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Protein Multiple Sequence Alignment

Chuong B. Do and Kazutaka Katoh

Summary

Protein sequence alignment is the task of identifying evolutionarily or structurally
related positions in a collection of amino acid sequences. Although the protein alignment
problem has been studied for several decades, many recent studies have demonstrated
considerable progress in improving the accuracy or scalability of multiple and pairwise
alignment tools, or in expanding the scope of tasks handled by an alignment program. In
this chapter, we review state-of-the-art protein sequence alignment and provide practical
advice for users of alignment tools.
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1. Introduction
Sequence alignment is a standard technique in bioinformatics for visualizing

the relationships between residues in a collection of evolutionarily or structurally
related proteins (see Note 1). Given the amino acid sequences of a set of proteins
to be compared, an alignment displays the residues for each protein on a single
line, with gaps (“–”) inserted such that “equivalent” residues appear in the same
column. The precise meaning of equivalence is generally context dependent: for
the phylogeneticist, equivalent residues have common evolutionary ancestry; for
the structural biologist, equivalent residues correspond to analogous positions
belonging to homologous folds in a set of proteins; for the molecular biologist,
equivalent residues play similar functional roles in their corresponding proteins.
In each case, an alignment provides a bird’s eye view of the underlying evolu-
tionary, structural, or functional constraints characterizing a protein family in a
concise, visually intuitive format.
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In this chapter, we review state-of-the-art techniques for protein alignment.
The literature is vast, and hence our presentation of topics is necessarily selective
(see Note 2). Here, we address the problem of alignment construction: we survey
the range of practical techniques for computing multiple sequence alignments,
with a focus on practical methods that have demonstrated good performance on
real-world benchmarks. We discuss current software tools for protein alignment
and provide advice for practitioners looking to get the most out of their multiple
sequence alignments.

2. Algorithms
Most modern programs for constructing multiple sequence alignments

(MSAs) consist of two components: an objective function for assessing the
quality of a candidate alignment of a set of input sequences, and an optimization
procedure for identifying the highest scoring alignment with respect to the
chosen objective function (1). In this section, we describe common themes in
the architecture of modern MSA programs (see Fig. 1).

2.1. The Sum-of-Pairs Scoring Model

In the problem of pairwise sequence alignment, the score of a candidate
alignment is typically defined as a summation of substitution scores, for matched
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Fig. 1. Diagram of the basic steps in a prototypical modern multiple sequence
alignment program: computation of matrix of distances between all pairs of input
sequences; estimation of phylogenetic guide tree based on distance matrix; progressive
alignment according to guide tree; guide tree reestimation and realignment; iterative
refinement; and postprocessing and visualization.
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pairs of characters in the sequences being aligned, and gap penalties, for consec-
utive substrings of gapped characters. Given a fixed set of scoring parameters,
efficient dynamic programming algorithms (see Note 3) for computing the
optimal alignment of two sequences in quadratic time and linear space have been
known since the early 1980s (2–5).

In the case of multiple sequence alignment for N sequences, the multiple
alignment score is usually defined to be the summed scores of all N(N – 1)/2
pairwise projections of the original candidate MSA to each pair of input
sequences. This is known as the standard sum-of-pairs (SP) scoring model (6).
While other alternatives exist, such as consensus (7), entropy (8), or circular
sum (9) scoring, most alignment methods rely on the SP objective and its
variants. Unlike the pairwise case, multiple sequence alignment under the SP
scoring model is NP-complete (10–13); direct dynamic programming methods
for multiple alignment require time and space exponential in N.

Some strategies for dealing with the exponential cost of multiple alignment
involve pruning the space of candidate multiple alignments. The “MSA”
program (14,15), for instance, uses the Carrillo–Lipman bounds (16) in order to
determine constraints on an optimal multiple alignment based on the projections
of the alignment to all pairs of input sequences; similarly, the DCA program
(17–21) employs a divide-and-conquer approach that uses pairwise projected
alignments to identify suitable “cut” points for partitioning a large multiple
alignment into smaller subproblems. In practice, however, these methods
are impractical for more than a few sequences. Consequently, most current
techniques for SP-based multiple alignment work by either applying heuristics
to solve the original NP-complete optimization problem approximately, or
replacing the SP objective entirely with another objective whose optimization is
tractable.

2.2. Global Optimization Techniques

In general, finding a mathematically optimal multiple alignment of a set
of sequences can be formulated as a complex optimization problem: given a
set of candidate MSAs, identify the alignment with the highest score. Global
optimization techniques, developed in applied mathematics and operations
research, provide a generic toolbox for tackling complex optimization problems.
Over the past several decades, application of these methods to the MSA problem
has become routine.

Among these methods, genetic algorithms (22)—which maintain a population
of candidate alignments that are stochastically combined and mutated through a
directed evolutionary process—have been particularly popular (23–28). In this
technique, the SP objective (or an approximation thereof) provides a measure
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of fitness for individual alignments within the population. Typical mutation
operations involve local insertion, deletion, or shuffling of gaps; designing these
operations in a manner that allows fast traversal of the space of candidate align-
ments while remaining efficient to compute is the main challenge in the devel-
opment of effective genetic algorithm approaches for MSA. Sequence alignment
programs based on genetic algorithms include SAGA (29), MAGA (30–33), and
PHGA (34).

