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Abstract

In this paper, we propose a method for jointly comput-
ing optical flow and segmenting video while accounting for
mixed pixels (matting). Our method is based on statistical
modeling of an image pair using constraints on appearance
and motion. Segments are viewed as overlapping regions
with fractional (α) contributions. Bidirectional motion is
estimated based on spatial coherence and similarity of seg-
ment colors. Our model is extended to video by chaining the
pairwise models to produce a joint probability distribution
to be maximized. To make the problem more tractable, we
factorize the posterior distribution and iteratively minimize
its parts. We demonstrate our method on frame interpola-
tion.

1. Introduction

Motion estimation is inherently ill-posed, and techniques
proposed for solving it range from spatial regularization [8],
use of global or parametric motion models [2], to segmen-
tation [18]. Segmentation-based approaches partition the
image into regions, with each region assuming a paramet-
ric motion model (such as affine motion). Recently, color
segmentation approaches have gained in popularity, both
for optical flow computation [7, 14] and stereo [17, 22].
They use the reasonable assumption that similarly colored
neighboring pixels have similar motions (or depths). Color
discontinuities are used to delineate object boundaries and
thus motion discontinuities. However, segments tend to be
statically-determinedprior to actual motion estimation.

The problem with using precomputed static color seg-
ments is the inability to recover from segmentation er-
rors. Segmentation of a single image is typically ambigu-
ous without the context of neighboring images. In this pa-
per, we propose a technique for producing temporally con-
sistent segmentations. That is, segments across neighboring
images have similar shapes and colors. Using the consistent
segmentations, we convert the motion estimation problem

from pixel to segment matching.
We apply our results to the problem of video editing,

more specifically frame interpolation. To produce higher-
quality results, we also integrate matting (extraction of fore-
ground and background colors) into our algorithm. Matting
has been shown to be an effective tool for handling observed
mixed color pixels [5].

2. Previous work

Early work in optical flow centered around efficient
methods using image gradients and hierarchical approaches
[8, 13]. Black and Anandan [2] expanded upon these meth-
ods using robust statistics to handle discontinuities in the
flow field. Szeliski and Coughlin [16] use 2D splines to
approximate pairwise image flow.

Layered or segmentation approaches were proposed to
allow for discontinuities while being able to enforce con-
straints on the flow within the segments. Wang and Adel-
son [18] were arguably the first to develop this idea, using
the affine model for flow. They proposed an iterative ap-
proach to create and remove segments, based on the pixel-
wise flow computed using a method similar to [2]. For seg-
mentation, several methods use an expectation maximiza-
tion approach [9, 1, 20]. These methods include using mix-
ture models [9], minimum description length encoding for
segment creation [1] and spatial coherence [20]. Differ-
ent constraints for flow vectors within segments have been
used, including smoothness constraints [21, 4] and parame-
terized motion models [3]. Unfortunately, results obtained
using flow-based segmentation tend to be unpredictable at
object boundaries due to the local aperture problem. One
approach for joint segmentation and flow computation is
described in [10], but the patch-based method is computa-
tionally expensive.

Instead of segmenting based on just flow, there are tech-
niques that use color information [7, 14] or a combination
of flow and color [11]. Color-based segmentation has also
been successfully used in the context of stereo and view in-
terpolation [17, 22].



Figure 1. Affine movement within large seg-
ments can be approximated using an over-
segmentation with translational movement.

(a) (b) (c)

(d) (e) (f)

Figure 2. Consistent segmentation: (a,d)
Cropped original frames, (b,e) segmenta-
tions computed independently, (c,f) consis-
tent segmentations.

3. Our approach

Our work is motivated by the application of high-
quality video editing. This requires not only good optical
flow estimation, but also accurate segmentation and back-
ground/foreground separation. The degree to which an im-
age should be segmented and the complexity of the motion
model are interdependent. One can adopt a relatively coarse
segmentation with affine, 3D planar, or even higher degree
motion models [1, 18, 20]; the alternative is a fine segmen-
tation with a simple translational motion. We use the latter
strategy.

