoverlapping paths in C', as 
described in Section 3.3.2. The score Sc(r'i,j ) for r'i,j, the opposite 
of ri,j is calculated similarly (i.e., by combining scores from paths 
in the other direction in the case of asymmetric transitive 

Table 2. Precision of semantic relations in VERBOCEAN on a 
random sample of 100 pairs. 

SEMANTIC 
RELATION 

SYSTEM 
TAGS 

Tags 
Correct 

Preferred Tags 
Correct 

similarity 41 63.4% 40.2% 
strength 14 75.0% 75.0% 
antonymy 8 50.0% 43.8% 
enablement 2 100% 100% 
happens-before 17 67.6% 55.9% 

 

Table 1. Types, examples and frequencies of 22,306 semantic 
relations in VERBOCEAN.  

SEMANTIC 
RELATION EXAMPLE Transi-

tive 
Sym-

metric 
Num in 

VERBOCEAN 

similarity produce :: create Y Y 11,515 
strength wound :: kill Y N 4,220 
antonymy open :: close N Y 1,973 
enablement fight :: win N N 393 
happens-
before 

buy :: own; 
marry :: divorce Y N 4,205 

 



relations, and by finding paths for antonymy in the case of 
similarity). 
Finally, the scores are combined to make the final decision. In 
order to output ri,j, two conditions must be met:  
 ( ) 1, σ>jirSc  

and  

 ( )
( ) 2

,

, σ>
′ ji

ji

rSc
rSc  

Currently, σ1 = 0.6 and σ2 = 1.7, as determined by inspection of 
system scores for some specific instances. Similarly, r'i,j is output 
if  
 ( ) 1, σ>′ jirSc  

and  

 ( )
( ) 2

,

, σ>
′

ji

ji

rSc
rSc  

If neither pair of conditions is met, neither ri,j nor r'i,j are output 
(i.e., the edge is removed from the graph). 

3.2 Paths considered 
The enabling observation behind our approach is that in a graph in 
which edges have certain properties such as transitivity, some 
paths Ci,j indicate the presence of a relation between the first node 
xi and the last node xj. In the paths we consider, we rely on two 
kinds of inferences: transitivity and equivalence. However, we do 
not consider paths composing the two types of inference (e.g. 
�similar, happens-before, happens-before�). Also, we do not 
consider very long paths, as they tend to become unreliable (recall 
that Figure 2 shows the observed precision of a given edge). In 
the preliminary investigations we report, the set of paths to 
consider was not rigorously motivated. Rather, we aimed to cover 
some common cases. Refining the sets of paths is a possible 
fruitful direction for future work. 

3.2.1 Transitive asymmetric relations 
In identifying paths which indicate happens-before, a transitive 
asymmetric relation, the following 6 path types are considered: 

�happens-before� 
�happens-before, happens-before�  
�happens-before, happens-before, happens-before� 
�happens-before, happens-before, happens-before, happens-
before� 
�similar, happens-before� 
�happens-before, similar� 

For the relation stronger-than, we consider similar paths, with 
stronger-than in place of happens-before. 

3.2.2 Similarity 
In paths indicating a given relation, we treat similarity as a weak 
form of equivalence. That is, we avoid chaining several similarity 
relations to avoid drift caused by polysemy and meaning drift. 
When assessing indication of similarity itself, using paths of 
similarity can be viewed as both transitivity and equivalence. 

The antonymy, or opposite-of relation is a special case � a path of 
two oppositions indicates equivalence and a path of three 
oppositions indicates opposition again. 

For presence of similarity, we consider all 13 paths with less that 
three edges which indicate similarity: 

�similar� 
�stronger-than� 
�weaker-than� 
�opposite-of, opposite-of� 
nine paths of with two edges, each edge from the set {similar, 
stronger-than, weaker-than} 

Note that in detecting similarity with paths of length two, we rely 
on the strength relation, which is a subtype of similarity. 

3.2.3 Opposition 
For presence of opposition, the following 8 path types were 
considered (all paths with fewer than three edges and one with 
three edges) indicating opposition: 

�opposite-of� 
�opposite-of, similar� 
�opposite-of, stronger-than� 
�opposite-of, weaker-than� 
�similar, opposite-of� 
�stronger-than, opposite-of�, 
�weaker-than, opposite-of�, 
�opposite-of, opposite-of, opposite-of�  

3.3 Statistical model for combining evidence 
Our goal is to estimate the validity of inferring r1,n given a 
collection of m paths C1,n

1, C1,n
2, �, C1,n

m: 

 ( )m
nnnn CCCrP ,1

2
,1

1
,1,1 ,...,,|  (1) 

Then, P(ri,j | Ri,j) denotes the probability that the relation is 
actually true given that it was detected. 