In simulated annealing (35), a candidate alignment is also iteratively modified
via local perturbations in a stochastic manner, which tends toward alignments
with high SP scores (36–38). Unlike genetic algorithms, simulated annealing
approaches do not maintain a population of candidate solutions; rather, modifi-
cations made to candidate solutions may either improve or decrease the objective
function, and the probability of applying a particular modification to a candidate
alignment is dependent both on the resulting change in SP score and on a
scaling constant known as the temperature. In theory, when using appropri-
ately chosen temperature schedules, simulated annealing provably converges to
optimal MSAs. The number of iterations required to reach an optimal alignment
with appreciable probability, however, can often be exponentially large. The
MSASA (37) program for simulated annealing-based alignment overcomes
this barrier by using multiple alignments obtained via progressive alignment
(described later) as a starting point.

Search-based strategies form a third class of global optimization techniques
that have been applied to multiple alignment. In these methods, multiple
alignment is typically formulated as a shortest path problem, where the initial
state is the empty alignment (containing no columns), goal states are the set
of all possible alignments of the given sequences, intermediate states represent
candidate partial alignments of sequence prefixes, and state transition costs
represent the change in score resulting from the addition of a column to an
existing partial alignment. Despite the large state space, search techniques such
as A* and branch-and-bound use heuristics to prune the set of searched align-
ments (39,40). The MSA (14,15) and DCA/OMA (17,19–21,41–43) programs
are two examples of methods based on this strategy.

2.3. Progressive Alignment

While global optimization techniques are powerful in their general appli-
cability, they are less commonly used in modern MSA programs due to their
computational expense (see Note 4). In this section, we examine a heuristic,
known as progressive alignment, that solves the intractable problem of MSA
approximately via a sequence of tractable subproblems. Unlike the techniques
discussed in the last section, which find good multiple alignments directly,
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progressive alignment works indirectly, relying on variants of known algorithms
for pairwise alignment.

In the popular progressive alignment strategy (44–46), the sequences to
be aligned are each assigned to separate leaves in a rooted binary tree
(known as an alignment guide tree, see Section 2.4.1). Next, the internal
nodes of the tree are visited in a bottom-up order, and each visited node
is associated with an MSA of the sequences in its corresponding subtree.
At the end of the traversal, the MSA associated with the root node is
returned. By restricting MSAs at each internal node to preserve the aligned
columns in the MSAs associated with their children nodes, the overall
procedure reduces to a sequence of pairwise alignment computations: here,
each pairwise alignment operates on a pair of alignments rather than a pair of
sequences.

Under the most common gap scoring schemes, aligning a pair of alignments
to optimize the SP score exactly is theoretically NP-hard (47). Here, the compli-
cation arises from the fact that a gap opening character for some sequence in
an MSA may not necessarily be present in every projected pairwise alignment
involving that sequence. In practice, aligning alignments can be accomplished
via procedures that optimize upper or lower bounds on the SP score (48), which
use a “quasinatural gap” approximation to the full SP score (49), or which
approximate each set of input alignments as a profile—a matrix of character
frequencies at each position in the alignment (50,51). Progressive alignment
is the foundation of several alignment programs including DFALIGN (44),
MULTAL (45,46), MAP (52), PCMA (53), PIMA (54), PRIME (55), PRRP (56),
MULTALIN (57), CLUSTALW (58–60), MAFFT (50,61), MUSCLE (51,
62), T-Coffee (63,64), KAlign (65), POA (66–68), PROBCONS (69), and
MUMMALS/PROMALS (70,71).

Profile–profile alignment techniques are routinely used in classification tasks
such as remote homology detection and fold recognition (72–75). In this liter-
ature, a considerable amount of effort has been placed in identifying profile–
profile scoring functions that discriminate well between weakly homologous
sequences and nonhomologous sequences (76–81). While one might expect that
a profile–profile scoring function that works well for classification should give
accurate multiple sequence alignments, empirical tests have revealed only minor
differences in alignment quality resulting from various profile–profile scoring
schemes (62,82–84).

2.4. Extensions to Progressive Alignment

The efficiency and simplicity of progressive algorithms for sequence
alignment account for their widespread use in modern sequence alignment
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tools. Given a guide tree over N sequences, MSA construction requires N – 1
pairwise merge steps, hence rendering the cost of alignment effectively
linear in the number of sequences (see Note 5). Nonetheless, progressive
alignment strategies may also suffer from inaccuracies in the constructed
guide trees or the accumulation of errors from the early pairwise alignment
stages. In this section, we describe a number of heuristics used in
modern MSA programs to overcome the shortcomings of vanilla progressive
alignment.

2.4.1. Guide Tree Construction

In most progressive alignment programs, the guide tree used to determine
the merging order for sequence groups is taken to be the phylogenetic tree
relating the input sequences. Distance matrix methods for tree construction, such
as the UPGMA (85,86) or neighbor-joining (87,88) algorithms, work by first
estimating the evolutionary time between each pair of sequences. Then, a greedy
procedure is used to construct a tree whose edge lengths correspond to evolu-
tionary distances between points of divergence in the evolutionary history of the
input sequences.

Problems with alignment guide trees generally result from either errors in
the computed distance matrices or violated assumptions associated with the
used tree reconstruction technique. The former case is especially common
as many modern multiple alignment programs (e.g., MUSCLE, MAFFT, and
MUMMALS/PROMALS) use fast approximate distance measures, such as k-
mer counting, to form distance matrices for progressive alignment (50,58,89,90).
Replacing these measures with more sensitive distance-estimation methods
based on full pairwise alignment can be effective but slow (60). Recently, the
Wu–Manber algorithm for fast inexact string matching (91), as employed in the
KAlign program, has been shown to be significantly more sensitive than simple
k-mer approaches for especially distant sequences (65).

