Are Categories Necessary?

Alexei (Alyosha) Efros CMU

Before We Begin...

Not an Al/learning person

 My work is in Computer Vision and Computer Graphics

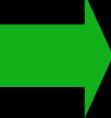
But I want to utilize lots of data

A Confession

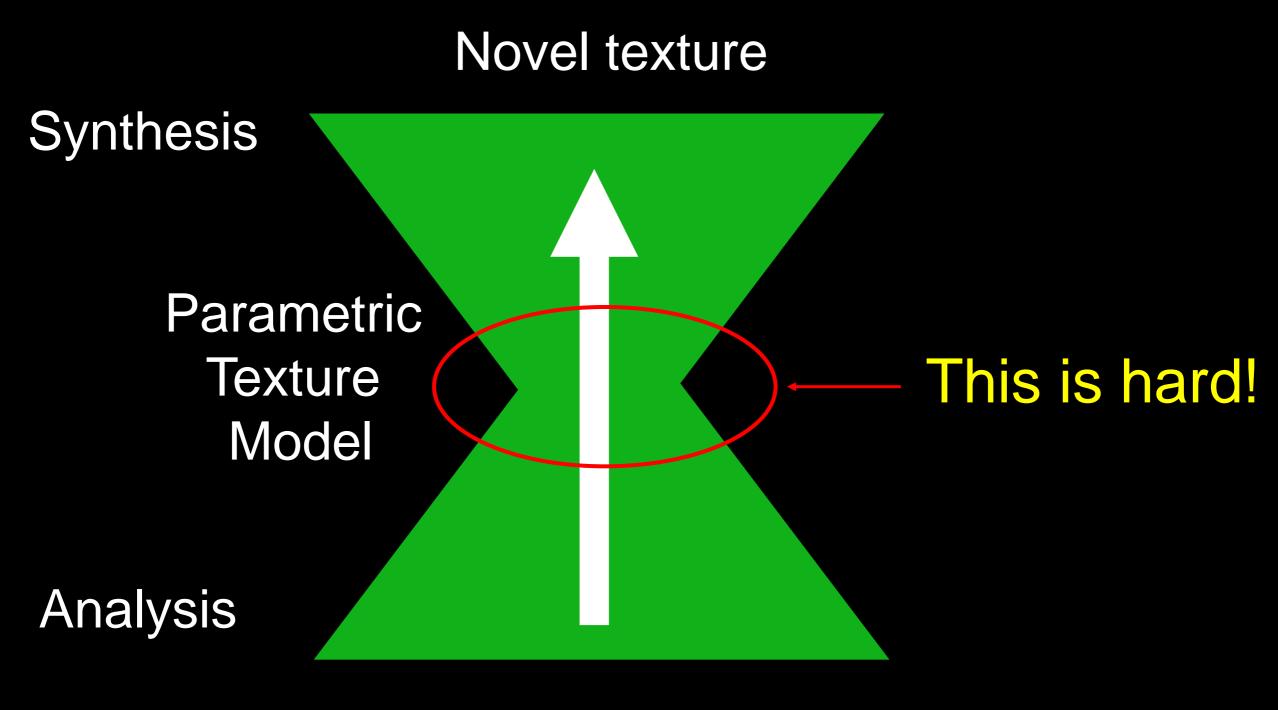
I have a problem...

... I am a nearest-neighbor addict!

Texture Synthesis



Classical Texture Synthesis

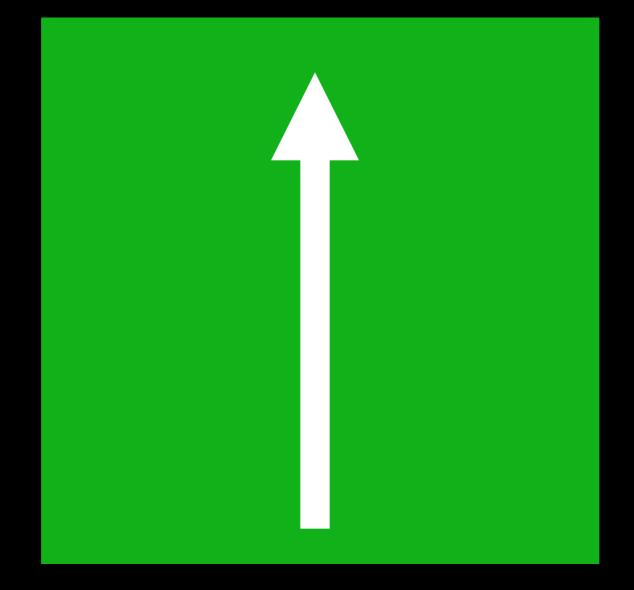


Sample texture

Non-parametric Approach

Novel texture

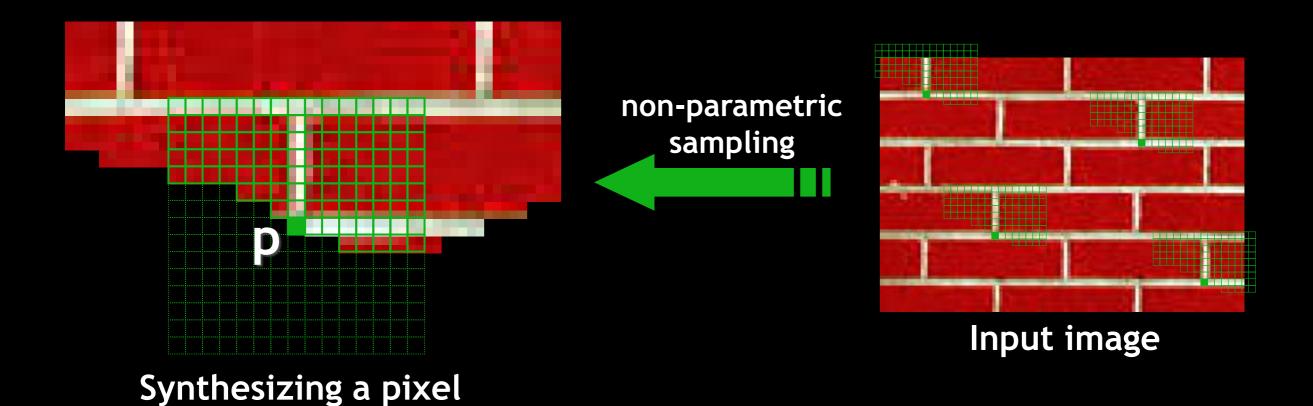
Synthesis



Analysis

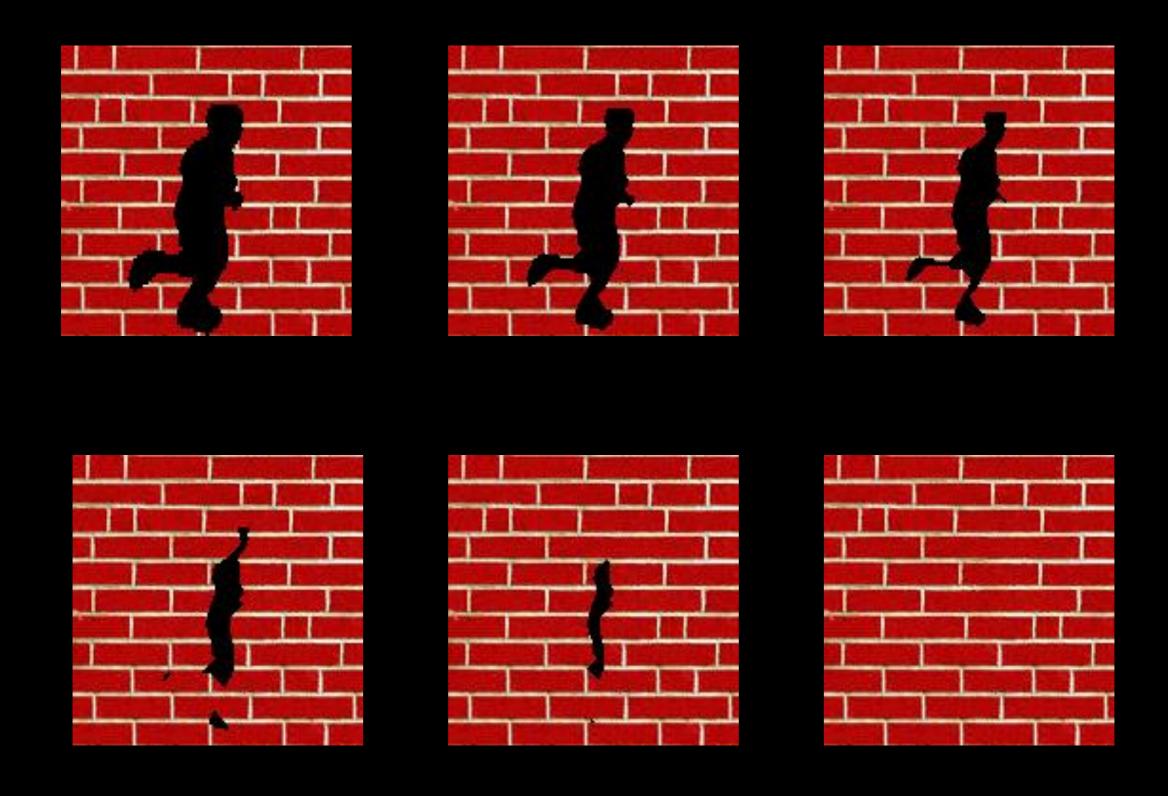
Sample texture

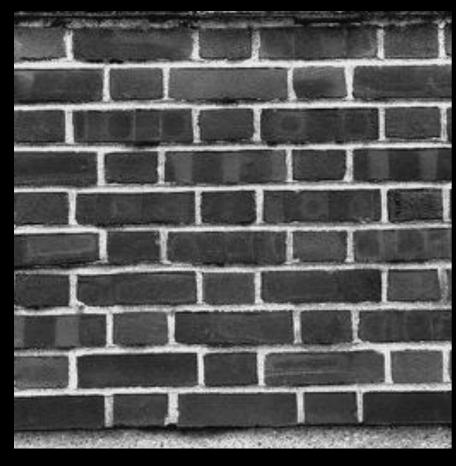
Non-parametric Synthesis [Efros&Leung'99]



