
Lecture 0: Computation Tree Logics
� Model of Computation

� Computation Tree Logics

� The Logic CTL�

� Path Formulas and State Formulas

� CTL and LTL

� Expressive Power of Logics

1

Model of Computation

a b

b c c

a b

a b

c

c c

b c

State Transition Graph or
Kripke Model

(Unwind State Graph to obtain Infinite Tree)

Infinite Computation Tree

2

Model of Computation (Cont.)

Formally, aKripke structureis a tripleM = hS;R; Li, where

� S is the set of states,

� R � S � S is the transition relation, and

� L : S ! P(AP) gives the set of atomic propositions true in each state.

We assume thatR is total (i.e., for all statess 2 S there exists a states0 2 S such that(s; s0) 2 R).

A path in Mis an infinite sequence of states,� = s0; s1; : : : such that fori � 0, (si; si+1) 2 R.

We write�i to denote thesuffix of � starting atsi.

Unless otherwise stated, all of our results apply only tofinite Kripke structures.

3

Computation Tree Logics

Temporal logics may differ according to how they handle branching in the underlying computation
tree.

In a linear temporal logic, operators are provided for describing events along a single computation
path.

In abranching-time logicthe temporal operators quantify over the paths that are possible from a
given state.

4

The Logic CTL�

The computation tree logic CTL� combines both branching-time and linear-time operators.

In this logic apath quantifiercan prefix an assertion composed of arbitrary combinations of the
usuallinear-time operators.

1. Path quantifier:

� A—“for every path”

� E—“there exists a path”

2. Linear-time operators:

� Xp—p holdsnexttime.

� Fp—p holds sometime in thefuture

� Gp—p holdsglobally in the future

� pUq—p holdsuntil q holds

5

Path Formulas and State Formulas

The syntax ofstate formulasis given by the following rules:

� If p 2 AP , thenp is a state formula.

� If f andg are state formulas, then:f andf _ g are state formulas.

� If f is a path formula, thenE(f) is a state formula.

Two additional rules are needed to specify the syntax ofpath formulas:

� If f is a state formula, thenf is also a path formula.

� If f andg are path formulas, then:f , f _ g, X f , and(f U g) are path formulas.

6

State Formulas (Cont.)

If f is astate formula, the notationM; s j= f means thatf holds at states in the Kripke structure

M .

Assumef1 andf2 are state formulas andg is a path formula. The relationM; s j= f is defined
inductively as follows:

1. s j= p , p 2 L(s).
2. s j= :f1 , s 6j= f1.
3. s j= f1 _ f2 , s j= f1 or s j= f2.
4. s j= E(g) , there exists a path� starting with

s such that� j= g.

7

Path Formulas (Cont.)

If f is apath formula, M;� j= f means thatf holds along path� in Kripke structureM .

Assumeg1 andg2 are path formulas andf is a state formula. The relationM;� j= f is defined
inductively as follows:

1. � j= f , s is the first state of� ands j= f .
2. � j= :g1 , � 6j= g1.
3. � j= g1 _ g2 , � j= g1 or � j= g2.
4. � j= X g1 , �1 j= g1.
5. � j= (g1 U g2), there exists ak � 0 such that

�k j= g2 and for0 � j < k, �j j= g1.

8

Standard Abbreviations

Thecustomary abbreviationswill be used for the connectives of propositional logic.

In addition, we will use the following abbreviations in writing temporal operators:

� A(f) � :E(:f)

� f � (true U f)

� G f � :F:f

9

CTL and LTL

CTL is a restricted subset of CTL� that permits only branching-time operators—each of the
linear-time operatorsG, F, X, andU must be immediately preceded by a path quantifier.

Example:AG(EF p)

LTL consists of formulas that have the formA f wheref is a path formula in which the only state
subformulas permitted are atomic propositions.

Example:A(FG p)

10

Expressive Power

It can be shown that thethree logicsdiscussed in this sectionhave different expressive powers.

For example, there is no CTL formula that is equivalent to the LTL formulaA(FG p).

Likewise, there is no LTL formula that is equivalent to the CTL formulaAG(EF p).

The disjunctionA(FG p) _ AG(EF p) is a CTL� formula that is not expressible in either CTL or
LTL.

11

Basic CTL Operators

There are eight basic CTL operators:

� AX andEX,

� AG andEG,

� AF andEF,

� AU andEU

Each of these can be expressed in terms ofEX, EG, andEU:

� AX f = :EX(:f)

� AG f = :EF(:f)

� AF f = :EG(:f)

� EF f = E[true U f]

� A[f U g] � :E[:g U :f ^ :g] ^ :EG:g

12

Basic CTL Operators

The four most widely used CTL operators are illustrated below. Each computation tree has the state

s0 as its root.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

g

g

g g g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M; s0 j= AG g M; s0 j= AF g
g

.

.

.
.
.
.

.

.

.
.
.
.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M; s0 j= EF g M; s0 j= EG g

13

Typical CTL Formulas
� EF(Started ^ :Ready): it is possible to get to a state whereStartedholds butReadydoes not

hold.

� AG(Req) AFAck): if a Requestoccurs, then it will be eventuallyAcknowledged.

� AG(AF DeviceEnabled): DeviceEnabledholds infinitely often on every computation path.

� AG(EF Restart): from any state it is possible to get to theRestartstate.

14