Alternatively, guide tree reestimation can be effective for obtaining more
accurate distance measures; given an approximate multiple alignment generated
from the progressive alignment algorithm, it is generally possible to compute
evolutionary trees of higher quality than the original guide trees formed
using simple distance measures (50,56). In practice, alignment programs
that use guide tree reestimation (e.g., MAFFT, MUSCLE, PRIME, PRRP,
and MUMMALS/PROMALS) compute new distance matrices using an MSA
obtained by progressive alignment. This revised distance matrix is then used to
construct a new guide tree, which is in turn used in a second round of progressive
alignment. The procedure may be iterated as many times as desired (or until
convergence).
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2.4.2. Modified Objective Functions

Even with perfect guide trees, errors can still occur in the pairwise merge
steps of the progressive alignment. Errors made at early stages of the progressive
alignment are particularly detrimental as they provide a distorted view of
sequence homology that increases the chances of incorrect pairwise alignments
at all higher levels of the tree. Consistency-based objective functions focus on
improved scoring of matches in early alignments by incorporating information
from outgroup sequences during each pairwise merge step (92–95). In particular,
when performing a pairwise alignment of two sequences x and y, knowing that
the kth residue of an outgroup sequence z aligns well with the ith residue of
x and the jth residue of y provides strong evidence that the ith position of x
and jth position of y should align with each other—i.e., pairwise alignments
induced by a multiple alignment should be consistent (see Fig. 2A). Based
on this transitivity condition, consistency-based objective functions typically
modify the score for matching positions in an alignment of two groups during
pairwise alignment by considering the relationship of each group to sequences
not involved in the pairwise merge. Consistency-based scoring is used in the
T-Coffee, DIALIGN, PROBCONS, PCMA, MUMMALS, PROMALS, and
Align-m (96,97) alignment algorithms.

A number of modern programs (e.g., CLUSTALW, MUSCLE, and MAFFT)
also use position-specific gap penalties to bias alignment algorithms toward
placing gaps where previous gaps were opened during each pairwise merge
step. Here, the rationale is that gap opening events that occur simultane-
ously in a group of sequences likely represent a single evolutionary event
and hence should not be overpenalized. In addition, for globular protein
sequences, hydrophobic residues are abundant in core regions where sequence
indels are likely to affect proper folding, whereas hydrophilic residues are
abundant on the protein surface, where extra loops are more likely to be
tolerated (see Fig. 2B). CLUSTALW and MUSCLE attempt to make use of
this signal by heuristically increasing gap penalties in hydrophobic regions
and decreasing them in hydrophilic regions, though in practice the impact
of hydropathy-based scoring on these methods is small. Recently, however,
the CONTRAlign program (98) has demonstrated that rigorous statistical
estimation of hydropathy-based gap penalty modifications can result in improve-
ments in alignment accuracy of several percent for distant sequences; similar
results have also been observed for detection of homology via profile align-
ments (99).

Sequence weighting is another common modification of the traditional SP
multiple alignment objective applicable when the representation of sequence
subgroups in a multiple alignment is highly skewed (see Fig. 2C). For
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Fig. 2. Modified objective functions for sum-of-pairs alignment. (A) To aid in
the alignment of two sequences x and y, consistency-based aligners use align-
ments of x and y to a third sequence z. (B) Gaps occur more frequently in the
hydrophilic exterior than the hydrophobic core of globular proteins; position-specific
gap penalties are higher in regions with hydrophobic residues and lower in regions with
hydrophilic residues. (C) Sequence weighting corrects for sequence family
overrepresentation.

example, in a multiple alignment of K sequences, if a large number of
copies of a single sequence are added to the input, then an unweighted SP
optimizer will emphasize the alignments of the redundant sequence to the
other K – 1 sequences, thus effectively generating a biologically incorrect
star alignment. While numerous schemes for computing sequence weights
exist (92,100–108), the best choice of weights for alignment programs is
unclear. In practice, the exact choice of weighting technique is generally
a second-order effect; most reasonable sequence weighting techniques can
greatly improve the accuracy of alignments in situations of sequence
overrepresentation.
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2.4.3. Postprocessing

In many cases, no amount of preprocessing is sufficient to prevent errors
during progressive alignment. Postprocessing procedures, generally known as
iterative refinement techniques, deal with progressive alignment errors by
making changes to an existing alignment obtained from progressive alignment.
For instance, iterative realignment techniques work by repeatedly dividing an
alignment into two groups of aligned sequences, and realigning the groups (56,
109–111). In practice, iterative realignment can greatly improve the quality
of an existing multiple alignment while requiring little extra programming
effort. Alignment programs that make use of iterative realignment proce-
dures include ITERALIGN (112), TULLA (113), AMPS/AMULT (114,115),
MULTAN (116), OMA (42), PRRP, PROBCONS, MUSCLE, and MAFFT.

Other refinement techniques focus on correcting local errors in alignments
by pattern matching or stochastic optimization, and bear strong similarity to the
global optimization strategies introduced earlier (110,117–119). While global
optimization techniques are generally considered less efficient than heuristic
strategies such as progressive alignment in constructing multiple alignments,
they can, nonetheless, be extremely effective given a good initial starting point
(i.e., an existing multiple alignment).