As shown in figure 1, an object undergoing some com-
plex motion can be reasonably well approximated as a col-
lection of small regions with simple motions (translation in
our case). We chose this strategy to reduce the possibility
of not finding object, and thus motion, boundaries. In ad-
dition, incrementally enforcing temporal consistency with
smaller (andadaptive) regions is easier than with large re-
gions. Temporal consistency involves ensuring similarity of
segment shape and color across time as well as spatial co-
herence (figure 2). Since the number of segments is much
smaller than the number of pixels, segment correspondence

Figure 3. Factor graph of proposed approach.

can be performed much more efficiently.
We formulate the simultaneous estimation of flow, seg-

mentation, and matting as a single generative model using
appearance and motion constraints. The generative model
is cast as a factor graph [12]. A factor graph defines a func-
tion as a product of it’s factors, and it can be used to express
a wide variety of models, such as Markov Random Fields
and Bayesian networks. In Section 3.2, we describe the fac-
tor graph for an image pair, depicted in figure 3, followed
by generalization to image sequences. The variable nodes
are the imagesXt andXu, the segmentation parametersΦ,
S, and the motion parametersM, D. Following the prop-
erty of a factor graph, the joint distribution is equal to the
product of the function nodesf t, gtu, andfu, which are
themselves functions of the variables.

We begin by describing our generative model for a single
image expressed by the functionsf t andfu, for imagesXt

andXu respectively, in the factor graph. We assume that
each image consists of a set of color segments. To handle
pixels which may receive contribution from multiple seg-
ments, each pixel can be assigned to two segments with a
corresponding alpha value for blending.

To make the inference problem tractable, we factorize
the posterior distribution and iteratively minimize its parts
using a variational approach. In practice, this translates
to an algorithm that iteratively computes the segmentation
given the current estimate of the motion vectors, followed
by computing the motion vectors given the segmentation.
This process is repeated until convergence. Alternatively,
other techniques such as loopy belief propagation and sam-
pling could be used for maximizing the function defined by
the factor graph.

3.1 Overlapping segments as a generative model
of a single image

We model each image as a set of segments, each with
corresponding appearance and motion. Each segmentk
has a distribution over the pixel colors and coordinates de-



scribed by parametersΦk. In our work, we used the Gaus-
sian model described by the meanµk and covariance ma-
trix Σk, for the segment’s color distribution. We also used
the Gaussian model with meanηk and covariance matrix
∆k to describe the spatial distribution of the segment’s pix-
els. Therefore, the parameters describing the color and
coordinate variation in the segment are given byΦk =
(µk,Σk,ηk,∆k). Other possible parameterizations of the
probabilistic constraints on the segment’s shape and appear-
ance include mixtures of Gaussians, color histograms, fea-
ture mixtures, or image patch mixtures.

The segment parameters describe the extent of the
within-segment pixel similarity and variability. In addition
to this generalized description, the segments also have their
realization in the image, which could be defined, for exam-
ple, by the index mapS = {si|si ∈ {1, ...,K}}, wherei
denotes the pixel index, andsi = k indicates that thei-th
pixel belongs to thek-th index. For each segmentk, we
also treat ashiddenthe particular realization of colorsci,k

for the segment pixels.
Treating the colors inside the segment as hidden enables

us to model segment overlaps and alpha-blending of their
boundaries when necessary. In particular, instead of a single
index map{si}, we can assign each pixeli to two hidden
segment indicess1

i ands2
i and a hidden alpha valueαi. The

observed color of the pixel is expressed asci ≈ αici,s1
i

+
(1−αi)ci,s2

i
. In our model, we handle boundaries between

two segments only. For short, we use the notationsc1
i =

ci,s1
i

andc2
i = c2

i,s2
i
. Note that the pixels that are not on the

boundary are captured by the cases1
i = s2

i .
This parametrization of the variability in the data cor-

responds to a generative model of a single image, which
generates pixel colors and positions by the following hier-
archical statistical process. First, hidden index pairs(s1

i , s
2
i )

are sampled from a uniform distribution. Then, two hidden
pixel colorsc1

i andc2
i are generated with the assumption

that the positionri of the pixel is observed. Then, the al-
pha valueαi is generated from a prior distribution (either
uniform or the one favoringα = 0 or α = 1). The gen-
erative process ends by generating the observed pixel color
ci by a noisy alpha-blending of the two parent pixel colors
c1

i andc2
i . (Note again that non-boundary pixels would

simply have the two hidden parents belonging to the same
segment.)

The first set of distributions in the generative model
would correspond to the priors

p(s1
i ) = p(s2

i ) = 1/K, (1)

but since they are constant, these factors would have no in-
fluence on the inference in the factor graph. Hence, we can
omit these whenever it leads to more compact equations.