3.3.1 Estimating the implication of a single path 
We first estimate the implication r1,n of a single path C1,n: 

 ( )nn CrP ,1,1 |  

For the case where C1,n consists of exactly one edge, this is 
simply: 

 ( )2,12,1 | RrP  

For paths with more than one edge, notice that r1,n is 1 if all edges 
of the path hold (the likelihood of which can be estimated from 
the observed edges in the graph). Otherwise, if one or more of the 
edges do not hold, r1,n is independent of whether the individual 
observed edges Ri,j in the path hold or not: 

 ( ) ( )



= −
− otherwise

..if1
..|

,1

,12,1
,12,1,1

n

nn
nnn rP

rr
RRrP  



We can estimate the probability of r1,2, �, rn-1,n given  
R1,2, �, Rn-1,n, yielding: 

 ( )
( ) ( )( ) ( )nnnnnnnnn

nnn

rPRRrrPRRrrP
RRrP

,1,12,1,12,1,12,1,12,1

,12,1,1

..|..1..|..
..|

−−−−

−

−+

=  

Assuming that a path of true edges r1,2, �, rn-1,n is conditionally 
independent of observed edges R1,2, �, Rn-1,n gives: 

 ( )
( ) ( )( ) ( )nni iiiini iiii

nnn

rPRrPRrP

RRrP

,11..1 1,1,1..1 1,1,

,12,1,1

|1|

..|

∏∏ −= ++−= ++

−

−+

=  

which can be rewritten as: 

 ( ) ( ) ( )( ) ( )∏ −= ++− ⋅−+=
1..1 1,1,,1,1,12,1,1 |1..|

ni iiiinnnnn RrPrPrPRRrP  

( )nrP ,1
 and ( )1,1, | ++ iiii RrP  can be estimated empirically by 

manually tagging the relations Ri,j in a graph as correct or 
incorrect (i.e. they are the probability of an edge being labeled as 
such by a human judge and the system precision for this type of 
edge, respectively). 

3.3.2 Combining estimates from multiple paths 
To compute Eq. 1, we must combine evidence from multiple 
paths. Some paths may contribute to the presence of the 
implication r1,n while others contribute to the presence of its 
opposite (i.e. for the asymmetric relations, the presence of the 
relation in the reverse direction, and for similarity the presence of 
antonymy). 

As the simplest case, consider C1,n
a and C1,n

b, two independent 
paths (paths not sharing any intermediate nodes) connecting 
nodes x1 to xn and implying the same relation r1,n. We wish to 
compute the probability of the implication given the two paths: 

 ( )b
n

a
nn CCrP ,1,1,1 ,|  (2) 

For short, let Ca and Cb denote C1,n
a and C1,n

b, respectively, and r 
denote r1,n. 

Rewriting Eq. 2 using Bayes theorem, yields: 

 ( ) ( )
( ) ( )rCCP

CCP
rPCCrP ba

ba
ba |,

,
,| =  

However, it is unclear how to compute the joint probability of Ca 
and Cb. We sidestep the issue by assuming that Ca and Cb are 
independent. We get the following score (no longer a true 
probability): 

 ( ) ( )
( ) ( ) ( ) ( )rCPrCP

CPCP
rPCCrP ba

ba
ba ||,| =  (3) 

Using Bayes again, we get: 
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( )
( ) ( ) ( )

( ) ( )
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rP

rP
CCrP

ba

b
b

a
a

ba

||

||1,|

=

=
 

Generalizing from two paths to m, we arrive at the score which 
we use in place of Eq. 1: 

 ( )
( )

( ) 1
...

|
...| −

=
∏

= m
mai

i

ma rP

CrP
CCrP . 

The independence assumption made in Eq. 3 does not actually 
hold, and for large m can yield scores in excess of 1,000 rather 
than scores in the interval [0, 1]. In the case when zero paths are 
found in one direction, the score is simply P(r), the probability of 
observing r with no additional evidence. 

4. PRELIMINARY RESULTS 
In this section, we present some preliminary results on refining 
the semantic verb relations in VERBOCEAN. We first examine how 
well our method identifies incorrect relations in VERBOCEAN. 
Then, we inspect certain system outputs and present a discussion 
and error analysis. 