2.5. Local Alignment

Most protein sequence alignment tools make the implicit assumption
of global homology—the assumption that the sequences being aligned are
generally related over their entire length. In many practical situations, however,
two proteins may simply share a few common domains interspersed with regions
of little to no homology. In these scenarios, variants of dynamic programming
can be used for pairwise alignment (3). A space-efficient formulation of the
dynamic programming algorithm, in particular, forms the basis of the SIM and
LALIGN pairwise local alignment programs (120,121).

When speed is essential, indexing-based techniques can also be used for local
alignment. These methods work by identifying segments of fixed length (known
as seeds or k-mers) that are shared between two sequences; seeds meeting a
certain threshold score are either chained or extended to form local alignments.
This strategy is employed by the BLASTP (122,123) and LFASTA (124–126)
programs.

For the problem of multiple local alignment, the DIALIGN (127–130)
and DIALIGN-T (131) programs work by identifying homologous ungapped
segments using a unique probabilistic segment scoring system that does not
explicitly penalize for indels. Segments are then selected for inclusion in the
multiple alignment via a greedy procedure that requires conserved segments to
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be present in the same order in each sequence. Related procedure for finding
conserved “boxes” or for identifying high-confidence matches are used in the
MATCH-BOX (132,133) and AMAP (134) programs.

In some proteins, however, conserved domains may appear multiple times
in a single sequence (known as repeats) or may appear in a different order in
different sequences (known as rearrangements). Repeated domains can generally
be identified via local alignment of a sequence to itself (135); programs that
specialize in the identification and alignment of protein repeats include Mocca
(136), RADAR (137), REPRO (138), and TRUST (139). A more recent program
called RAlign (140) performs global alignments while taking into account repeat
structure.

Constructing multiple local alignments with both repeats and rearrange-
ments is an extremely difficult problem that is usually done manually. Motif
finders, such as GIBBS (141,142), MOTIF (143,144), MEME (145), and
CONSENSUS (141), in principle can detect local ungapped homologies
between several protein sequences. In practice, however, these methods are
usually slow and can find only short, well-conserved gap-free segments of fixed
length. Existing domain finding programs, such as DOMAINER (146) and
MACAW (147), have similar restrictions, and the latter also requires signif-
icant manual intervention. Recently, a number of programs have addressed
the challenges of representing multiple local alignments of protein sequences
using partial-order (66) and A-Bruijn (148) graphs; some recent attempts
to completely automate multiple local alignment construction include the
ABA (149) and ProDA (150) alignment tools.

2.6. Probabilistic Models

While most alignment techniques rely abstractly on a scoring scheme that
uses substitution scores and gap penalties, they do not develop an explicit model
of the evolutionary process. In this section, we consider the class of probabilistic
methods for aligner construction that has garnered much recent interest. Proba-
bilistic techniques for multiple alignment generally come in three main varieties:
complex evolutionary models of insertion, deletion, and mutation in multiple
sequences; fixed dimensionality profile models for representing specific protein
families; and hybrid methods that combine probabilistic models with traditional
ad hoc alignment techniques.

Of the three approaches, evolutionary models for statistical alignment provide
the most explicit representation of change in biological sequences as a stochastic
process (151,152). Research in statistical alignment typically derive from the
classic Thorne–Kishino–Felsenstein (TKF) pairwise alignment model (153)
in which amino acid substitutions follow a time-reversible Markov process



Protein Multiple Sequence Alignment 389

and single-gap creation and deletion are treated as birth/death processes
over imaginary “links” separating letters in a sequence. Subsequent work
on statistical alignment has focused on modeling multiresidue, overlapping
indels (154–159), extending the TKF model to multiple alignment (160–167),
and the even more complex task of coestimating alignment and sequence
phylogeny (164,168–172). Unlike traditional score-based alignment approaches,
statistical alignment methods provide a natural framework for estimating the
parameters underlying stochastic evolutionary processes (173). However, the
resulting models are often quite complex. While dynamic programming is
sometimes possible, these models often require sampling-based inference proce-
dures (174) that share many of the disadvantages of simulated annealing
approaches discussed earlier. The accuracy of TKF-based techniques in
alignment construction is unclear as few methods based on this approach have
been comparatively benchmarked against standard programs; one exception is
the Handel (162,163) program for statistical multiple alignment, which achieves
substantially lower accuracy (i.e., 13% fewer correctly aligned residue pairs)
than CLUSTALW, the prototypical score-based modern sequence aligner.

A second class of probabilistic modeling techniques is the profile hidden
Markov model (profile HMM), a sophisticated variant of the character frequency
profile matrices that takes into account position-specific indel probabilities
(8,175–179). To construct a profile HMM given a set of unaligned sequences,
a length is chosen for the initial profile, as well as initial emission probabil-
ities for each position in the profile and transition probabilities for indel creation
and extension after each position. Next, the model is optimized according to
a likelihood criterion using an expectation–maximization (EM)-based Baum–
Welch procedure (8), simulated annealing (38), deterministic annealing (180),
or approximate gradient descent (181,182). Finally, all sequences are aligned to
the profile using the Viterbi algorithm (183) for finding the most likely corre-
spondence between each individual sequence and the profile, and the correspon-
dences of each sequence to the profile are accumulated to form the multiple
alignment. Profile HMMs and their variants (184) form the basis of many remote
homology detection techniques (185–187) and have been used to characterize
protein sequence families (188). Empirically, profile HMMs (177,189) have
great appeal in practice as they provide a principled probabilistic framework,
and, when properly tuned (190,191), achieve good empirical performance close
to that of CLUSTALW (192,193).