The following pair of factors for each pixeli correspond
to the conditional distribution over the two hidden pixel col-

orsc1
i , c2

i and positionri, given the segment indicess1
i , s2

i :

p(c1
i , ri|s1

i ,φs1
i
) = N (c1

i ;µs1
i
,Σs1

i
)N (ri;ηs1

i
,∆s1

i
)

p(c2
i , ri|s2

i ,φs2
i
) = N (c2

i ;µ
c
s2

i
,Σs2

i
)N (ri;ηs2

i
,∆s2

i
),

whereN (x;µ,Σ2) is the usual normal distribution with
meanµ and covariance matrixΣ. The observed color of the
pixel is related to the segment colors, using alpha-blending,
in our last factor of the model:

p(ci|c1
i , c

2
i , αi) = Ni(ci;αic1

i + (1− αi)c2
i ,ψ). (2)

If we assume that the observations defining the imageX
are the pixel colorsci and coordinatesri of all pixels, then
the product of all factors is in fact a normalized distribution

f = p({ci, c1
i , c

2
i , ri, s

1
i , s

2
i }I

i=1) =∏
i p(s1

i )p(s2
i )p(αi)p(c1

i , ri|s1
i )p(c2

i , ri|s2
i )p(ci|c1

i , c
2
i , αi).

The prior onα is constructed to favor values close to one,
and this is expressed through normalized factorsp(αi).

If we were to only segment the image, we could develop
an algorithm that jointly segments the data and learns the
parametersψ and{Φk}K

k=1, using either the exact expec-
tation maximization (EM), or a faster variational version.
However, once we introduce new constrains among seg-
ments in apair of images, exact inference will become in-
tractable and approximate algorithms will be needed.

3.2 Modeling an image pair

In this section, we consider a statistical model of a pair
of images with corresponding segments. Such image pairs
can be found, for example, in a video sequence, a collec-
tion of photographs of the same (possibly dynamic) scene,
or even in a collection of photographs or video sequences
containing similar objects. While the modeling framework
we develop here is rather general, our focus in this paper is
on closely matching image pairs, leading to applications in
motion analysis.

When computing our motion vectors we will be making
the critical assumption that the segmentations of the images
are consistent. That is, if two pixels belong to the same seg-
ment in imageXu, then their corresponding pixels in the
other image,Xt, also belong to the same segment. Fig-
ure 2 illustrates an example of a non-consistent and consis-
tent segmentation. As a result, our model of an image pair
not only incorporates the motion vectors of the segments,
but also the consistent segmentation constraint.

To differentiate between the hidden variables associated
with Xt andXu, we use superscriptsu andt.



3.2.1 Segment mapping variables

The segment correspondence is defined by two mappings:
the mappingMtu of segments describingXt to the seg-
ments describingXu, and the mappingMut (which is sim-
ilarly defined). The two mappings should be mostly consis-
tent, but given that certain pieces of scene could disappear
from one image to the next (especially in dynamic scenes),
and that one image may be over-segmented in certain re-
gions, deviations from 1-1 correspondence are allowed. In
addition, optimal 1-1 segment matching is NP-hard; the use
of dual maps increases the robustness of the approximate
inference (i.e., reduces local minima problems).

Each mapping is defined by a set of variablesM =
{mk}K

k=1, one for each segmentk, which point to the
corresponding segment in the other image. For example,
mtu

k = j indicates that thek-th segment of the imageXt

corresponds to thej-th segment ofXu. By symmetry, in
this example we would expect thatmut

j = k, which is most
often the case in the experiments we report here, but the
flexibility of allowing mut

mtu
k
6= k is important for modeling

occlusion and disocclusion events in sequences, as well as
matching photographs in which many segments may need
to remain unmatched.

While multiple segments may have the same mapping,
we insist that each segmentk has a mapping in the other
image. More specifically,mtu

k ∈ {1, ...,Ku}, whereKu is
the number of segments in the generative model ofXu.

3.2.2 Segment displacement variables

In addition to the mapping variables, we also define bidirec-
tional displacement field (flow) between the pixels in two
images. The displacement fieldDtu = {dtu

k } is defined as
a set of flow vectors for each segmentk in the imageXt.
The actual dense image flow is constructed by assigning
to each pixel the flow associated with its segment. Simi-
larly, we define the flowDut = {dut

` }. Assuming the seg-
ments are not occluded and taking the displacement to be
the shift in segment centroids, we haveηt

k + dtu
k = ηu

mtu
k

andηu
mtu

k
+dut

mtu
k

= ηt
k. However, we allow deviations from

this in order to deal with partial or total occlusion of seg-
ments. Thek-th segment ofXt can be mapped to thè-th
segment inXu according toMtu, but some part of segment
` may be occluded by another object. Hence, the flow in
Dtu may deviate from the shift in the segments’ centroids.

