
“SOMETIMES” AND “NOT NEVER” REVISITED:

ON BRANCHING VERSUS LINEAR TIME

(PRELIMINARY REPORT)

E. Allen Emersonl and Joseph Y. Halpern2

1. Computer Sciences Department, University of Texas, Austin, TX 78712
2. IBM Research Laboratory, San Jose, CA 95193

1. INTRODUCTION

Temporal logic ([PR57], [PR67]) provides a

formalism for describing the occurrence of events

in time which iS suitable for reasoning about

concurrent programa (cf. [PN77]). In defining

temporal logic, there are two possible views

regarding the underlying nature of time. One is

that time is linear: at each moment there is only

one possible future. The other is thst time has a

branching, tree-like nature: at each moment, time

~Y split into alternate courses representing

different possible futures. Depending upon which

view is chosen, we classify (cf. [RU71]) a system

of temporal logic as either a linear time logic in

which the semantics of the time structure is

linear, or a system of branching time logic based

on the semantics corresponding to a branching time

structure. The modalities of a temporal logic

system usually reflect the semantics regarding the

nature of time. Thus , in a logic of linear time,

1. This author was partially supported by a

University of Texas URI Summer Research Award

and a departmental grant from IBM.

2. Some of this work was performed while the

author was a Visiting Scientist jointly at

MIT and Harvard, where he was partially

supported by a grant from the National

Sciences and Engineering Research Council of

Canada and NSF grant MCS8O-107O7.

Permission to copy whhoutfeeall or part of this material kgranted
provided that the copies are not made ordktributed fordkect

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice isgivcn that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

temporal operators are provided for describing

events along a single time path (cf. [GPSS80]). In

contract, in a logic of branching time the

operators reflect the branching nature of time by

allowing quantification over possible futures (cf.

[AB80], [EC80]).

Some controversy has arisen in the computer

science community regarding the differences between

and appropriateness of branching versus linear time

temporal logic. In a landmark paper [LA801

intended to “clarify the logical foundations of the

application of temporal logic to concurrent

programs, ” Lamport addresses these issues. He

defines a single language based on the temporal

operators “always” and “sometimes”. Two distinct

interpretations for the language are given. In the

first interpretation formulae make assertions about

paths, whereas in the second interpretation they

make assertions about states. Lamport associates

the former with linear time and the latter with

branching time (although it should be noted that in

both cases the underlying time structures are

branching) . He then compares the expressive power

of linear time and branching time logic. Based on

his comparison and other arguments, he concludes

that, while branching time logic is suitable for

reasoning about nondeterministic programs, linear

time logic is preferable for reasoning about

concurrent programs.

In this paper, we re-examine Lamport’s

arguments and reach somewhat different conclusions.

We first point out some technical difficulties with

the formalism of [LA80]. For instance, the

definition of expressive equivalence leads to

paradoxical situations where satisfiable formulae

are classified

the proofs of

power do not

as equivalent to false. Moreover,

the results comparing expressive

apply in the case of structures

@ 1983 ACM0-89791-090-7/83/001 /0127 $00.75

127

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1983 ACM 0-89791-090-7…$5.00

generated by a binary relation like those used in

the logics of [FL79] and [BMP811. We give a more

refined basis for comparing expressive power that

avoids these technical difficulties. It does turn

out. that expressibility results corresponding to

Lamport’s still hold. However, it should be

emphasized that these results apply only to the two

particular systems that he defines. Sweeping

conclusions regarding branching versus linear time

logic in general are not justified on this basis.

We will argue that there are several different

aspects to the problem of designing and reasoning

about concurrent programs. While the specific

modalities needed in a logic depend on the precise

nature of the purpose for which it is intended, we

can make some general observations regarding the

choice between a system of branching or linear

time. We believe that linear time logics are

generally adequate for verifying the correctness of

pre-existing concurrent programs. For verification

purposes, we are typically interested in properties

that hold of all computation paths. It is thus

satisfactory to pick an arbitrary path and reason

about it. However, there are applications where we

need the ability to assert the existence of

alternative computation paths as provided by a

branching time logic. This arises from the

nondeterminism - beyond that used to model

concurrency - present in many concurrent programs.

In order to give a complete specification of such a

program, we must ensure that there are viable

computation patha corresponding to the

nondeterministic choices the program might make.

(h example is given in section 6.) Neither of

Lamport’s aystema is entirely adequate for such

applications.