Finally, hybrid techniques combine the rigor of probabilistic model parameter
estimation with standard heuristics for multiple alignment. The ProAlign (194),
COACH (81), and SATCHMO (195,196) progressive alignment tools, for
instance, all achieve CLUSTALW accuracy; the recent PRANK aligner (197)
has revealed the benefits of scoring insertions and deletions differently for the
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purposes of indel distribution estimation. A separate promising direction has
been the development of the maximum expected accuracy (MEA) algorithm
for pairwise alignment based on posterior match probabilities (198), which
was generalized to consistency-based multiple alignment in the PROBCONS
algorithm (69). Other programs based on the public domain PROBCONS source
code include AMAP (199), which optimizes an objective function that rewards
for correctly placed gaps, and ProbAlign (200), which uses a physics-inspired
modification of the posterior probability calculations in PROBCONS. Finally,
the MUMMALS program (70), which extends the PROBCONS approach to
allow for more sophisticated HMM structures, has achieved the highest reported
accuracies to date of all modern stand-alone multiple alignment programs.

2.7. Computation-Intensive Methods

In recent years, a new category of computation-intensive methods has risen
in importance. Typically, these methods are designed not for high-throughput
scenarios but rather for situations in which accuracy is paramount and abundant
computing resources are available. Such scenarios arise in protein structure
prediction, where alignment quality is the bottleneck in fold prediction accuracy,
and the need for high-speed alignment is less important.

Ensemble methods (often known as meta-prediction methods in the protein
structure prediction community) consider the predictions of a number of separate
individual methods in order to form an aggregate prediction. M-Coffee (201)
places input alignments into an alignment library and then assembles a multiple
alignment using the T-Coffee progressive algorithm for solving the maximum-
weight trace problem (202–204). A similar program called meta align is also
available as part of the MUMMALS package (70). In both cases, the resulting
alignments generated by the ensemble predictor are more accurate than those
made by any individual prediction technique.

Finally, database-aided methods add external information to help the aligner
resolve ambiguities in alignment decisions. For instance, adding homologous
sequences found in a large sequence database when the number of input
sequences is small has been shown to be effective for methods such as
MAFFT, PRALINE (205,206), and DbClustal (207). Alternatively, adding extra
experimental or predicted information regarding the structural properties of
the sequences being aligned can also improve accuracy. For example, the
NdPASA (208), HHAlign (75), and PrISM.1 (209) pairwise aligners and the
PSI-PRALINE (205) and SPEM (210) multiple aligners all make use of known
or predicted secondary structure; similarly, the 3D-Coffee (211,212) multiple
aligner incorporates structural alignments when they are available. In general,
the specific program used for performing the alignment tends to be less
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important than the data incorporated by each alignment approach. Given this,
the best database-aided method to use in any given alignment situation should
generally be based on the data available.

3. Other Considerations
In studies of multiple sequence alignment, the algorithms used can be

important, but they are not the only consideration that must be made. In this
section, we provide a brief overview of aligner performance assessment and
recent developments in parameter estimation.

3.1. Benchmarking

Techniques for assessing aligner performance typically have one of four
goals: (1) demonstrating the effectiveness of a particular heuristic strategy for
SP objective optimization; showing that a particular software package achieves
good accuracy relative to “gold standard” reference alignments of either (2) real
or (3) simulated proteins; or (4) quantifying alignment accuracy on real data in
a reference-independent manner. For comparing software packages relying on
different objective functions, the first validation scheme is not applicable. In this
subsection, we focus on the latter three methods of aligner validation.

In real protein sequences, the true alignment of a set of sequences based
on structural considerations is not necessarily the same as the true alignment
based on evolutionary or functional considerations. In practice, structural align-
ments are relatively easy to obtain for proteins of known structure, and hence,
are the de facto standard in most real-world benchmarks of alignment tools.
Popular databases of hand-curated structural alignments include BAliBASE
version 2 (213,214) and HOMSTRAD (215). Because of the difficulty and lack
of reproducibility of hand curation, a number of modern alignment databases
rely on automated structural alignment protocols, including SABmark (216),
PREFAB (51), OxBench (217), and to a large extent, BAliBASE version 3
(218). Because the correct protein structural alignment can sometimes also be
ambiguous, most alignment databases annotate select portions of their provided
alignments as “core blocks”—regions for which structural alignments are known
to be reliable—and measures of accuracy such as the Q score [defined as the
proportion of pairwise matches in a reference alignment predicted by the aligner;
other measures of accuracy also exist (219)] are computed with respect to only
core blocks.

The difficulties of ambiguity in structural alignments can be avoided when
benchmarking with simulated evolution programs, such as SIMPROT (220,221)
or Rose (222). In simulation studies, the true “evolutionary” relationships
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between positions in a set of a sequences are completely known. Besides
allowing for the construction of large testing sets, simulation-based validation
also has the advantage of enabling detailed studies of aligner performance in
specific settings; for example, the IRMBase database (131), created using the
Rose simulator, was built to evaluate the ability of local alignment methods to
identify short implanted conserved motifs within nonhomologous sequences.
Despite these advantages, simulation studies are highly prone to parameter
overfitting. Furthermore, the performance of a method on simulated proteins
may not be representative of its performance on real proteins, especially if
the simulator fails to properly model all of the biological features used by the
aligner. For instance, a method that accounts for gap enrichment in hydrophilic
regions of proteins will perform relatively worse on simulations that do not
account for hydropathy properties of protein sequences than on real proteins for
which hydropathy plays an important role.