- Assuming Markov property, compute P(p|N(p))
 - Building explicit probability tables infeasible
 - Instead, we search the input image for all similar neighbourhoods that's our distribution for p
 - To sample from distribution, just pick one match at random

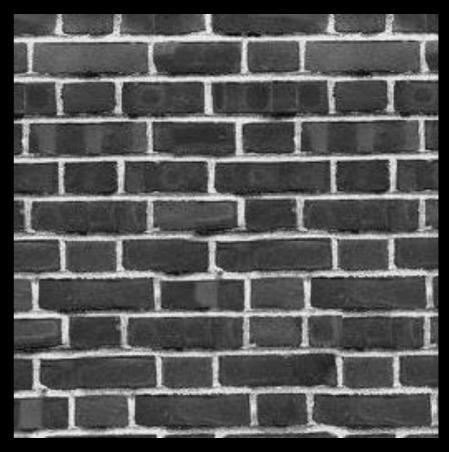
Hole Filling





input image

Portilla & Simoncelli



Our algorithm

describing the response of that neuron ht as a function of position—is perhap functional description of that neuron seek a single conceptual and mathematics and the wealth of simple-cell recepted neurophysiologically 1-3 and inferred especially if such a framework has the it helps us to understand the function leeper way. Whereas no generic most ussians (DOG), difference of offset Crivative of a Gaussian, higher derivation function, and so on—can be expected imple-cell receptive field, we noneth

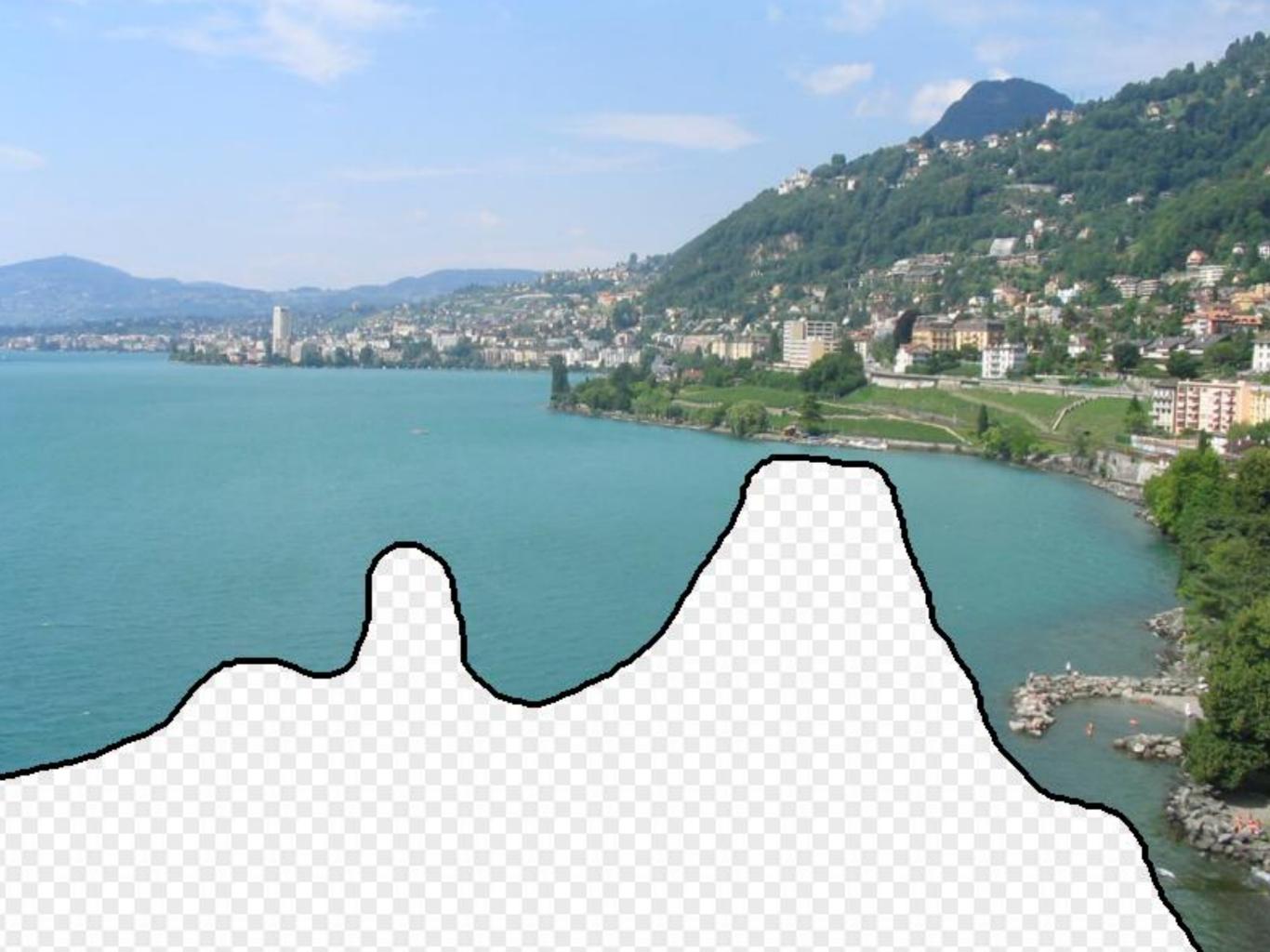
input image

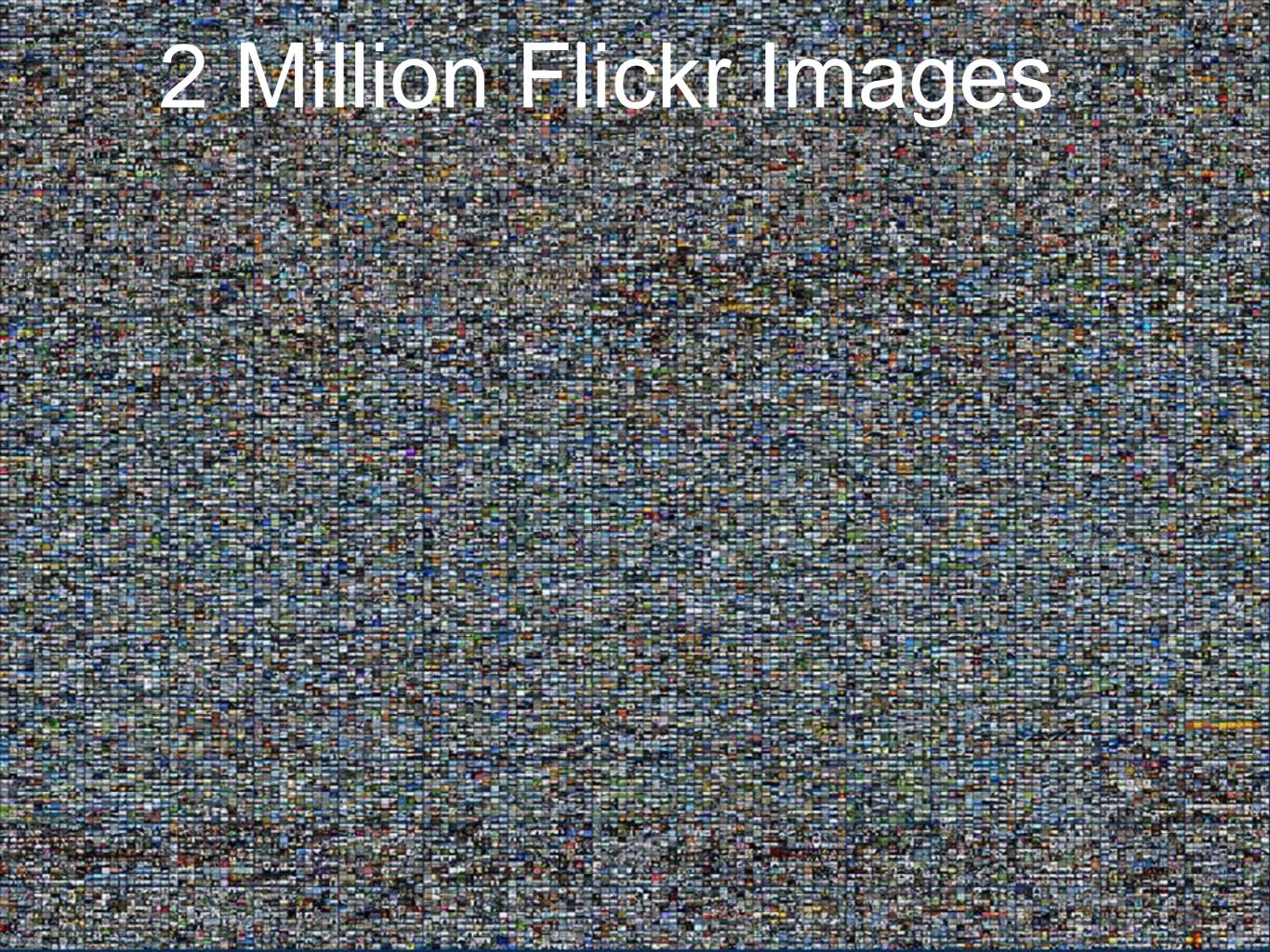
the dear alternative the historic entervole to the dear in the dear in countries he was a team of the countries have a team of the countries have the countries have been been been a team of the countries of the

