
Lecture1: Symbolic Model Checking with BDDs

Edmund M. Clarke, Jr.
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Temporal Logic Model Checking

Specification Language: A propositional temporal logic.

Verification Procedure: Exhaustive search of the state space of the concurrent system
to determine truth of specification.

� E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. InLogic of programs: workshop, Yorktown Heights,
NY, May 1981, volume 131 ofLecture Notes in Computer Science. Springer-Verlag,
1981.

� J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. InProceedings of the Fifth International Symposium in Programming,
volume 137 ofLecture Notes in Computer Science. Springer-Verlag, 1981.

Why Model Checking?

Advantages:

� No proofs!!!

� Fast

� Counterexamples

� No problem with partial specifications

� Logics can easily express many concurrency properties

Main Disadvantage:State Explosion Problem

� Too many processes

� In digital hardware terms: too many latches

Much progress recently!!

Temporal Logic

a b

b c c

a b

a b

c

c c

b c

State Transition Graph or
Kripke Model

(Unwind State Graph to obtain Infinite Tree)

Infinite Computation Tree

Computation Tree Logics

Formulas are constructed frompath quantifiersandtemporal operators:

1. Path quantifier:

� A—“for every path”

� E—“there exists a path”

2. Temporal Operator:

� Xp—p holdsnexttime.

� Fp—p holds sometime in thefuture

� Gp—p holdsglobally in the future

� pUq—p holdsuntil q holds

The Logic CTL

In CTL each temporal operator must be immediately preceeded by a path quantifier.

The four most widely used CTL operators are illustrated below. Each computation tree
has initial states0 as its root.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

g

g

g g g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M; s0 j= AG g M; s0 j= AF g

g

.

.

.
.
.
.

.

.

.
.
.
.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M; s0 j= EF g M; s0 j= EG g

Typical CTL Formulas
� EF(Started ^ :Ready): it is possible to get to a state whereStartedholds but

Readydoes not hold.

� AG(Req) AFAck): if a Requestoccurs, then it will be eventuallyAcknowledged.

� AG(AF DeviceEnabled): DeviceEnabledholds infinitely often on every
computation path.

� AG(EF Restart): from any state it is possible to get to theRestartstate.

Model Checking Problem

LetM be the state–transition graph obtained from the concurrent system.

Let f be the specification expressed in temporal logic.

Find all statess of M such that

M; s j= f
and check if initial states are among these.

Efficient model checking algorithms exist for CTL.

� E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications.ACM Trans. Programming
Languages and Systems, 8(2):pages 244–263, 1986.

Explicit Traversal

Preprocessor Model Checker

(EMC)

CTL formulas

State Transition Graph

10 to 10 states4 5

True or Counterexample

Symbolic Model Checking

Method used by most “industrial strength” model checkers:

� usesboolean encodingfor state machine and sets of states.

� can handle much larger designs –hundreds of state variables.

� BDDs traditionally used to represent boolean functions.

Symbolic Model Checking with BDDs

Ken McMillan implemented a version of the CTL model checking algorithm using
Binary Decision Diagramsin 1987.

Carl Pixley independently developed a similar algorithm, as did the French
researchers, Coudert and Madre.

BDDs enabled handling much larger concurrent systems. (usually, anorder of
magnitude increasein hardware latches!)

� J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking:1020 states and beyond.Information and Computation,
98(2):pages 142–170, 1992.

� K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

Fixpoint Algorithms

EF p = p _ EX EF p

p

p

Fixpoint Algorithms (cont.)

Key properties ofEF p:

1. EF p = p _ EX EF p

2.U = p _ EX U impliesEF p � U
We writeEF p = Lfp U:p _ EX U .

How to computeEF p:

U0 = False

U1 = p _ EX U0

U2 = p _ EX U1

U3 = p _ EX U2

...

M; s0 j= EF p?

s

p

0

U0 = ;

M; s0 j= EF p?

s

p

0

U1 = p _ EX U0

M; s0 j= EF p?

s

p

0

U2 = p _ EX U1

M; s0 j= EF p?

s

p

0

U3 = p _ EX U2

Ordered Binary Decision Trees and Diagrams

Ordered Binary Decision Treefor the two-bit comparator, given by the formula

f(a1; a2; b1; b2) = (a1 $ b1) ^ (a2 $ b2);

is shown in the figure below:

b

a
2

1
b

a
2

bb

a
2

1
b

a
2

b b

a
2

1
b

a
2

bb

a
2

1
b

a
2

b
2 2 2 2 2 2 2 2

a 2
a 2

a
2

a
2

b
1

b
1

a
1

1 0 0 0 0 0 0 0 0 0 0 1

0

0

0

0 1

1

10

1

1

1

101

0

0

0

000

1

1

11

10

1 1 0 0

1 0 0 1

From Binary Decision Trees to Diagrams

An Ordered Binary Decision Diagram (OBDD)is an ordered decision tree where

� All isomorphic subtrees are combined, and

� All nodes with isomorphic children are eliminated.

Given a parameter ordering, OBDD is unique up to isomorphism.

� R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE
Transactions on Computers, C-35(8):677–691, 1986.