Finally, it is possible to avoid dealing with ambiguities in reference align-
ments using techniques that directly assess the quality of an alignment in terms
of the resulting structural superposition. For a pair of proteins, the coordinate
root-mean-square-distance (coordinate RMSD) between positions identified as
“equivalent” according to an alignment (after the two protein structures have
been appropriately rotated and translated) is a common measure for evalu-
ating structural alignment quality. Several RMSD variants exist (223), including
variants that account for protein length (224), that examine pairwise distances
between residues in a protein (225), or that rely on alternate representations
of protein backbones (226). Another recently proposed metric is the APDB
measure (227), an approximation of the Q score that judges the “correctness” of
aligned residue pairs based on the degree to which nearby aligned residues have
similar local geometry in the sequences being aligned.

3.2. Parameter Estimation

For traditional score-based sequence alignment procedures, estimation of
substitution matrices and gap penalties are usually treated separately (see
Note 6). Briefly, substitution matrices are generally estimated from databases
of alignments known to be reliable. Statistical estimation procedures for
constructing log-odds substitution matrices vary in their details, but most
methods nonetheless tend to generate sets of matrices approximately parame-
terized by some notion of evolutionary distance for which that matrix is optimal.
Popular matrices include the BLOSUM (228), PAM (229,230), JTT (89),
MV (231), and WAG (232) matrices; matrices derived from structural align-
ments for use with low-identity sequences also exist (233). For gap parameters,
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an empirical trial-and-error approach (234) is common as the number of param-
eters to be estimated is low.

Probabilistic models have the advantage that the maximum likelihood
principle provides a natural mechanism for estimating gap parameters when
example alignments are available (235); when only unaligned sequences are
available, unsupervised estimation of gap parameters can still be effective (69).
Alternatively, Bayesian methods (236,237) automatically combine the results
obtained when using multiple varying parameter sets and thus avoid the need for
deciding on fixed parameter sets.

Recently, the problem of parameter estimation has been the subject of
renewed attention, stemming from the influence of the convex optimization
and machine learning communities. Kececioglu and Kim (238) described a
simple cutting-plane algorithm for inverse alignment—the problem of identi-
fying a parameter set for which an aligner aligns each sequence in a training set
correctly. Their algorithm is fast in practice, though the biological accuracy of
the resulting alignments on unseen test data is unclear. Do et al. (98) developed
a machine learning-based method based on pair conditional random fields (pair-
CRFs) called CONTRAlign, which achieves significantly better generalization
performance than existing methods for pairwise alignment of distant sequences.
Most recently, Yu et al. (239) described a fast approach for training protein
threading models based on support vector machines (240), which shares many
of the generalization advantages of CONTRAlign.

4. Advice for Practitioners
Given the multitude of choices, it can be difficult for a user of multiple

alignment software to understand the situations in which a particular alignment
tool is or is not appropriate. When aligning a small number (<20) of globally
homologous sequences with high percent identity (>40%), most modern
alignment programs will have no difficulty in returning a correct multiple
sequence alignment, and no special consideration is needed. When all of these
conditions do not hold, however, choosing the appropriate tools and configu-
ration, while keeping in mind the tradeoff between accuracy and computational
cost, can be difficult. In this section, we provide a list of currently popular
alignment software (see Table 1) and give advice on tool selection (see Fig. 3)
and effective use of alignments.

4.1. The Extreme Cases

Extreme cases for sequence alignment programs involve scenarios typically
not encountered in most alignment benchmarking studies. The spectrum of
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Table 1
MSA Programs

Tool URL

CLUSTALW http://www.clustal.org/
DIALIGN http://bibiserv.techfak.uni-bielefeld.de/dialign/
MAFFT http://align.bmr.kyushu-u.ac.jp/mafft/software/
MUMMALS http://prodata.swmed.edu/mummals/
MUSCLE http://www.drive5.com/muscle/
PRALINE http://zeus.cs.vu.nl/programs/pralinewww/
PRIME http://prime.cbrc.jp/
ProbAlign http://probalign.njit.edu/standalone.html
PROBCONS http://probcons.stanford.edu/
ProDA http://proda.stanford.edu/
PROMALS http://prodata.swmed.edu/promals/
SPEM http://sparks.informatics.iupui.edu/
T-Coffee,
M-Coffee,
3D-Coffee

http://www.tcoffee.org/

DIALIGN
MAFFT (L-ins-i)

T-Coffee 

MUMMALS
PROBCONS

MAFFT (G-ins-i) 

ProbAllgn
T-Coffee
PRIME

MAFFT (E-ins-i) 

ProDA
ABA

MAFFT (NS-2)
MUSCLE

MAFFT (NS-2)
MAFFT (NS-i)

ClustalW 

Any tool

PROMALS
SPEM

PRALINE
MAFFT (homologs) 

3D-COFFEE
SPEM-3D

repeats or rearrangements?

structures available?

>2,000 aa in length?

>200 sequences?

>35% identity

<10 sequences?yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

global

local

long internal gaps

type of homology?

Fig. 3. Decision tree for selecting an appropriate MSA tool.
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applicable tools in extreme alignment cases is generally small. We distinguish
three particular situations: (1) repeated or rearranged protein domains, (2) high-
throughput alignment of large numbers (>200) of input sequences, and (3)
extremely long sequences (>2000 amino acids).