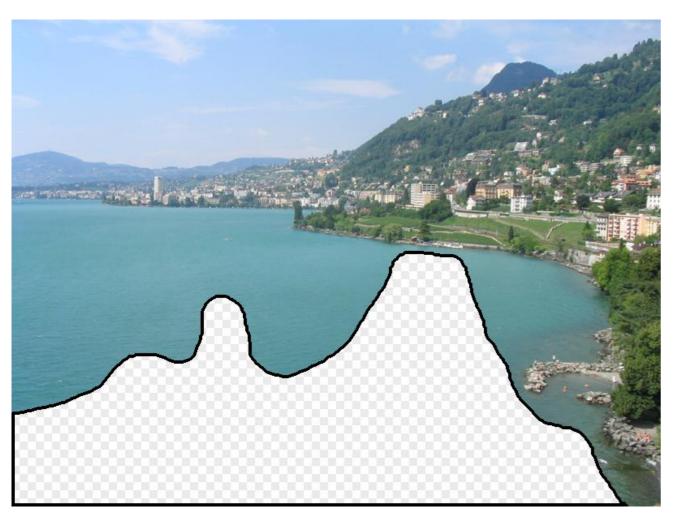
Portilla & Simoncelli

sition—is perk a single conceptual and a of that neuribe the wealth of simple-ual and matheurophysiologically 1-3 and simple-cell necially if such a framework y 1-3 and inferrips us to understand the amework has perhay. Whereas no gent and the fumeuro DOG), difference of a no generic a single conceptual and marence of offse the wealth of simple-ce, higher deriescribing the response of to—can be expess a function of position—helps us to understand thription of the per way. Whereas no gonceptual and sians (DOG), differencealth of simple sians (DOG), differencealth of simple

Our algorithm



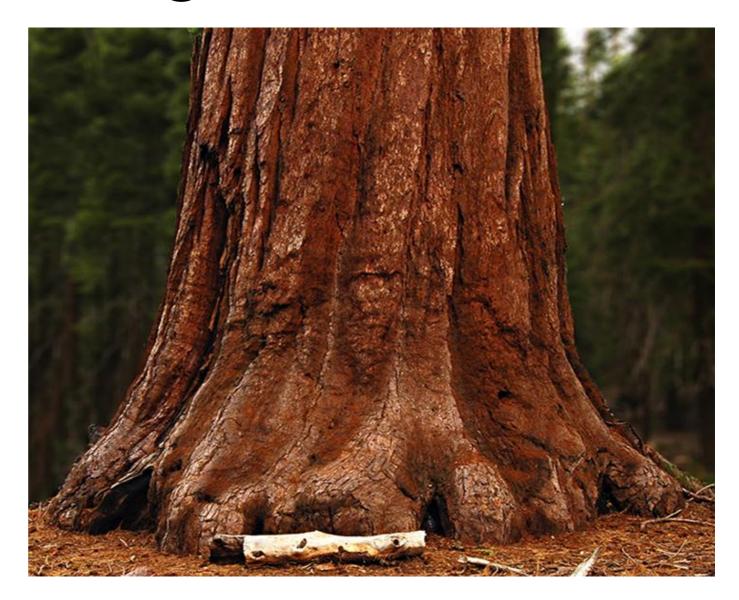


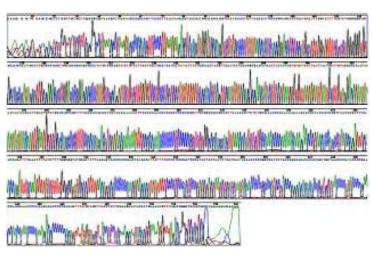


Two Kinds of Things in the World

Navier-Stokes Equation

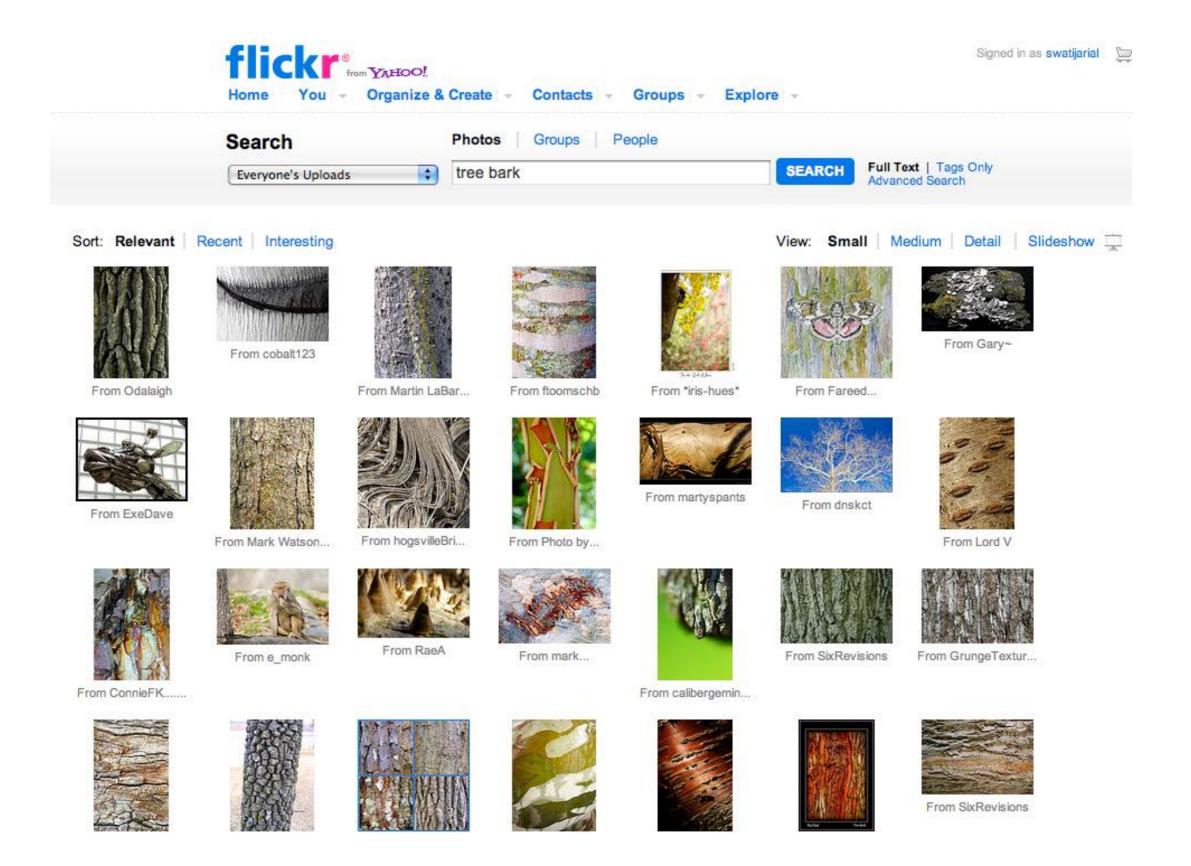
$$\frac{\partial \mathbf{u}}{\partial t} = -\left(\mathbf{u} \cdot \nabla\right) \mathbf{u} + v \nabla^2 \mathbf{u} - \frac{1}{d} \nabla p + \mathbf{f}$$





- + weather
- + location
 - + ...

Lots of data available



"Unreasonable Effectiveness of Data"

[Halevy, Norvig, Pereira 2009]

- Parts of our world can be explained by elegant mathematics:
 - physics, chemistry, astronomy, etc.
- But much cannot:
 - psychology, genetics, economics, etc.

- Enter: The Magic of <u>Big Data</u>
 - Great advances in several fields:
 - e.g. speech recognition, machine translation, Google

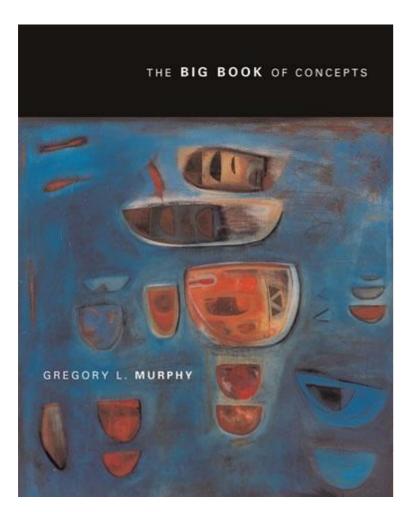
- A.I. for the postmodern world:
 - all questions have already been answered...many times, in many ways
 - Google is dumb, the "intelligence" is in the data

Are Categories Necessary?