Having introduced new variables, we now turn the
reader’s attention to the new constraints needed to properly
capture correlations among variables describing a pair of
images. As before, these constraints are expressed in terms
of factors whose product defines the optimization criterion
to be optimized using variational inference. Each factor is a
function of the subset of the variables in the model.

3.2.3 Constraints on the variables of an image pair

Our model of image pairs will be broken into two parts. The
first expresses our desire for segmentations across images to
be consistent. The second relates the motion variables of the
segmentations.

In the first part, we enforce a consistent segmentation
across images. To do this, we place constraints on the seg-
ment mapsS1,t, S2,t, S1,u andS2,u. One constraint en-
sures a locally consistent segmentation within each image.
Another constraint enforces segment shapes to be consis-
tent across images. Shape consistency is accomplished by
favoring segment assignments for which neighboring pix-
els belong to the same segment within an image, and to
the same corresponding segment across images. These con-
straints are formulated as the following multiplicative fac-
tors:

ht
i =

∏
j∈εi\i

(
ε[s1,t

i 6= s1,t
j ] + (1− ε)[s1,t

i = s1,t
j ]

)
×

×
∏

j∈εi\i

(
ε[s2,t

i 6= s1,t
j ] + (1− ε)[s2,t

i = s1,t
j ]

)
,

whereεi is a small [5x5] neighborhood around pixeli, andε
is a value close to 0 that controls how much we favor locally
consistent segmentations. In our experiments,ε = 0.01. We
can then apply the same constraint across image pairs:

htu
i =

∏
j∈εrt

i
+dtu

i

(
ε[s1,u

j 6= mtu(s1,t
i )] + (1− ε)[s1,u

j = mtu(s1,t
i )]

)
×

×
∏

j∈εrt
i
+dtu

i

(
ε[s2,u

j 6= mtu(s1,t
i )] + (1− ε)[s1,u

j = mtu(s1,t
i )]

)
,

wheremtu(k) = mtu
k andεu

rt
i+dtu

i
denotes a small neigh-

borhood around the pixel with coordinatesrt
i +dtu

i in image
Xu. rt

i +dtu
i denotes the coordinates to which thei-th pixel

is going to move according to the displacement fieldDtu.
In both constraints, the segment index pairs1, s2 receive an
asymmetric treatment, with the first index being the primary
one, and the second index being only influenced by the as-
signment of the first one in the matching neighborhood.

The second part of our model for image pairs concerns
our motion variablesM andD. Our first factor states that
the mean color of corresponding segments from imageXt

to Xu should be similar:

ztu
k = N (µt

k;µu
mtu

k
,ψtu), (3)

with analogous factorszut
` for the mapping from imageXu

to Xt.
As we stated before, in most cases, the motion vector for

a segment can be computed by finding the shift in the cor-
responding segments’ centroids, assuming consistent seg-
mentation across images. To handle exceptions, such as



when a segment is occluded, we will allow a segment’s mo-
tion dtu

k to be one of the differences between any matching
segments’ centroids within a neighborhood:

vt
k = 1−

∏
j∈εk

(
1− [dtu

k = ηt
j − ηu

mtu
j

]
)
, (4)

whereεk is defined as the set of all segments in the neigh-
borhood ofk. More specifically, this neighborhood includes
each segmentj which has at least one pixeli in the neigh-
borhood ofηt

k for which st
i = j. This hard constraint reg-

ularizes the mapping and displacement estimation, while
still allowing some deviation of the segments’ flow. This
approach is similar to that taken by [17] for occluded seg-
ments.

Our final factor enforces smoothness in the computed ve-
locities. That is, the displacement vectorsdtu

k should be
similar for neighboring segments:

vt,u
k =

∏
j∈εk

N (dtu
k ; dtu

j , δ)N (dtu
k ;−dut

mtu
j

, δ) (5)

In a single factor, all the constraints between the sets of
hidden variables and parameters associated with individual
images can be expressed as:

gt,u =
( Kt∏

k=1

ztu
k vt

kvtu
k

)( Ku∏
`=1

zut
` vu

` vut
`

)( It∏
i=1

ht
ih

tu
i

)
×

×
( Iu∏

j=1

hu
j hut

j

)
,

whereKt is the number of segments of imageXt andIt is
the number of pixels in the image. Similar notation is used
for the parts of the other image,Xu.