Currently, few programs adequately deal with alignments involving proteins
with repeated or rearranged domains. While some repeat finding programs
can be used for identifying repeats in protein alignments, these programs
do not present a complete view of the homology in a collection of protein
sequences. To date, the only programs that attempt to address this issue are
ABA (149) and ProDA (150), of which we recommend the latter based on its
significant advantage in accuracy on real data. While these methods are far
more effective than traditional global alignment methods on sequences with
repeats and rearrangements, they obtain lower accuracy on sequences where no
rearrangements or repeats occur.

In high-throughput alignment scenarios, program speed can be a major
bottleneck. In particular, when the number of sequences is between 200 and
1000, O(N2) distance matrix calculation (where N is the number of sequences)
is generally the time-limiting factor, so progressive alignment methods with
fast distance calculation, such as MAFFT (FFT-NS-2), MUSCLE (progressive),
or KAlign, are recommended. For extremely large numbers of sequences
(>10,000), even these fast distance calculation methods can be slow. In these
cases, the PartTree (241) option in MAFFT, which relies on approximate guide
tree construction in O(N log N) time based on a restricted portion of the distance
matrix, is currently the only realistic option. In practice, MAFFT (PartTree),
which uses approximate tree construction, achieves Q scores on average 2–3%
lower than MAFFT (FFT-NS-2), which uses a full UPGMA guide tree.

For extremely long sequences (>2000 amino acids), space complexity is the
main consideration in choosing an aligner. In particular, most recent multiple
alignment programs tend to use dynamic programming algorithms with O(L2)
memory usage (where L is the average sequence length), which is fine for
most scenarios considered in benchmarking studies. For longer sequences, more
efficient linear space algorithms (5), as implemented in CLUSTALW, MAFFT
(FFT-NS-2), and MAFFT (FFT-NS-i), are available.

4.2. Sequences with Low Similarity

For sequences with less than 35% identity, benchmark studies under various
conditions (221,225,242) have consistently identified T-Coffee, PROBCONS,
and MAFFT (L-ins-i) as being the most accurate stand-alone programs currently
available. More recently developed programs based on the PROBCONS
framework, including MUMMALS, ProbAlign, and AMAP, have been reported
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to obtain even higher accuracies. In general, however, stand-alone programs
tend to perform poorly for low-identity sequences. Here, we outline two main
strategies for obtaining quality alignments from the point of view of an end user:
careful identification of alignment scenarios and incorporation of external infor-
mation to improve alignment quality.

In general, low-identity alignments may be characterized as (1) global
homology over the entire length of the protein (N-terminus to C-terminus), (2)
local homology surrounded by nonhomologous flanking regions, or (3) short
patches of homology interrupted by long internal gaps (see Fig. 4). Case 1 is
the simplest of the three situations for which the best alignment accuracy can
be expected; in these situations, MUMMALS and PROBCONS are typically
the most accurate. However, when large N-terminal or C-terminal extensions
exist in one or more sequences (i.e., case 2), these global methods tend to
perform less well than techniques that make use of local alignment; in particular,
DIALIGN, T-Coffee, and MAFFT (L-ins-i) are recommended; additionally,
ProbAlign is reported to work well for these situations. Finally, the third case
(case 3) occurs for highly divergent sequences in which sequence similarity
remains only around functionally important residues but the order of conserved
regions is identical in all sequences. Here, MAFFT (E-ins-i), T-Coffee, PRIME,
and DIALIGN are recommended; these methods typically make use of more
sophisticated gap penalties, such as the generalized affine gap cost (243,244)
in the case of MAFFT (E-ins-i), or piecewise linear gap costs in the case of
PRIME.

In general, we recommend using methods tailored for case 3 when aligning
full-length proteins. Once an initial alignment is obtained, then trimming the

XXXXXXXXXXX-XXXXXXXXXXXXXXXX 
XX-XXXXXXXXXXXXXXXX-XXXXXXXX 
XXXXX----XXXXXXXXX---XXXXX—- 
-XXXX-XXXXXXXXXXX----XXXXXXX 
XXXXXXXXXXXXXXXXX----XXXXXXX 

ooooooooooooooooooooooooooooooXXXXXXXXXXXXX-XXXXXXXXXXXXXXXXXX------------------ 
------------------------------XX-XXXXXXXXXXXXXXXXXXX-XXXXXXXXXooooooooooo------- 
--------------ooooooooooooooooXXXXX-----XXXXXXXXXXX---XXXXXXXXooooooooooo------- 
-----oooooooooooooooooooooooooXXXXX-XXXXXXXXXXXXXX----XXXXXXXXoooooooooooooooooo 
------------------------------XXXXXXXXXXXXXXXXXXXX----XXXXXXXX------------------ 

oooooooooXXX------XXXX----------------------------------XXXXXXXXX-XXXXXXXXXXXXXXXXooooooooooooo 
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A

B

C

Fig. 4. Types of alignment homology. “-” represents a gap, “X” represents an aligned
amino acid residue, and “o” is an unalignable residue. (A) Global homology. (B) Local
homology. (C) Long internal gaps.
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alignment to include only the relevant homologous parts can be done manually,
and then a method designed for case 1 can be applied to give the best
possible accuracy. For even more accuracy, ensemble approaches, such as the
M-Coffee mode of T-Coffee or the meta align program in MUMMALS, merge
numerous independently calculated multiple sequence alignments into a single
combined alignment. Clearly, ensemble aligners will not perform well if the
input individual multiple alignments are poor, but in general can give modest
improvements in accuracy over their component aligners.