In order to examine these issues more

carefully, we define a language, CTL*, in which a

universal or existential path quantifier can prefix

an arbitrary linear time asaertion. CTL* is an

extension of the Computation Tree Logic, CTL ,

defined in [CE81] and studied in [EH82]. This

language subsumes both of Lamport’s interpretations

and allows us to compare branching with linear

time. Moreover, the syntax of CTL* makes it clear

which interpretation is intended.

The paper is organized as follows: In section

2 we summarize Lamport’s approach and discuss its

limitation. In section 3 we present the syntax

and semantics of CTL*. We also define some natural

sublanguages of CTL* and compare their expressive

power in Section 4. In particular, we show that

(cf. Theorem 4.1) a language substantially less

expressive than CTL* still subsumes both of

Lamport’s interpretations. Section 5 then shows

how CTL* can be embedded in MPL [AB80] and PL

[HKP80]. Finally, section 6 concludes with a

comparison of the utility of branching and linear

time logic.

2. LAMPORT’S APPROACH AND ITS LIMITATIONS

For the reader’s convenience we summarize

Lamport’s approach here (we do take the liberty of

slightly altering his notation):

2.1 Definition. A structure M = (S,X,L) where---- -—-—.

S is a nonempty set of states,

X is a nonempty set of paths, i.e., a.- .-—.
nonempty aet of nonempty sequences of states,

and

L is a labelling which assigns to each state a set

of atomic propositions true in the state.

We use s,t,s’,tl, . . . etc. to denote states in S and

/
X,Y9X >Y1*... etc. to denote sequences of states

(with repetitions allowed) over S. A path x is a.—-—

nonempty sequence of states. We say that a path is

of length k, and write [xl = k, if it consists Of 1

+ k states. Thus , if x is finite then [xl = k for

some k ~ O,)and x has the fOrm (50,sk . If x

is infinite then [xl = @ and has the form

(so, s~, s~,...). If x can be either finite or

infinite it is sometimes convenient to write x =

(sO,sk..) or even x = (si) where, implicitly, O

<i < 1+1x1. We use first(x) to denote the first-——

state, ‘o> of x, and last(x) to denote the last—— .

state, sk, o f x. If x is infinite, last(x) does not

exist. If [Xl > 0, we define x’ = (sl,sk) .);

otherwise x’ = x. We define the suffixes of x, x 0=

x, x m+l = (Xm)’. If y’ # x is a suffix of x then y

is a prope~_ suffix of x. The prefixes and proper—————

prefixes of x are defined similarly. If x is a————.

finite sequence and y is a sequence, then the

concatenation of x and y, written XYY ia the—————

sequence obtained by appending Y to x. (E.g., if x

= (al,s2) and y = (s3,s4,s5) then xy =

(s1,s2,s3,s4,s5). Similarly, if x = x’s is a

finite path and y = SY’ is a path then the fusion————.

of x and y, written X“Y, is the path X’SY’ (the

fusion is undefined if last(x) # first(y)).

128

Remark: Various constraints can placed on the

set of paths X. In particular, Lamport [LA80]

requires that X be suffix closed meaning that if x——. -—-——-.

<X then x’ f& X. Similarly, we say that X is

fusion closed (cf. [PR79]) if Xlsyl < X and x2sy2——- .
k-X imply xlsy2 ~ X, We also say that X is limit-—.—
closed (cf. [AB80]) provided that if there is an-——---

infinite sequence of paths YOXO, YOYIXI, YOYIY2X2, . . .

~X and each yi is nonempty then the “limit” path

YOY1Y2. . . c x. In the subsequent sections, we

shall alao consider the case where X is required to

be ~–~nerable meaning that there is a (total,—.. —--
nonempty) binary relation R such that X consists

precisely of the infinite sequences (s0,s1,s2, . . .)

such that (s i,si+l) ~ R for all i. This is a

natural condition which has been assumed in many

previous papers including [FL79], [EC80], [BMP81],

and [EH82]. It is shown in [EM81] that the above

three closure properties are exactly equivalent to

R-generability. These closure properties are

important in ensuring that certain commonly

accepted identities are valid (see sections 4,5 and

[Eli81]).

2.2 Syntax. Lamport inductively ‘defines the

syntax of a class of temporal formulae:-—.-— —-—---

1. Any atomic proposition P is a temporal formula.

2. If p,q are temporal formulae then so are

pAq (“conjunction”), and ‘p (“negation”).

3. If p is a temporal formula then so are

[]p (meaning “always p“) and

–>p (meaning “sometimes p“).