4.1 Refining VERBOCEAN 
Chklovski and Pantel evaluated the semantic relations in 
VERBOCEAN, which contains 22,306 relations between 3,477 
verbs, by randomly sampling 100 highly correlated verb pairs (see 
the Appendix) and presenting the classifications to two human 
judges [1]. Table 2 shows the results. 

Of the 100 pairs, 66 were identified to have a relation. We applied 
our refinement algorithm to VERBOCEAN and inspected the 
output. On the 37 relations that VERBOCEAN got wrong, our 
system identified six of them. On the remaining 29 that 
VERBOCEAN got correct, only one was identified as incorrect 
(false positive). Hence, on the task of identifying incorrect 
relations in VERBOCEAN, our system has a precision of 85.7%, 
where precision is defined as the percentage of correctly 
identified erroneous relations. However, it only achieved a recall 
of 16.2%, where recall is the percentage of erroneous relations 
that our system identified. Table 3 presents the relations that were 
refined by our system. The first two columns show the verb pair 
while the next two columns show the original relation in 
VERBOCEAN 

4.2 Discussion 
Based on inspection of some faulty refinements, the failures seem 
to stem noise in the supporting paths or from reliance on paths 
which do not actually indicate the relation (e.g. a path consisting 
of similarity and stronger than edges often fails to indicate the 
strength relation in cases we inspected). 
We highlight some noteworthy aspects of our approach and 
illustrate prospects of extending it with some refinements the 
system suggested given a certain triple as input. 

Our algorithm currently tests only the triples already in the graph. 
Thus, the algorithm was able to revise the relation �doom 
opposite-of complicate� to �doom similar complicate.� Yet, the 
revision did not affect the precision in the evaluation, because the 
algorithm did not detect the more specific relation �doom 
stronger-than complicate,� indicated by two human judges. If the 
algorithm was extended to test the strength relation whenever it 
detected similarity, the triple �doom stronger-than complicate� 
would have been tested. This test would have found three paths 
supporting the stronger-than relation: 



DOOM stronger-than DELAY stronger-than COMPLICATE; 
DOOM similar UNDERMINE stronger-than COMPLICATE; 
DOOM stronger-than CRIPPLE stronger-than DISRUPT 
 stronger-than COMPLICATE; 

there are also no paths at all supporting the stronger-than relation 
in the opposite direction. The three above paths have scores 0.61, 
0.54, 0.49, respectively and a combined score of 12.13 which has 
a ratio of 105.44 over the score in the reverse direction 0.12 
(which is the estimated prior that the relation holds given no 
additional evidence). 

Another observation suggested by the preliminary results 
concerns the behavior of the algorithm when testing the strength 
relation. In the case of the triple <flatten, strength, level>, 
stronger-than relation was detected in both directions, causing the 
algorithm to output �no relation.�  In fact, because strength (in 
either direction) is a subclass of similarity, it may have been 
appropriate to output similarity, or at least test the triple <flatten, 
similarity, level> (which would find five paths supporting 
similarity and no paths supporting opposition, leading to scores of 
25.1 and  0.07 for similarity and opposition, respectively, causing 
similarity to be detected. The above observations suggest changes 
to the algorithm which it would be important to evaluate more 
rigorously in future work. 

Although in our evaluation we have only paid attention to 
outputting presence or absence of relations, the approach can 
potentially also update confidences in particular edges. For 
example, the original graph contains the following relations 

DESTROY stronger-than DAMAGE (with score of 16.3) 
DESTROY stronger-than ENGULF (with score of 14.0) 
DESTROY stronger-than ATTACK (with score of 12.4) 

Turning to graph-level analysis, however, uncovers five 
additional paths for �damage,� none for �engulf,� and one 
additional path for �attack.� 

A useful observation in future work on the system is that the 
actual decisions made by the algorithm depend on how scores are 
calculated for sets of paths, and what thresholds are chosen. We 
illustrate how scores stack up in a specific case in which 
similarity is correctly revised to antonymy. Consider the 
(incorrect) edge 

REVEAL similar HIDE 

present in the original graph. Applying graph-level analysis yields 
no additional paths supporting similarity, but discovers two paths 
supporting opposition: 

REVEAL opposite-of CONCEAL similar HIDE 
REVEAL similar DISCLOSE opposite-of HIDE 