Usually, however, the best way to improve alignment accuracy is not by
more sophisticated algorithms or more careful program tuning, but rather by
incorporation of external information when present. For example, the structural
similarity of homologous proteins is generally conserved even after sequence
similarity becomes nondetectable over the course of evolution. Therefore,
sequence alignment tools that make use of structural information, such as 3D-
Coffee and SPEM-3D, can achieve significantly better accuracies than tools
relying solely on sequence data. Additionally, when speed is not critical and the
number of input sequences is small (<10), database-aided methods can achieve
better accuracy by recruiting additional homologs from a sequence database.
This sort of analysis is supported by DbClustal, MAFFT-homologs, PRALINE,
SPEM, and PROMALS. By enhancing site-specific evolutionary constraints,
homologs can improve accuracy to a level comparable to the benefits of adding
structural information.

4.3. Postprocessing and Visualization

Once an alignment has been generated, visualization tools allow manual
identification of regions with reliably predicted homology; many of these tools
also allow for interactive alignment editing. For alignments of sequences with
low similarity, postprocessing is extremely important as most regions in a
low-identity alignment will not be reliably alignable. Typically, high confi-
dence aligned regions can be identified by looking for groups of residues
with strongly conserved physicochemical properties (e.g., hydropathy, polarity,
and volume), using alternative alignment objective functions for identi-
fying reliable columns, using posterior confidences generated by alignment
programs such as PROBCONS, using the consensus of several alignment
methods, or even better, cross-referencing aligned positions with amino acid
residues in three-dimensional protein structures. Tools for integrating struc-
tural and functional information with sequence data for alignments, such as
MACSIMS (245), can also be helpful for analyzing multiple alignments. Other
freely available alignment visualization and editing programs are listed in
Table 2.
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Table 2
Alignment Visualization Tools

Tool URL

Jalview http://www.jalview.org/
SeaView http://pbil.univ-lyon1.fr/software/seaview.html
CINEMA http://www.bioinf.manchester.ac.uk/dbbrowser/CINEMA2.1/
Kalignvu http://msa.cgb.ki.se/
GeneDoc http://www.nrbsc.org/gfx/genedoc/
STRAP http://www.charite.de/bioinf/strap/
ClustalX http://www.clustal.org/
BoxShade http://www.ch.embnet.org/software/BOX form.html
ALTAVIST http://bibiserv.techfak.uni-bielefeld.de/altavist/

5. Conclusions
Despite its long history, research in sequence alignment continues to flourish.

Each year, dozens of articles describing new methods for protein alignments are
published. Although many of these approaches rely on the same basic principles,
the details of the implementations can have dramatic effects on the perfor-
mance, both in terms of accuracy and speed. A primary reason for this continued
interest in protein sequence alignment is the centrality of comparative sequence
analysis in modern computational biology: accurate alignments form the basis
of many bioinformatics studies, and advances in alignment methodology can
confer sweeping benefits in a wide variety of application domains.

In recent years, trends in the alignment field have included the devel-
opment of efficient tools suited for high-throughput processing on a single
PC (e.g., MUSCLE, MAFFT, POA, KAlign), the application of machine
learning techniques for parameter estimation and sequence modeling (e.g.,
PROBCONS, CONTRAlign, MUMMALS), and the exploitation of publicly
available sequence databases to improve accuracy of low-identity alignments
(e.g., PRALINE, MAFFT, PROMALS). Furthermore, recent attempts to build
alignment algorithms for dealing with proteins containing repeats and rearrange-
ments (e.g., ABA, PRODA) push the boundaries of the types of scenarios
considered by aligner developers. Finally, a number of groups have recognized
the growing importance of integrating multiple alignments with other forms
of data for presentation to biologists [e.g., MAO (246), MACSIMS]. While
it is impossible to predict all the advances in sequence alignment research to
come, their implications for practitioners is clear: the next generation of protein
alignment tools will be faster, more accurate, and easier to use.
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6. Notes
1. In this chapter, we focus on the problem of sequence alignment, which we

distinguish from the related topic of homology search, in which we would like
to identify homologs of a “query” sequence among a collection of “database”
sequences. Unlike sequence alignment tools, homology search tools, such as
BLASTP (122) or PSI-BLAST (123), rely extensively on approximate string
matching techniques but do not focus on providing accurate residue-level align-
ments of the returned sequences.

2. We refer the reader to a number of other recent reviews on protein sequence
alignment techniques (1,247–251) and their applications (252).

3. Dynamic programming (DP) refers to a class of algorithms that decomposes
the solution for a complex optimization problem into overlapping solutions for
smaller subproblems (253). By exploiting these overlaps, DP algorithms search an
exponentially large space (e.g., the space of all possible alignments) by solving a
small polynomial number of subproblems.

4. The SAGA algorithm, for example, was found to be 100–1000× slower than
CLUSTALW in a number of typical multiple alignments (29).

5. As previously pointed out (62), although the progressive alignment procedure
may be linear in the number of sequences N, typical algorithms for tree
construction require O(N3) time. For large numbers of sequences (e.g., 10,000),
this is intractable. An approximate O(N2) UPGMA tree construction algorithm
that produces reasonable trees in practice has been described; alternatively,
exact worst-case quadratic time algorithms for UPGMA (254) and neighbor-
joining (255) tree construction exist. For situations with very large N, the recent
PartTree algorithm (241) computes approximate trees in O(N log N) time.

6. Parametric alignment (256–258) is an attempt to abandon the need for parameter
estimation altogether by computing optimal sequence alignments for all possible
parameter sets. However, the resulting algorithms are often computationally
expensive, and for most biologists, the generated alignment sets are of limited
benefit when alignment quality is difficult to judge manually.
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