2.3 Semantics. A temporal formula’s meaning

depends on whether it is interpreted as a formula

of branching time or a formula of linear time. For

the branching time interpretation, we write M,s I=B

p to indicate that formula p is interpreted as true

in structure M at state s. We define I ‘B

inductively:

2. M,s

M,s

3. M,s

M,s

.
B

.
B

‘B

‘B

P iff PC L(s)

P ~ q iff M,s [=B P and M,s (=B q

‘p iff not(M,s [=B p)

[1P iff ‘d path XE Xwith first(x) = s

~n~O, M,first(xn) I=Bp

->p iff V path X6 X with first(x) = s

%~0, M,first(xn) I=BP

Similarly, for the linear time

we write M,x I=L p to indicate that

formula p is true of path x. Again,

inductively:

1. M,x I=L P iff Pc L(first(x))

interpretation

in structure M

we define I=L

2. M,x [7P ~ q iff

M,x I=L ‘p iff not

M,x [=L P andM,x l% q

(M,x I=L P)

3. M,x /=L []p iff Vn~O, M,xn IT p

M,x [=L –>p iff % > 0, M,xn I=L p.

For both interpretations, the modality <>p is

introduced as an abbreviation for ‘[]-p and the

other logical connective are introduced as

abbreviations in the usual way.

Note that in the branching time

interpretation, a formula is true or false of a

state whereas in the linear time interpretation, a

formula is true or false of a path. Thus, we

cannot directly compare the expressive power of

linear time with branching time. In an attempt to

overcome this difficulty, Lamport extends I=B and

I ‘L to entire models:

2.4 Definition. Given structure M = (S,X,L)

temporal formula p is ~-valid under the b-ranching.———

time integretation, written M I=B p, provided that—-—-----

for every state s ~ S, M,a I=B p. Similarly, p is

M-valid under the linear time interpretation,-- -—--- — -- -- -— ______ ____ _______ -

written M I=L p, provided that for every path x

CX, M,x l=Lp.

Next, Lamport defines his notion of

equivalence:

2.5 Definition. Formula p under interpretation

X is strongly gqu&v:Ae_n~- to formula q under

interpretation Y, written p ss q, provided that for

every structure M, M I=xp iffM [=yq

Using this formalism, Lamport argues that

linear time and branching time have incomparable

expressive power:

2.6 Theorem ([LA80]). <>P in branching time is

not strongly equivalent to any assertion of linear

time.

2.7 Theorem ([LA80]). ->[]P in linear time is

not strongly equivalent to any assertion of

branching time.

We have several criticisms of the formalism.

Note that defining a formula as true or false of an

entire model causes useful information to be lost.

For example, in the branching time interpretation

although there is a model M with states S,S’ such

that M,s I=B ->P ~ ‘P and M,s’ I=B -(->P A -P),

there is no model M such that M I=B ->p ~ ‘p.

Similar remarks apply for the linear time

interpretation. Thus, we get

2.8 Proposition. In linear time or in

branching time, ->P ~ ‘P s~ ~a@~.

129

This shows that ‘s 1s too coarse an

equivalence relation in that it classifies

satisfiable formulae as equivalent to false.

Moreover, since the same notation is used for both

branching and linear time formulae, it is not clear

from the syntax which interpretation is intended.

This has the effect of obscuring the essential

difference between the two interpretations, namely,

that linear time formulae make assertiona about

paths and branching time formulae make assertions

about states. It also causes difficulties when

translating from English into the formalism.

We also disagree with Lamport’s conclusion

that linear time logic is superior to branching

time logic for reasoning about concurrent programs.

Lamport gives two specific arguments to justify

this claim:

1. To establish certain liveness properties of a

concurrent program, it is frequently

necessary to appeal to some sort of fair

scheduling constraint such as strong eventual

fairness (which means that if a process is

enabled for execution infinitely often, then

eventually the process must actually be

executed). This constraint can be expressed

in linear time logic by the formula

(->[] ‘ENABLED) V ->EXECUTED. However, it is

not expressible in branching time logic.

2. In proving a Program correct, it is often

helpful to reason using the principle that,

along any path, either property P is

eventually true or is always false. This

amounts to assuming an axiom of the form ->P

V []-P wh~ch is M-valid for all models M

under the linear time interpretation, but not

under the branching time interpretation.

The first observation is certainly true for

the particular systems that Lamport has defined.