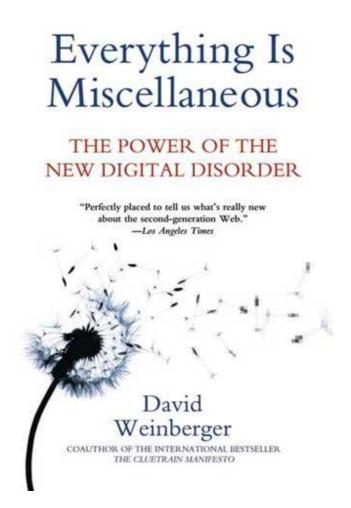
Alexei (Alyosha) Efros CMU

Joint work with Tomasz Malisiewicz

Acknowledgements



Murphy
Big Book of Concepts



Weinberger Everything is Miscellaneous

Talks by Moshe Bar; writings of Shimon Edelman

Many great discussions with many colleagues, especially Tomasz Malisiewicz, James Hays, and Derek Hoiem

Understanding an Image

Object naming -> Object categorization

Object categorization

sky

building

flag

banner

bus

face

street lamp

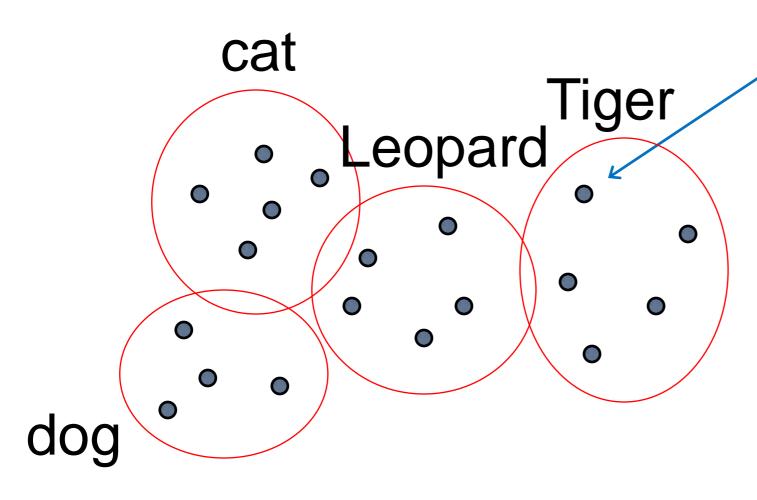
wall

bus

cars

Why Categorize?

- 1. Knowledge Transfer
- 2. Communication



Classical View of Categories

- Dates back to Plato & Aristotle
 - 1. Categories are defined by a list of properties shared by all elements in a category
 - 2. Category membership is binary
 - 3. Every member in the category is equal

Problems with Classical View

- Humans don't do this!
 - People don't rely on abstract definitions / lists of shared properties (Wittgenstein 1953, Rosch 1973)
 - e.g. define the properties shared by all "games"
 - e.g. are curtains furniture? Are olives fruit?
 - Typicality
 - e.g. Chicken -> bird, but bird -> eagle, pigeon, etc.
 - Language-dependent
 - e.g. "Women, Fire, and Dangerous Things" category is Australian aboriginal language (Lakoff 1987)
 - Doesn't work even in human-defined domains
 - e.g. Is Pluto a planet?

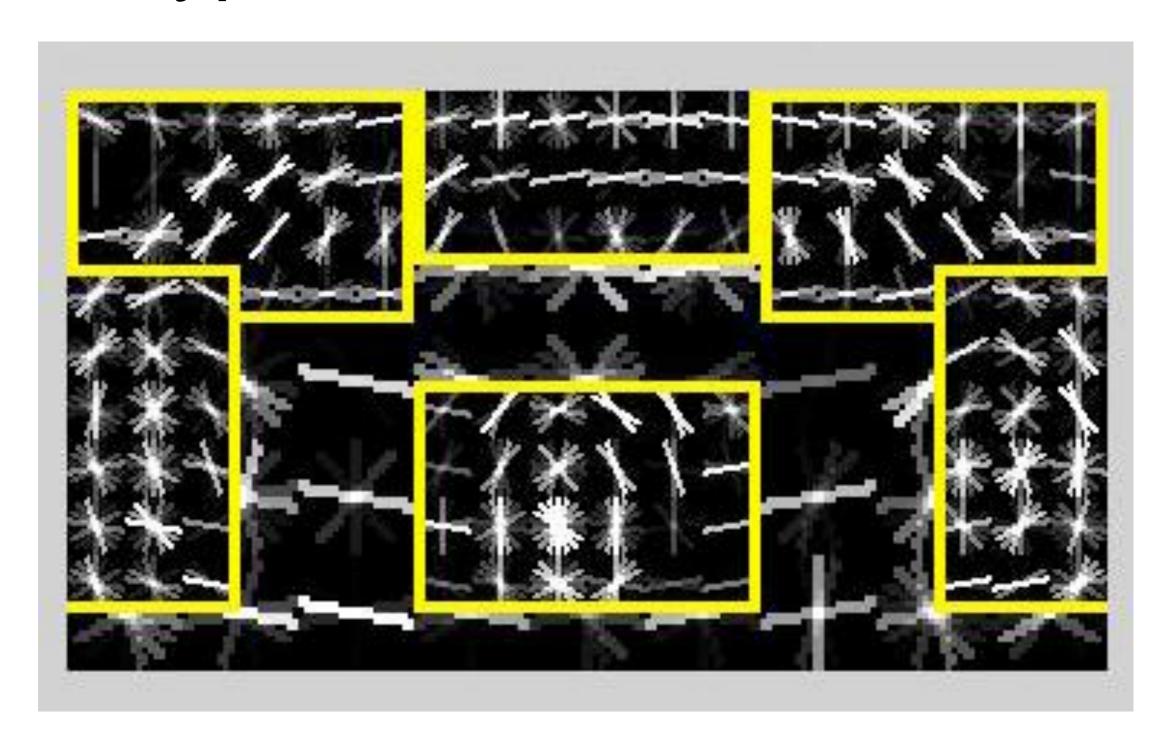
Problems with Visual Categories

 A lot of categories are functional

World is too varied

 Categories are 3D, but images are 2D

Typical HOG car detector



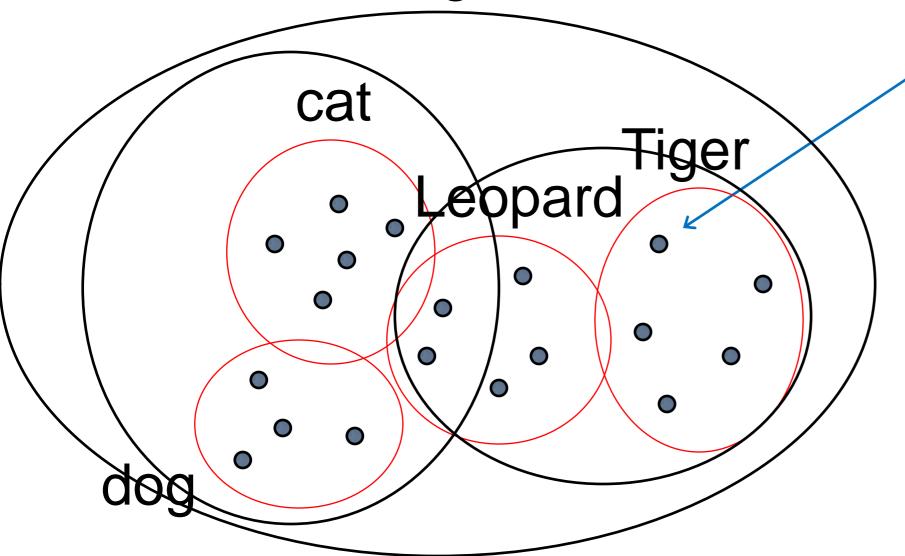
Felzenszwalb et al, PASCAL 2007

Why not?

Solution: hierarchy?

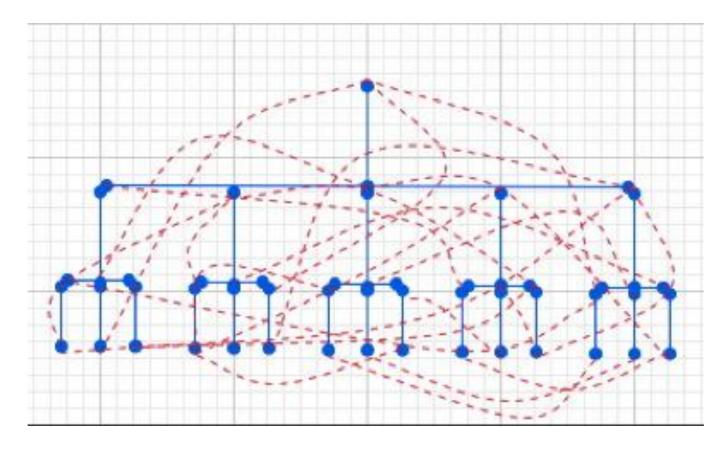
Ontologies, hierarchies, levels of categories (Rosch), etc.

WordNet, ImageNet, etc etc



Still Problematic!

- Intransitivity
 - e.g. car seat is chair, chair is furniture, but ...
- Multiple category membership
 - it's not a tree, it's a forest!