The probability distribution over all the variables de-
scribing the image the pair is then expressed as

P =
1
Z

f tgt,ufu, (6)

whereZ is the normalization constant, andf t andfu are
the generative models of individual images defined by over-
lapping segments as in the previous section.

3.3 Modeling a sequence of images

A straightforward extension of the image pair model is
the following joint probability distribution,

P =
1
Z

∏
t

f tgt,t+1, (7)

obtained by chaining the model of (6). Note, however, that
the model can be made stronger by adding terms connecting

distant frames as well, e.g.,

P =
1
Z

∏
t

f t
∏
4t

gt,t+4t. (8)

We used parameterization (7) for computational efficiency
reasons.

4 Inference

In the previous sections, we introduced a number of hid-
den variables and parameters. We can show that the normal-
ization constantZ is only a function of the parameters, such
as the segmentation consistency parameterε which controls
the Markov random field on segment indicesS, the inter-
image color noise covariance matricesψ, and the variance
δ for motion regularization. Experimental results have been
fairly robust to different settings ofε; the results shown in
this paper were obtained withε = 0.01. The covariance ma-
tricesψ were held constant and set equal for all segments.
In practice,ψ should be set to some scalar of the image
noise.δ was set conservatively to 20.0.

Inference is based on minimizing the free energy [15]

F =
∫
H

Q log Q−
∫
H

Q log P, (9)

which is the lower bound on the likelihood of the data
∫
H P ,

with P given by (7). The form of the approximate posterior
over the hidden variablesQ(H) is chosen so as to speed up
the inference while keeping as much of the needed uncer-
tainty and correlation among hidden variables. We found
the following factorization ofQ to be particularly useful:

Q =
∏

t

It∏
i=1

(
q(s1,t

i , s2,t
i )q(c1,t

i , c2,t
i |s1,t

i , s2,t
i )q(αt

i)
)
×

×
∏

t

Kt∏
k=1

q(mt,t−1
k ,dt,t−1

k )q(mt,t+1
k ,dt,t+1

k ).

By using this form ofQ, the free energy reduces to many
additive terms, and each factor ofQ, and each parameter
of P is only influencing a small number of these additive
terms. Thus minimization ofF with respect to either indi-
vidual distributions inQ or parameters ofP can be done
efficiently if all other parts ofQ andP are kept fixed, i.e.,
we can compute the segmentation keeping the flow fixed,
and vice-versa. Iterating these minimizations leads to a re-
duction in free energy in each step.

Some of the factors in theQ distribution have a con-
strained form. The distribution over hidden blended col-
ors for each pixelq(c1,t

i , c2,t
i |s1,t

i , s2,t
i ) is expressed by a

Gaussian distribution, which is the form the exact poste-
rior has, too, whenαi is given. The posterior distributions



over the matting variables are expressed by Dirac functions
q(αt

i) = δ(αt
i − α̂t

i). The distributionq(s1,t
i , s2,t

i ) is fully
expressive in principle; it is aKt×Kt table of probabilities
that add up to one, but some entries in the table are forced to
be zero to speed up the search forq(s1,t

i , s2,t
i ) that reduces

the free energy. In particular, the columns and rows corre-
sponding to the segments which have been far away from
thei-th pixel during learning, are zeroed.

Finally, the posterior over the mapping and displacement
is assumed to be deterministic (or Dirac, which is in ac-
cordance with the hard constraints on the deformation field
vt

i ), q(mt,u
k , dt,u

k ) = [mt,u
k = m̂t,u

k ]δ(dt,u
k − d̂t,u

k ). The up-
date on each of these posteriors reduces to searching for the
mappingm̂t,u

k , which reduces the free energy the most. The
displacement̂dt,u

k is set to either the new segment displace-
ment for this mapping, or to one of the old displacements of
the segments in the neighborhood, whichever has the best
color correspondence.

The free energyF is iteratively reduced with respect to
the parameters ofP andQ until convergence. At this point,
the displacementŝdt,u

k define the dense flow field useful for
a variety of applications, such as frame interpolation, object
segmentation, etc.

The image segmentation is initialized using a quad-tree
approach that recursively breaks the image into smaller seg-
ments based on the variance of the color within the segment.
The flow vectors are initialized to 0, from which the map-
pings with highest overlap are found.