However, by using a branching time logic with

appropriate operators (such as the “infinitary”

quantifiers used in [EC801) these assertions can be

easily expressed. Indeed, by adding enough

modalities to a branching time logic, any assertion—.

of Lamport’s linear time can be expressed as

described in section 4. In regard to the second

point, it is true that the given formula is valid

(i.e., true in all models) under the linear time

interpretation but not under

interpretation. However, the

correct translation of the

formalism under the branching

the branching time

formula is not a

principle into the

time interpretation.

We believe that this is an instance of the

confusion caused by the use of the same syntax for

both interpretations. Again, it is possible to

write a formula in a branching time system which

accurately renders the principle as shown in

section 3.

3. A UNIFIED APPROACH

In this section we exhibit a uniform formalism

for comparing branching with linear time that

avoids the technical difficulties of Lamport’s and

allows us to examine the issues more closely. To

illustrate our approach, we describe a language,

CTL*, which subsumes Lamport’s branching and linear

time systems as well as UB [BM??81] and CTL ([EH82],

[cE81]). CTL* is closely related to MPL [AR80].

(CTL* is also used in [cEs831.) In CTL* we allow a

path quantifier, either A (“for all paths”) or E

(“for some paths”), to prefix an assertion p

composed of arbitrary combinations of the usual

linear time operators G (“always”), F

(“sometimes”), X (“nexttime”), U (“until”), as well

as the infinitary state quantifiers of [EC80], ?

(“infinitely often”), ~ (“almost everywhere”).

3.1 Syntax. We inductively define a class of

state formulae (true or false of states) and path

formulae (true or false of paths):

S1.

S2 .

S3 .

PI.

P2 .

P3a.

P3b.

P4a.

P4b.

P5a.

P5b .

are

Any atomic proposition P is a state formula.

If p,q are state formulae

then so are p ~ q, ‘p

If p is a path formula

then Ap, Ep are state formulae

Any atomic proposition P is a path formula

If p,q are path formulae

then so are p ~ q, ‘p

If p is a state formulae

then Gp, Fp are path formulae

If p is a path formulae

then Gp, Fp are path formulae

If p,q are state formulae

then Xp, (p U q) are path formulae

If p,q are path formulae

then Xp, (p U q) are path formulae

If p &s a state formula

then Fp, Gp are path formulae

If p is a path formula

then~p, tip are path formulae

Remark: The other truth-functional connective
introduced as abbreviations in the usual way.

As we shall see, .we could take the view that Ap

130

abbreviates ‘E-p, Fp abbreviates (true. U p), Gp

abbreviates ‘F-p, %~fa:breviates G@}~~~ ~ Fp),

and 8P abbreviates - . Thus , we could give a

substantially more terse syntax and semantics for
our language by defining all the other operators in
terms of just the primitive operators E, X,U, -, and

A. Also, we could consider state formulae as a

special case of path formulae whose truth value
depends on the first state of the path and thus

view all formulae as path formulae. This is
essentially what is done in PL (cf. [HKP80]) and

also leads to a slightly easier formulation of the
syntax and semantics. Howe ve r, like Abrahamson
[AB80] , we consider the distinction between
quantification over states and over paths an
important one that should be maintained. Moreover,

this approach makes it easier to give the syntax of
each of the sublanguages that we consider.

The set of state formulae generated by the

above rules forms the language CTL*. We, also

consider a number of other languages generated by

some combination of the above rules: The set of

path formulae generated by rules Pl,2,3b gives the

language L(F, G), and the set of state formulae

generated by rules S1-3, P3a yields the language BT.

As tie shall see, L(F,G) corresponds precisely to

Lamport’s linear time interpretation and BT

corresponds precisely to Lamport’s branching time

interpretation. The set of path formulae generated

by rules Pl,2,3b,4b corresponds to the language

L(F,G,X,U) used in many applications (cf. [GPSS80],

[Mw81]). The set of state formulae generated by

rules S1-3, P3a,4a corresponds to the language CTL

used in [CE81]. We define the language ECTL to be

the set of state formulae generated by rules

S1-3, P3a,4a,5. ‘, CTL+, andWe can then define BT

ECTL+ to be the set of state formulae generated by

adding the rule P2 to the rules for BT, CTL, and

ECTL, respectively. CTL+was considered in [EH821

and ECTL+ is essentially the language studied in

[EC80] . Both ECTL and ECTL+ provide us with an

ability to make assertions about fair computations.