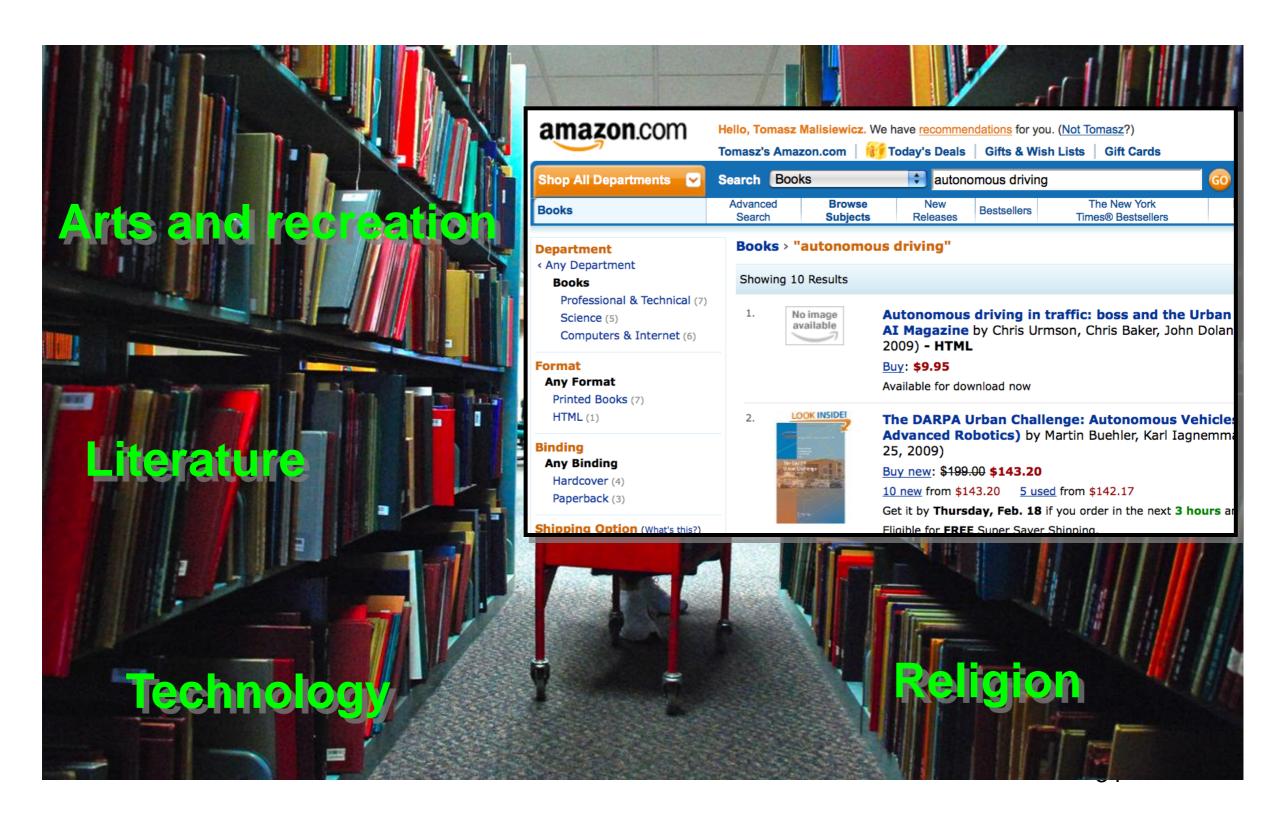
Clay Shirky, "Ontologies are Overrated"

Fundamental Problem with Categorization

Making decisions too early!

We should only categorize at run-time, once we know the task!

The Dictatorship of Librarians

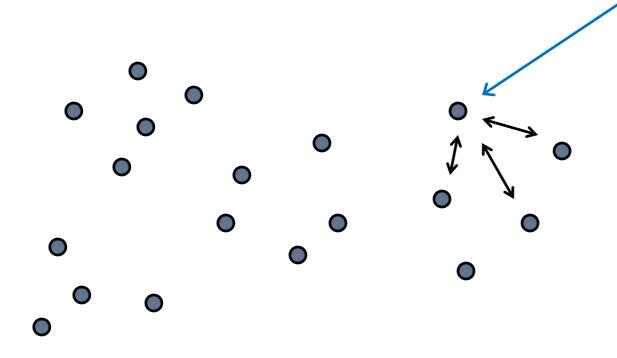


categories are losing...



On-the-fly Categorization?

- 1. Knowledge Transfer
- 2. Communication



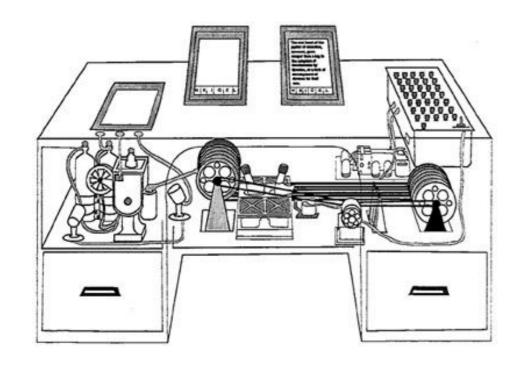
Association instead of categorization

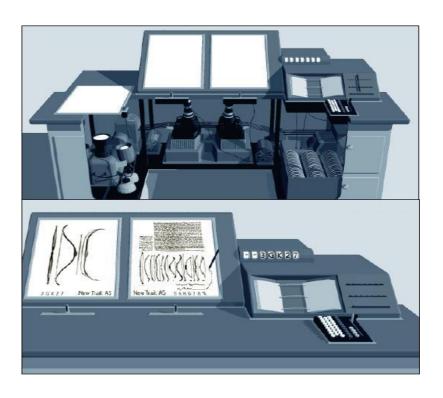
Ask not "what is this?", ask "what is this <u>like</u>"

- Moshe Bar
- Exemplar Theory (Medin & Schaffer 1978, Nosofsky 1986, Krushke 1992)
 - –categories represented in terms of remembered objects (exemplars)
 - -Similarity is measured between input and all exemplars
 - -think non-parametric density estimation
- Vanevar Bush (1945), <u>Memex</u> (MEMory EXtender)
 - -Inspired hypertext, WWW, Google...

Bush's Memex (1945)

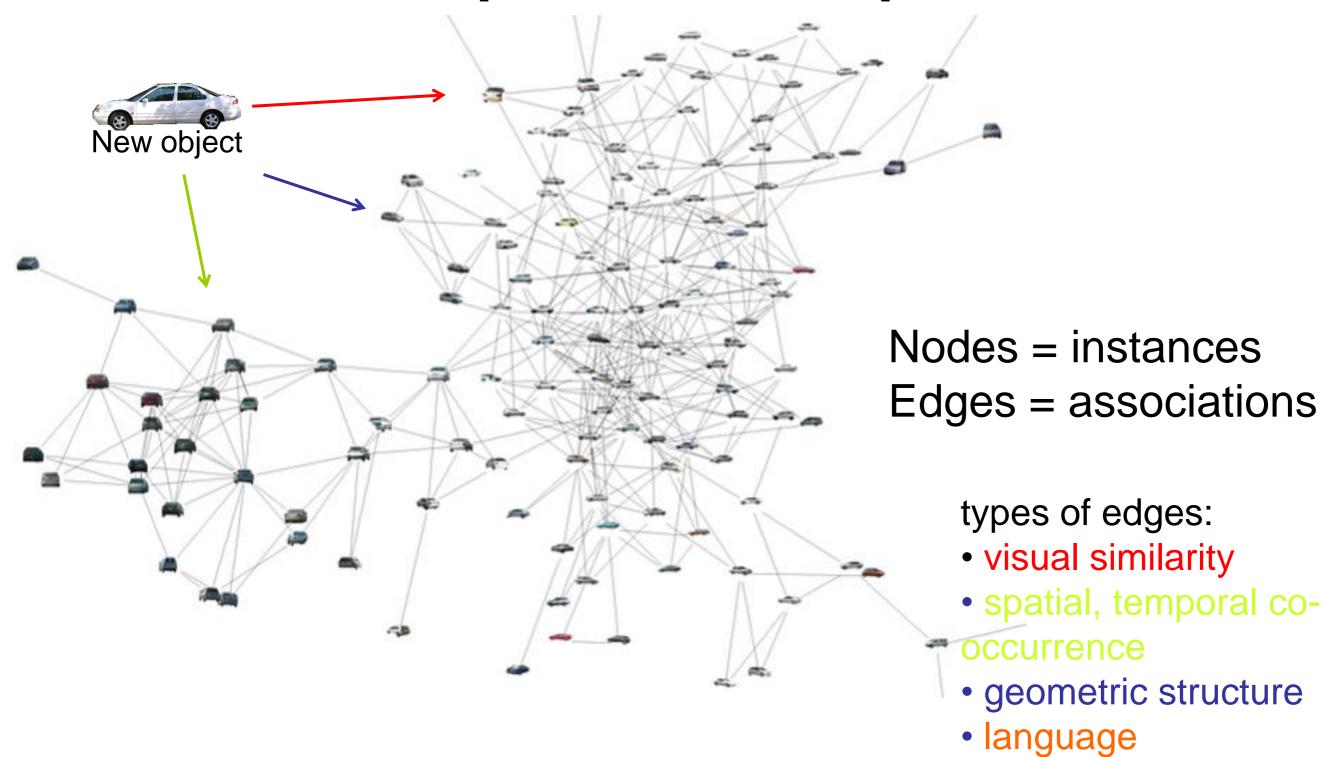
- Store publications, correspondence, personal work, on microfilm
- Items retrieved rapidly using index codes
 - Builds on "rapid selector"
- Can annotate text with margin notes, comments
- Can construct a trail through the material and save it
 - Roots of hypertext
- Acts as an external memory





Visual Memex, a proposal

[Malisiewicz & Efros]



• . .