5. Results

In this section, we show three results of frame interpo-
lation. Our first example uses the first 5 even frames from
the MPEG dataset of a merry-go-round scene. This is a dif-
ficult scene for several reasons: there are many small and
thin independently moving objects, ordering between ob-
jects is not always preserved, and some of the vertical bars
are transparent due to motion blur. To test our algorithm,
we synthesize frame 3 using the matting and flow informa-
tion computed using our algorithm. The results can be seen
in figure 4. The flow information for most small objects,
including many thin vertical bars looks reasonable, as can
be seen in figure 4(d). Because of alpha blending, the fi-
nal rendered result has smooth boundaries as shown by the
highlighted area. The slight blurriness in the interpolated
frames is mostly caused by resampling.

Figure 5 shows the results for a pair of photographs
(433 × 500). This example demonstrates the ability of the
algorithm to find correct flow vectors even when the dis-
placements are large (> 30 pixels).

Our third example shows results of our algorithm on the
popular garden sequence, seen in figure 6. Once again, the
rendered interpolated view has soft boundaries due to the al-

(a) (b)

(c)

Figure 5. Forest results: Input images (top
row), flow field (bottom).

pha matting. Some flow vectors have been incorrectly com-
puted, but these are mostly limited to areas of low texture
such as the blue sky (resulting in imperceptible artifacts in
the interpolated views).

Each example was run for 80 iterations, after which, seg-
ments that had inconsistent mappings where assigned flow
vectors equal to the average flow vector within a neighbor-
hood of the segment. The number of segments per image
with inconsistent mappings was typically small (< 10).

6. Discussion

Our technique is generally applicable to video since it
uses only color consistency and similarity in extracting flow.
Results show that our decision to combine flow estimation
with segmentation and matting was a reasonable one.

However, our technique fails in the presence of signifi-
cant occlusions, where large groups of segments appear or
disappear. This is because our technique has no explicit oc-
clusion reasoning. In addition, since it relies on color sim-
ilarity, it also fails when colors or intensities change dra-
matically (e.g., when the camera exposure or the lighting
condition suddenly changes). To mitigate this problem, the
matching criteria would have to be modified or the frames
would have to be preprocessed to match their histograms.

For a video of a rigid scene, we could incorporate epipo-
lar geometry into the formulation to constrain flow. In such
a case, depth ordering would be easy, and rendering inter-
polated views can be performed in a back-to-front manner.
However, for videos of dynamic scenes, such ordering does



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. Fair results: (a) Frame 2 segmentation, (b) Frame 4 segmentation, (c) Frame 2 α map, (d)
Frame 2 horizontal flow, (e) Frame 2, (f) Interpolated frame 3, (g) Frame 3, (h) Frame 4, (i-l) Close-up
views.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Garden results: (a) Frame 2 segmentation, (b) Frame 4 segmentation, (c) Frame 2 α map, (d)
Frame 2 horizontal flow, (e) Frame 2, (f) Interpolated frame 3, (g) Frame 3, (h) Frame 4, (i-l) Close-up
views.



not exist. We currently assume that segments with larger
flows are closer to the camera.

In cases where motion is significant, holes may appear in
the interpolated frame. We currently fill holes by iteratively
using the average of boundary colors. A more sophisticated
inpainting algorithm (e.g., [6]) can be used instead.

One future direction is to use the segment flows for
grouping (based on similarity of flow). This could be used
for applications such as recognition. In addition, temporally
consistent segmentation would be helpful for automatic seg-
mentation of moving objects.

7. Conclusions

Flow estimation is a particularly difficult problem due to
ambiguities in textureless areas, occlusions, and mixed pix-
els. In our case, we use flow for the purpose of high-quality
frame interpolation. As such, extractingplausibly correct
flow is adequate. However, detecting flow discontinuities at
object boundaries (which is non-trivial) is critical. We have
shown that our technique is capable of accurately delineat-
ing these boundaries.

Our design decisions are based on both expediency and
effectiveness. Matching segments instead of pixels is signif-
icantly more efficient without sacrificing visual quality. In
addition, it reduces the ill-posed nature of flow estimation.
We avoid committing to a initial fixed segmentation for flow
estimation; instead, we adaptively reshape segments based
on both spatial and temporal evidence.

We also deliberately factored in matting to account for
mixed pixels. As results show, the extractedα distributions
help to significantly reduce typical artifacts (such as haloing
at object boundaries) in interpolated frames. In addition, it
permits extraction of very thin objects, which would have
been very difficult to recover otherwise.
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