3.2 Semantics. We write M,s 1= p (M,x {= p) to

mean that state formula p (path formula p) is true

in structure M at state s (of path x,

respectively). When M is understood, we write

simply s 1= p (x 1= p). We define 1= inductively:

S1. s 1= P iff P6 L(s)

S2 . s I=p A q

s [=-p iff

S3 . s /=Ap iff

s 1= Ep iff

iffsl=pandsl=q

not (s 1= p)

for every path xE”X

with first(x) = s, X[=p

for some path x~ X

with first(x)

P1. x 1= p iff P e L(first(x))
P2. x 1= P ~ q iff x 1= p and

x l=-P iff not (X I=p)

. S,x[=p

X[=q

P3a. x 1= Gp iff for all i LO, first(xi) 1= p

x 1= Fp iff for some i~O, ~irst(xi) 1= p

P3b. x [= Gp iff for all i > 0, X1 I=p—

x I=FP iff for some i > 0, xi [=p

P4a. x 1= Xp iff [xl > 0 and–first(xl) 1= p

x 1= (P U q) iff for some i > 0, first(xi) 1= q—
and for all j J_ O

[j<i implies first(xj) 1= p]

P4b. x [= Xp iff Ix(> 0 and X1 1= p

x 1= (PfJq) iff for some i >0, xi I=q-.

P5a. x I=Yp iff

x l=~piff

P5b. x [=~p iff

x I=%p iff

and for all j > 0

[j<i implie; xj [=p]

1x1 =@and for infinitely many

distinct i, first(xi) [= p

for all but a finite number of i,

first(xi) 1= p

1x1 =~and f or infinitely many

distinct i, xi [= p

for all but a finite number of i,

Xil=p ,

It is easy to check that all the equivalences

mentioned in the remark in section 3.1 hold.

Observe that the following equivalences establish

the claimed correspondences between Lamport’s

linear time and L(F,G) and between Lamport’s

branching time and BT:

M,x l~L [1P iff M,x [= GP

M,x [=L ->p iff M,x 1= Fp

M,S {=B []P iff M,S 1= AGp

M,s I=B ->P iff M,s 1= AFP

Note that under the linear time interpretation

the formula discussed in the previous section, ->P

v [I-P, corresponds to the L(F,G) formula FP

V G-P which is clearly valid. Under the branching

time interpretation it corresponds to AFP V AG-P

which is not valid. However, the valid BT+ formula

A(FP V G“’P) (obtained by simply prefixing the

L(F,G) formula with A) does capture the intended

principle.

Clearly, a direct comparison of linear time

(i.e. path) formulae with branching time (i.e.

state) formulae is impossible. As we have seen,

Lamport’s approach of defining a formula as true or

false of an entire structure leads to technical

problems . How then can we compare linear time with

branching time? Since in program verification

applications, there is an implicit universal

quantification over all possible futures when a

linear time assertion is used, we associate with

every path formula p the state formula Ap and ask

whether this is expressible in a given branching

time logic. Thus, we have the following

definition:

131

3.3 Definition Given any language L of path

formulae we define the language of associated state

formulae B(L) = {Ap : p 6 L}. (Note that B(L) is

not closed under negation or disjunction (cf.

[AB80]).)

On this basis, we can compare any linear time

logic L with branching time logic B by first

converting L into the associated branching time

logic B(L). This time, however, equivalence of the

branching time formulae is measured by the “usual”

notion:

3.4 Definition. Given state formulae p,q we

say that p is equivalent to q, written p z q,

provided that for every structure M, for every

state s of M, M,. (=P iff M,s I=q.

It is easy to check that z is an equivalence

relation which refines ~g and avoids the problems

of Proposition 2.8. In fact, we have the following

results which clarify the relation between s and

=s :

3.5 Proposition. For any path formula p,

p SS Ap.

Proof : Let M = (S,X,L) be an arbitrary

structure. We show M [= p iff M [= Ap. If M [= p

then for all x 6 X, M,x [= p. So for all s ~ S,

M,. 1= Ap and thus M [= Ap. Conversely, if M [= Ap

then for all a e S, M,. [= Ap and for all XC X

starting at s, M,x 1= p. Since each x & X starts at

some s s, M,x [=P for all x6X. Thus, M 1= P. O

3.6 Proposition. For any state formulae p,q,

p ~a q iff AGp E AGq.