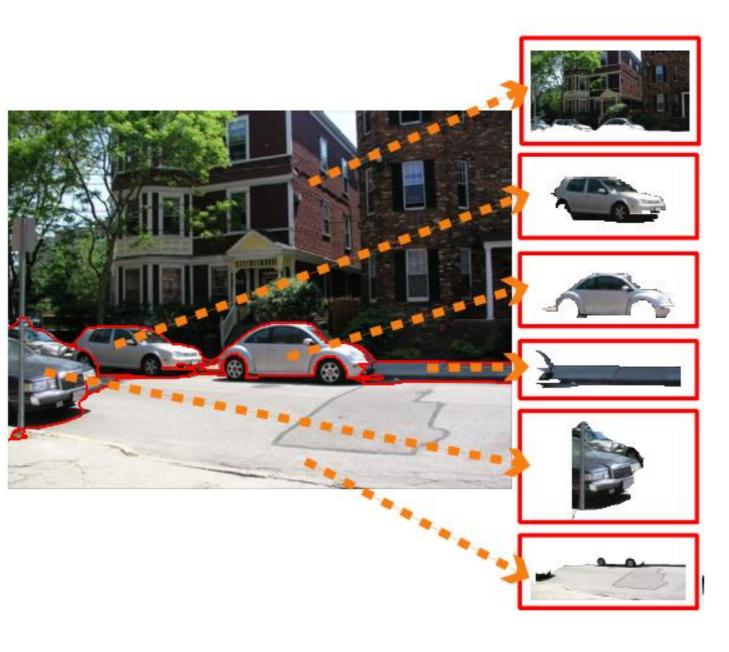
geography

"What is this?"

Input Image

He 2004, Tu 2004, Shotton 2006, Galleguillos 2008, Fei-Fei 2009, Gould 2009, etc.

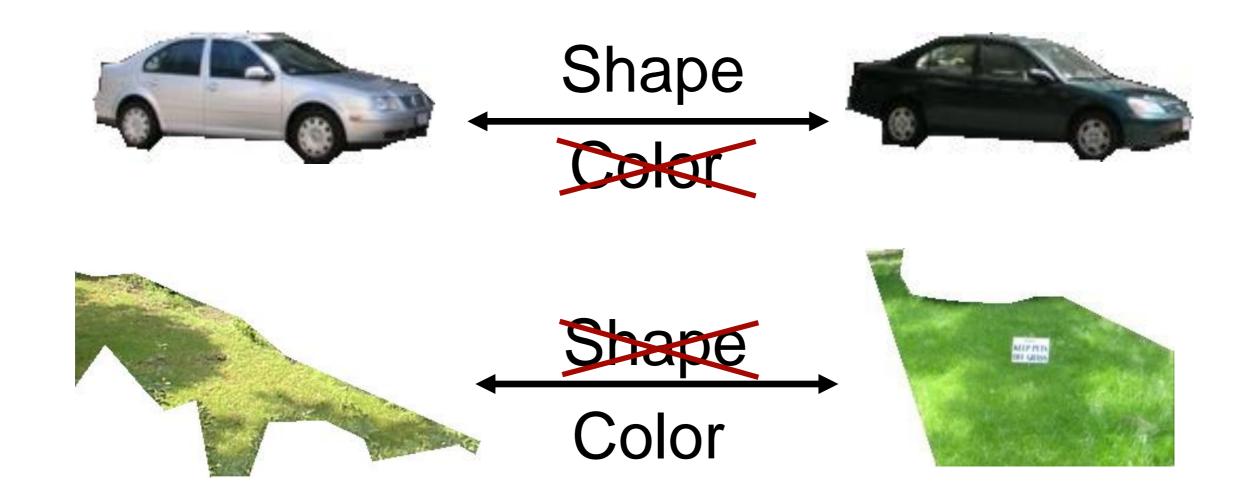
"What is this like?"



Malisiewicz & Efros, CVPR'08

Visual Associations

How are objects similar?

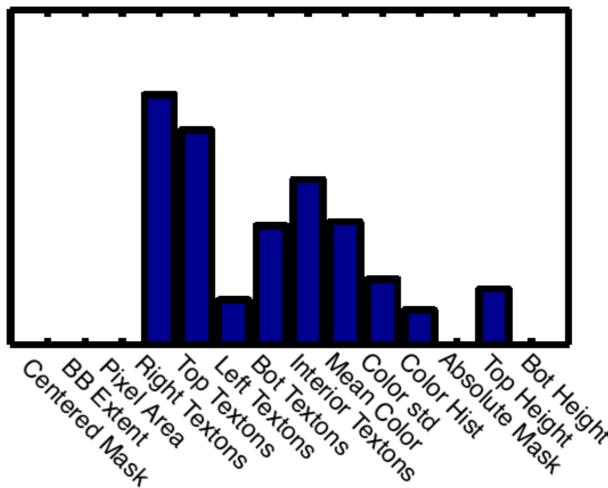


Distance "Similarity" Functions

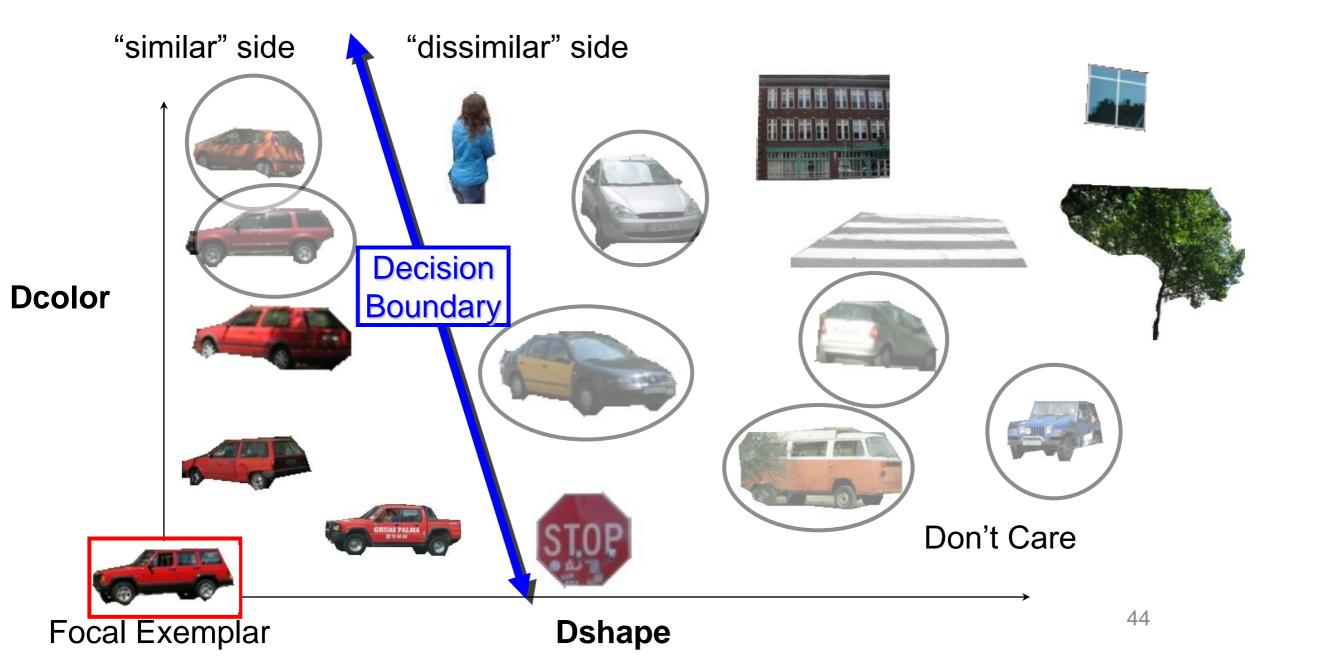
 Positive Linear Combinations of Elementary Distances Computed Over 14 Features

$$D_e(z) = \mathbf{w}_e \cdot \mathbf{d}_{ez}$$
Building e

Building e Distance Function



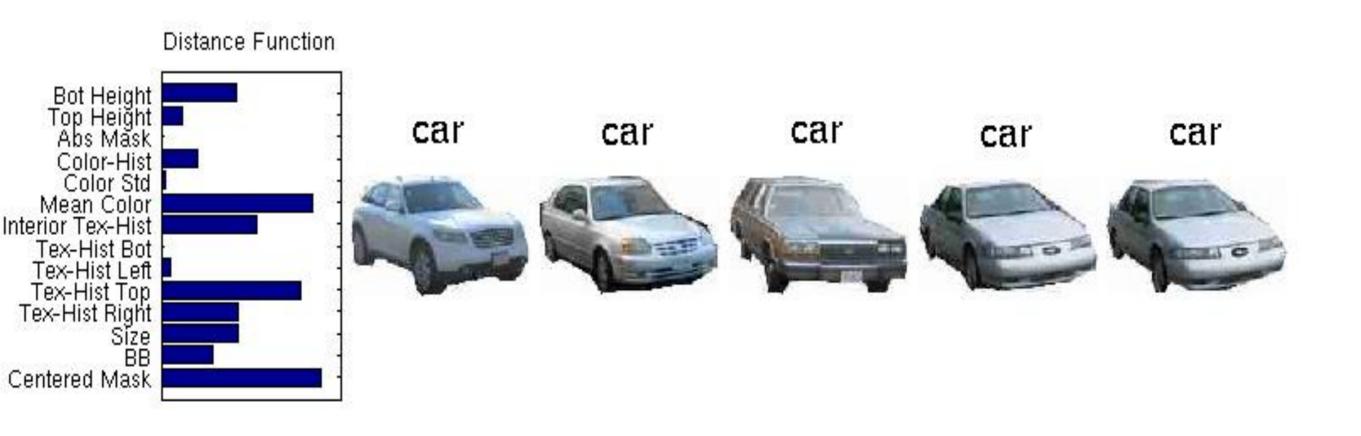
Learning Distance Functions



Visualizing Distance Functions (Training Set)

