## Neighbor Joining

## Algorithm: NJ

## Input:

A matrix $O$ of observed pairwise distances on $k$ taxa.

## Initialization:

Let $L=1, \ldots, k$ be the set of active nodes.
For all pairs of taxa, $i, j$, compute $\Delta[i, j]$ as defined in Equation 1.

## Iteration:

```
While (|L| > 2)
{
    Find a pair i and j in L such that }\Delta[i,j] is minimal.
    Create a new node l with leaf nodes i and j.
    Let the length of edge (l,i) be D[l,i]=(D[i,j]+ Ri}-\mp@subsup{R}{j}{})/2
    Let the length of edge (l,j) be D[l,j]=D[i,j]-D[l,i].
    For all m}\not=i,j
        set D[l,m]=(D[i,m]+D[j,m]-D[i,j])/2.
    Remove i and j from L and add l
    For all l,m\inL,
        recompute }\mp@subsup{R}{l}{}\mathrm{ and }\Delta[l,m] as defined in Equation 1.
    }
```


## Termination:

When $L$ consists of two nodes $i$ and $j$, add the remaining edge between $i$ and $j$, with length $D[i, j]$.

In order to compensate for differences in mutation rate, we define a corrected distance,

$$
\begin{equation*}
\Delta[i, j]=D[i, j]-R_{i}-R_{j}, \tag{1}
\end{equation*}
$$

by subtracting the averaged distance to all other leaves,

$$
R_{i}=\frac{1}{|L|-2} \sum_{l \in L} D[i, l] .
$$

Note that $\Delta$, which is used to determine which nodes are neighbors, differs from $D$, the matrix of pairwise tree distances. This is a modified version of the algorithm given in Durbin et al.