Both of these paths have a score of 0.37, and their combined score 
is 1.81. The score of the single similarity path is 0.63, and the 
ratio of the opposition to similarity score is 2.85, yielding reversal 
of similarity to opposition. Whatever scoring model is used, the 
outputted decision will stay the same given similar input (e.g. two 
opposite-of and similar paths vs. one similar path). Identifying the 
preferred way to treat such situations can be approached as a 
supervised learning problem. 
Beyond testing more triples and improving handling of evidence 
combination, possible extensions to the algorithm include more 
elaborate types of inference from graph structure, for example 
treating absence of certain paths as counter-evidence. Suppose 
that relations A opposite-of B and A similar A' were detected, but 
the relation A' opposite-of B was not detected. Then, there is an 
�absent path�: 

A similar A' opposite-of B. 

The absence of this path suggests absence of A opposite-of B. 

Our work can be viewed as performing inferences over graphs in 
which the edges have particular properties and semantics. The 
problem is related to inference over graphical models (with the 
model potentially containing bidirectional edges and cycles); as 
such, recent work on Markov logic networks [2], may prove 
relevant and useful.  Also, refining the similarity relation in 
particular is related to the rich body of work on classical graph 
clustering. 

5. CONCLUSIONS 
We presented a method for refining multi-relational data by 
applying global link analysis, leveraging multiple noisy paths. We 
re-estimated the presence of a relation between a pair of nodes 
from the evidence provided by multiple indirect paths between the 
nodes. Our approach applies to a variety of relation types: 

Table 3. Seven relations in VERBOCEAN refined by our system. 

VERB 1 VERB 2 VERBOCEAN Relation Refinement 
Relation Judge 1 Relation Judge 2 Relation Judge 3 Relation 

attach use happens-before 
similar similar none none none 

bounce get stronger than (reverse) stronger than none none none 
dispatch defeat opposite none none none happens-before 
doom complicate opposite similar* none stronger-than stronger-than 
flatten level stronger than no relation* similar similar similar 
outlaw codify similar opposite none none opposition 
privatize improve happens-before none happens-before happens-before happens-before 

* sources of potential improvements discussed in Section 4.2 



transitive symmetric, transitive asymmetric, and relations 
inducing equivalence classes. 
Preliminary results suggest that the system may be able to identify 
incorrect edges with high accuracy. Although the current system 
fails to consistently correct these identified edges, the experiments 
yielded several insights applying which may improve the 
performance. For example, evidence of both stronger-than and 
inverse stronger-than relations should conclude similarity instead 
of neither since stronger-than is a subset of similarity. For the 
same reason, the system should make a strength test when 
antonymy is changed to similarity. 
Although the relations in VERBOCEAN have a weight based on the 
strength of the lexico-syntactic pattern matches on the Web, our 
approach does not currently leverage these weights. One future 
direction is to use the weights when factoring the contributions of 
edges within paths. 

Successful link discovery is highly dependent of the quality of the 
(multi)-relational data to which it is applied. However, this data is 
often noisy. With the work presented here, we hope to motivate 
research in automatic methods to refine the quality of multi-
relational data. 
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APPENDIX 
VERBOCEAN (Chklovski and Pantel 2004) is a semantic network 
of relations between verb pairs. Currently, it contains 22,306 
relations between 3,477 verbs. The relation types are: similarity, 
strength, antonymy, enablement, and happens-before. 

The relations were identified by testing one pair of verbs at a time 
without reference to any other verbs (i.e. no global analysis). 
Specifically, relations were identified by querying a Web index 
(Google) with 35 lexico-syntactic patterns; for example, for the 
verb pair discover and patent, if �discovered and then patented� 
(the pattern �Xed and then Yed�) was abnormally frequent on the 
web, the relation happens-before would be identified between 
discover and patent. The evidence from the 35 patterns were 
combined, using a measure similar to mutual information to 
account for both the frequency of the verbs as well as for the 
frequency of the pattern, to yield the strongest relation. 

Creating VERBOCEAN was computationally intensive, requiring 
more than 30 queries per verb pair. In all, 106 queries to a 
positional index of more than 7 × 1011 words on the Web were 
issued. This volume is not nearly sufficient to test the millions of 
possible pairs of verbs. Instead, detection of relations was 
attempted only between 29,165 pairs of strongly associated verbs 
(the associated verbs were extracted from a smaller, 3.5 × 108 
word parsed corpus, as described in [3]). As a result, 22,306 edges 
(relations) were extracted between 18,496 node pairs.  