Car car suv car car

Visualizing Distance Functions (Training Set)



Labels Crossing Boundary

stop sign	sign	7.8%
pole	streetlight	6.7%
motorcycle	motorbike	6.2%
mountains	mountain	6.2%
ground grass	sidewalk	3.7%
grass	lawn	3.6%
road highway	road	3.4%
painting	picture	3.4%
sidewalk	road	3.2%
cloud	sky	3.1%
grass	ground grass	3.1%
mountain	mountains	2.7%

Table 2: Top dozen label confusions discovered after distance function learning.

Image Parsing with Context

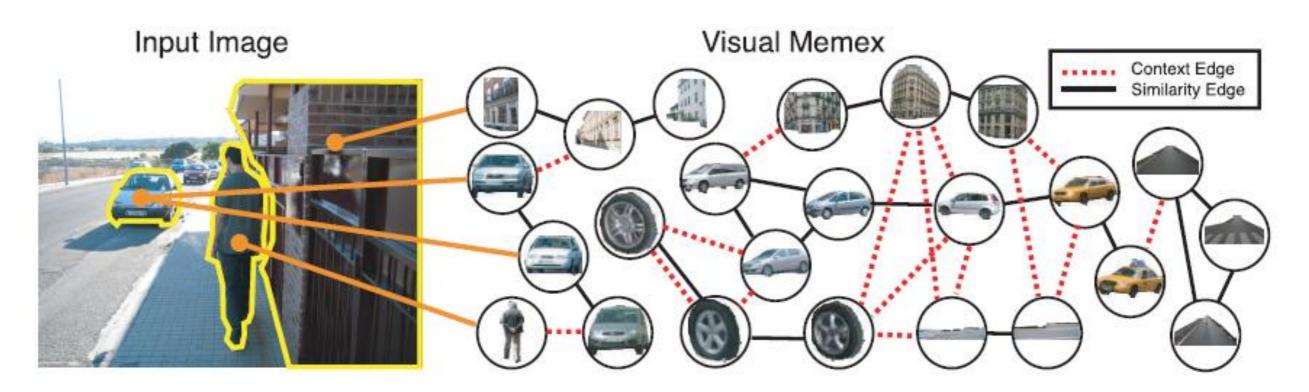


Figure 1: The **Visual Memex** graph encodes object similarity (solid black edge) and spatial context (dotted red edge) between pairs of object exemplars. A spatial context feature is stored for each context edge. The Memex graph can be used to interpret a new image (left) by associating image segments with exemplars in the graph (orange edges) and propagating the information.

Torralba's Context Challenge

Torralba's Context Challenge

Slide by Antonio Torralba

Torralba's Context Challenge

Slide by Antonio Torralba

Our Challenge Setup

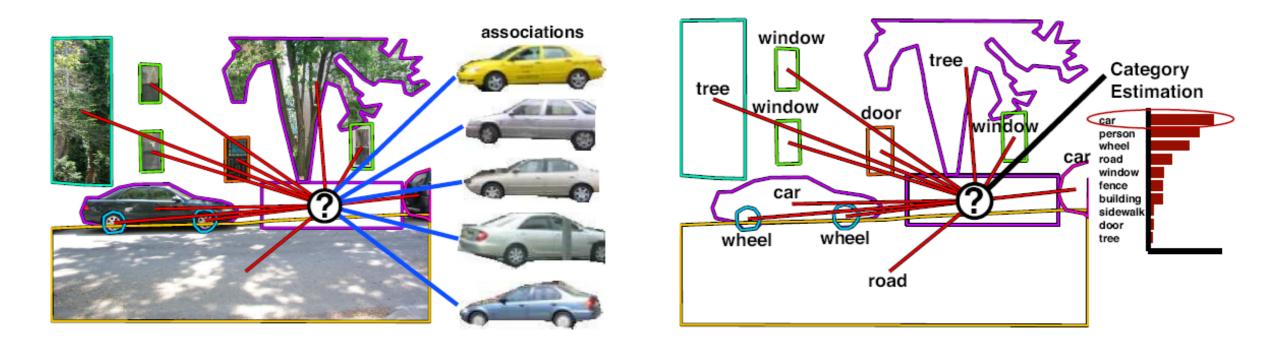


Figure 2: Torralba's Context Challenge: "How far can you go without running a local object detector?" The task is to reason about the identity of the hidden object (denoted by a "?") without local information. In our category-free Visual Memex model, object predictions are generated in the form of exemplar associations for the hidden object. In a category-based model, the category of the hidden object is directly estimated.