OBDD for Comparator Example

If we use the orderinga1 < b1 < a2 < b2 for the comparator function, we obtain the
OBDD below:

0

0

0

0

1

1

1

1

b
1

a
1

b1

a
2

b
2

b
2

1

0

1 0

0

1

Variable Ordering Problem

The size of an OBDD depends critically on the variable ordering.

If we use the orderinga1 < a2 < b1 < b2 for the comparator function, we get the
OBDD below:

a
1

a
2

b b

a
2

b b1 1 1 1

b b
2 2

1

0

0

1

1

10

0

0

1

0

11

1

0

0

1

0

1

1

0

a 2

a1

Variable Ordering Problem (Cont.)

For ann-bit comparator:

� if we use the orderinga1 < b1 < : : : < an < bn, the number of vertices will be

3n+ 2.

� if we use the orderinga1 < : : : < an < b1 : : : < bn, the number of vertices is

3 � 2n � 1.

Moreover, there are boolean functions that have exponential size OBDDs for any
variable ordering.

An example is the middle output (nth output) of a combinational circuit to multiply
two n bit integers.

Logical operations on OBDD’s
� Logical negation: :f(a; b; c; d)

Replace each leaf by its negation

� Logical conjunction: f(a; b; c; d) ^ g(a; b; c; d)

– UseShannon’s expansionas follows,
f � g = �a � (f j�a � gj�a) + a � (f ja � gja)

to break problem intotwo subproblems. Solve subproblems recursively.
– Always combine isomorphic subtreesandeliminate redundant nodes.

– Hash table stores previously computed subproblems

– Number of subproblems bounded byjf j � jgj.

Logical operations (cont.)
� Boolean quantification: 9a : f(a; b; c; d)

– By definition,

9a : f = f j�a _ f ja

– f(a; b; c; d)j�a: replace alla nodes by left sub-tree.

– f(a; b; c; d)ja: replace alla nodes by right sub-tree.

Using the above operations, we can build up OBDD’s for complex boolean functions
from simpler ones.

Symbolic Model Checking Algorithm

How to represent state-transition graphs withOrdered Binary Decision Diagrams:

Assume that system behavior is determined byn boolean state variablesv1; v2; : : : ; vn.

The Transition relationT will be given as a boolean formula in terms of the state
variables:

T (v1; : : : ; vn; v
0

1
; : : : ; v0
n

)

wherev1; : : : vn represents thecurrent stateandv0
1
; : : : ; v0
n

represents thenext state.

Now convertT to a OBDD!!

Symbolic Model Checking (cont.)

Representing transition relations symbolically:

a a, b

Boolean formula for transition relation:

(a ^ :b ^ a0 ^ b0)

_ (a ^ b ^ a0 ^ b0)

_ (a ^ b ^ a0 ^ :b0)

Now, represent as an OBDD!

Symbolic Model Checking (cont.)

Considerf = EX p.

Now, introduce state variables and transition relation:

f(�v) = 9�v0
[T (�v; �v0
) ^ p(�v0
)]

Compute OBDD forrelational producton right side of formula.

Symbolic Model Checking (cont.)

How to evaluate fixpoint formulas using OBDDs:

EF p = Lfp U: p _ EX U

Introduce state variables:

EF p = Lfp U: p(�v) _ 9�v0

[T (�v; �v0
) ^ U(�v0
)]

Now, compute the sequence

U0(�v); U1(�v); U2(�v); : : :
until convergence.

Convergence can be detected since the sets of statesUi(�v) are represented as OBDDs.

Notable Examples

The following examples illustrate the power of model checking to handle industrial
size problems.

They come from many sources, not just my research group.

� Edmund M. Clarke, Jeannette M. Wing, et al. Formal methods: State of the art and
future directions.ACM Computing Surveys, 28(4):626–643, December 1996.

Notable Examples–IEEE Futurebus+

� In 1992 Clarke and his students at CMU used SMV to verify thecache coherence
protocolin theIEEE Futurebus+ Standard.

� They constructed a precise model of the protocol and attempted to show that it
satisfied a formal specification of cache coherence.

� They found a number of previously undetected errors in the design of the protocol.

� This was the first time that formal methods have been used to find errors in an IEEE
standard.

� Although development started in 1988, all previous attempts to validate Futurebus+
were based on informal techniques.

Notable Examples–HDLC
� A High-level Data Link Controller (HDLC)was being designed at AT&T in Madrid.

� In 1996 researchers at Bell Labs offered to check some properties of the design. The
design was almost finished, so no errors were expected.

� Within five hours, six properties were specified and five were verified, using the
FormalCheck verifier.

� The sixth property failed, uncovering a bug that would have reduced throughput or
caused lost transmissions.

� The error was corrected in a few minutes and formally verified.

Notable Examples–PowerPC 620 Microprocessor
� Richard Raimi and Jim Learat Somerset used Motorola’s Verdict model checker to

debug ahardware laboratory failure.

� Initial silicon of PowerPC 620 microprocessor crashed during boot of an operating
system.

� With run time in seconds, Verdict produced example ofBIU deadlock causing the
failure.

� Paper on this published at 1997 IEEE International Test Conference.

Future Research Directions

Additional work needed onclassical model checking:

� Abstraction,

� Compositional Reasoning,

� Symmetry, and

� Parameterized Designs.