Malisiewicz & Efros, NIPS'09

3 models

Visual Memex: exemplars, non-parametric object-object relationships

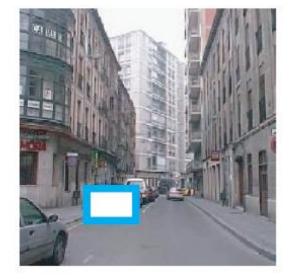
Recurse through the graph

Baseline: CoLA: categories, parametric objectobject relationships

Reduced Memex: categories, non-parametric relationships

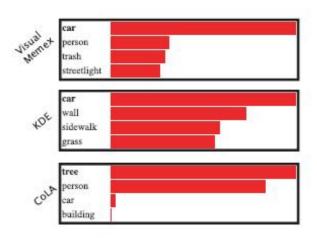
Qual. results

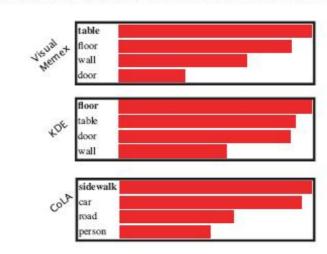
Input Image + Hidden Region

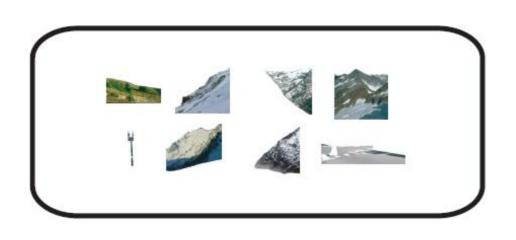


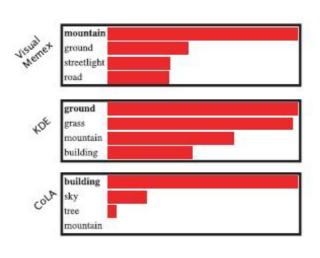
Visual Memex Exemplar Predictions

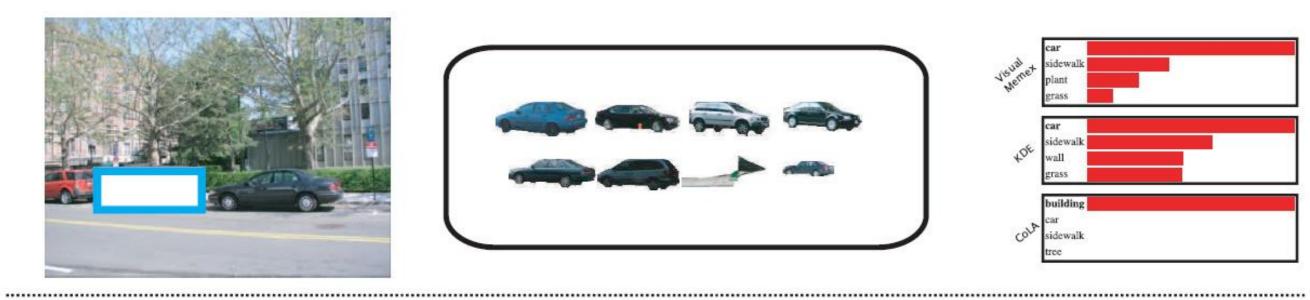
Categorization Results

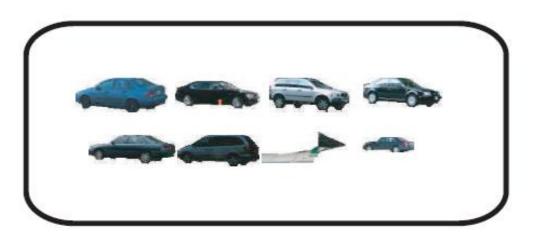


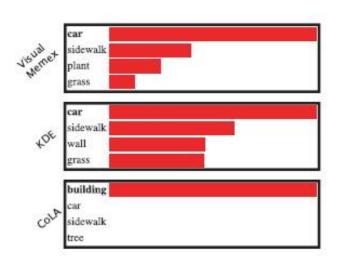


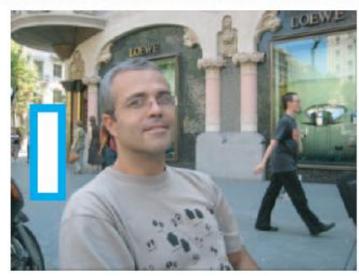


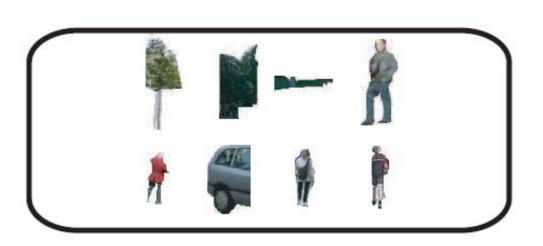


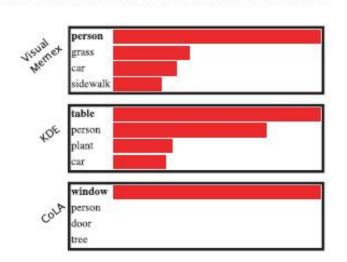


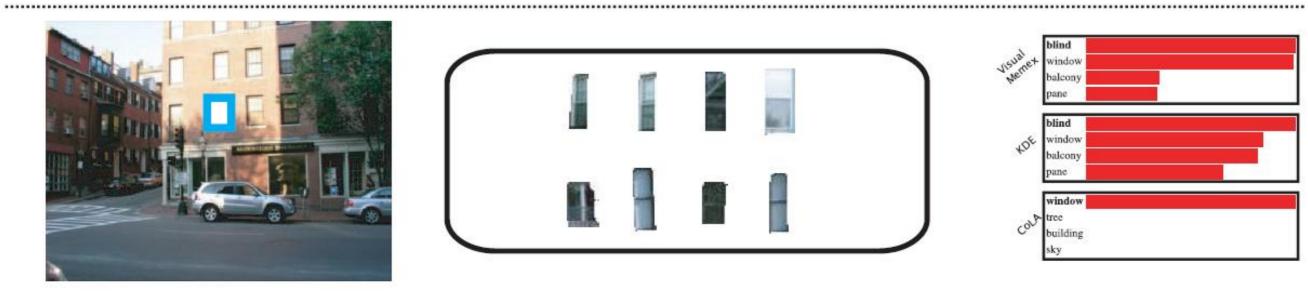


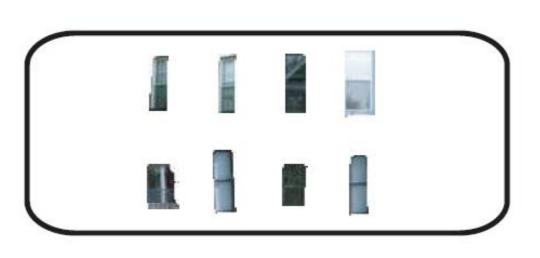


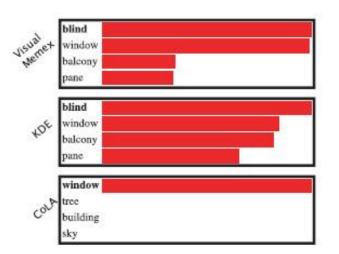












Quant. results

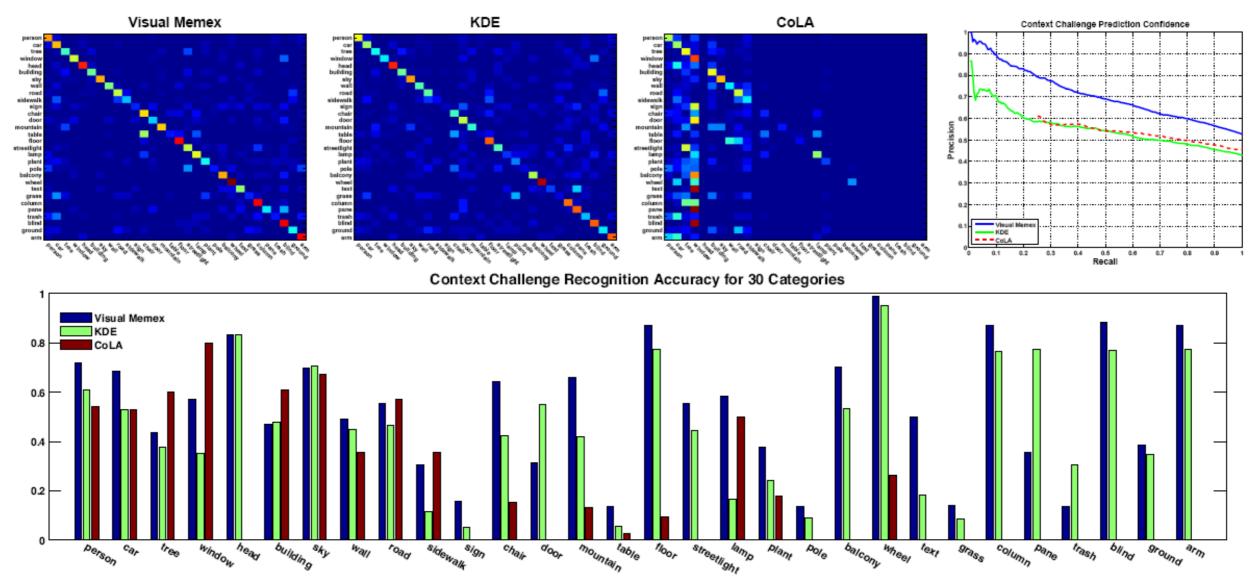
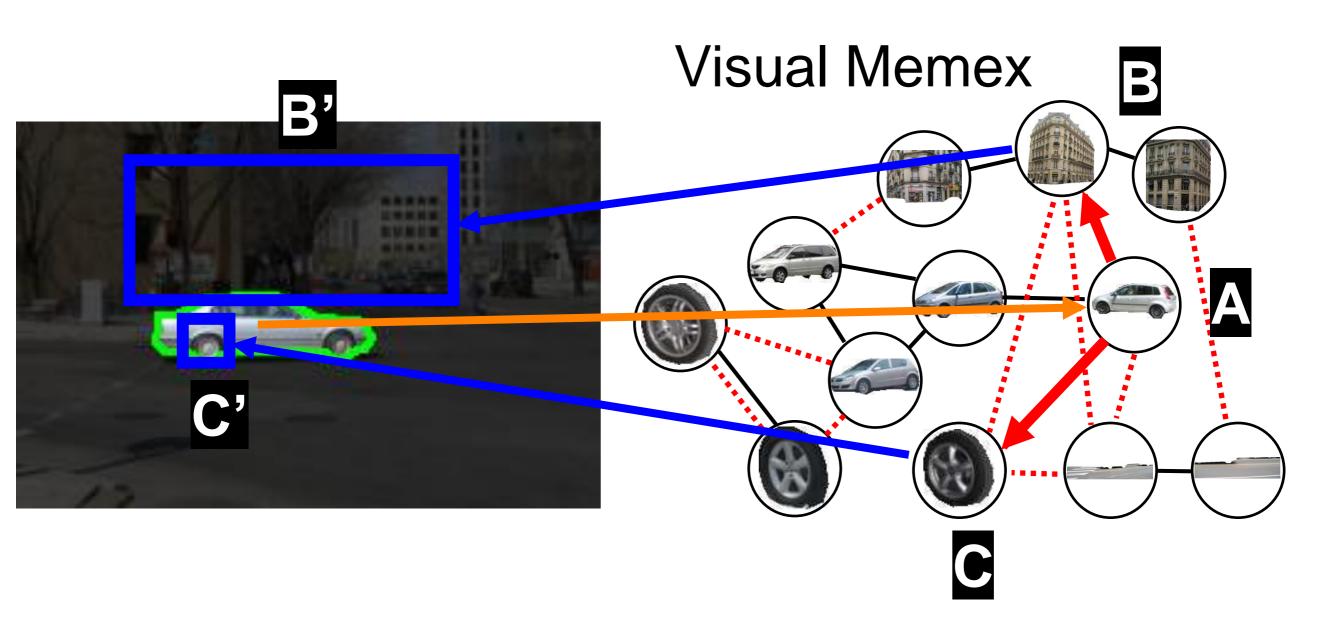


Figure 3: a.) Context Challenge confusion matrices for the 3 methods: Visual Memex, KDE, and CoLA. b.) Recognition Precision versus Recall when thresholding output based on confidence. c) Side by side comparison of the 3 methods' accuracies for 30 categories.

Next Step: top-down segmentation



Take Home Message

- Categorization is not a goal in itself
 - Rather, it is a means for transferring knowledge onto a new instance
- Skipping explicit categorization might make things easier, not harder
 - The "harder intermediate problem" syndrome
- Keeping around all your data isn't so bad...
 - you never know when you will need it

Questions?