Proof: (=>:) Assume P s q. It will suffice to

show that M,s 1= AGp implies M,. 1= AGq because, by

a symmetric argument, we can then conclude

AGp E AGq. So suppose M,s 1= AGp where M = (S,X,L)

is an arbitrary structure and s < S. Define X’ =

{x ~ X : x starts at s}. If X’ is empty, then

trivially M,s 1= AGq as desired. Otherwise, define

M’ = (S’,X’,L’) with S’ = {s’~ S : s’ appears on

some x’ e X’} and L’ = L/S. Note that for any

state formula r, M,. /= AGr iff M’,s != AGr iff

Vs’e S“, (M’,s” [= r). Taking r=p, we get kfs’

~S’, M’,s’ 1= P. Since p ~s q, VS’& S’, we have

M’, s’ I=q. Now take r=q, to see that M,s 1= AGq as

desired.

(<=:) Assume AGp ~AGq, i.e. M,. 1= AGp iff

M,. [= AGq for all M and s in M. It will suffice to

show that M 1= p implies M 1= q as a symmetric

argument will yield p SS q. NOW suppose M 1= p

where M = (S,X,L). Then Vs & S, we have M,s 1= p

whence ~s E S, we also have M,s 1= AGp. Since AGp

= AGq, ~S ~S, M,s [= AGq and M,s 1= q. Thus M

1= q as desired. D

3.7 Corollary. For any path formula p and

state formula q, p ES q iff AGAp s AGq.

Finally, we compare the expressive power of

two branching time languages as follows:

3.8 Definition. We say that L2 is at least ~s-

ex~ressive as L1, written Ll ~ L2, provided that.- .— ---- .—

for every p 6 LI there exists q~ L2 such that p s

q. We say that LI is exactly as expressive as L2,—.

written Ll = L2, provided L1 ~ L2’and L2 ~ L1.

Finally, LI is strictly Qss_ expressive ~~:. L2 ,

written L1 < L2, provided L1 ~ L2 and L1 ~ L2.

Using this formalism, in the next section we

compare the relative expressive power of the

branching time languages defined above. We show

that the following picture describes their relative

expressive power:

B(L(F, G,X,U)) < ~CTL*

B(L(:G)) <AECTL+

ECTL

‘BT+

BT

where any two languages not connected by a chain of

<’a and s’s are of incomparable expressive power.

4. EXPRESSIVENESS EESULTS

In proving our expressibility results, we

asaume that all structures are R-generable. Without

such an assumption even rudimentary equivalences

such as EFEFP s EFp do not necessarily hold. Our

“inexpressibility” results are stronger than those

Lamport obtains in that ours apply in the case of

R-generable structures as well as a~ffix-clOsed

structures whereas his apply only to suffix-closed

structures.

Our first result shows that Lamport’s linear

time system is expressible in the branching time

logic ECTL+:

132

4.1 Theorem. B(L(F,G)) ~ECTL+.

Proof: This proof involves a complicated

induction on the structure of B(L(F,G)) formulae.

Details are left to the appendix . 0

However, if we add the nexttime operator the

situation changes:

4.2 Theorem. The formula A[F(P ~ XP)] is not

equivalent to any formula q ~ ECTL+.

Proof: We inductively define two sequences

M1,M2,M3, . . . and Nl, N2, N3, . . . of models as

follows. Define Ml,Nl to have the grapha shown

below

d,&

where in Ml, al I=P, bl I=P, dl l=-p and inNl~

al 1= P, and dl 1= ‘P.

Suppose we have defined Mi and Ni. Then Mi+]

and Ni+~ have the following graphs

where in both Mi+l and Ni+l, ai+l 1= p> bi+l 1= ‘p>

and M~, N; are copies of Mi, Ni, respectively.

It should be clear that

(1) for all i, Mi,ai I= AIF(P ~ XP)] and

Ni,ai 1= ‘A[F(P A XP)].

We will also show that

(2)

(3)

For any ECTL+ formula p there is a CTL

formula q which is equivalent to p over

these two sequences of models. That is, for

all i and all states s in Mi,

Mi,s [= p s q, and similarly for Ni.

For any CTL formula p, with Ipl < i,

Mi,ai I=P iff Ni,ai I=P.

To see that the result follows, auppoae that

A[F(P A XP)I is equivalent to some ECTL+ formulae

p. Then by (2) above, there is a CTL formula p’

equivalent to p over these models. Now (pJl = i

for some i. Then Mi,ai 1= A[F(P A XP)] which, by

supposition and (2), implies Mi,ai [= p’. By (3)

this implies Ni,ai (= p’, which implies, again by

supposition and (2), that Ni,ai [= A[F(P A Xp)].

But this contradicts the fact (1) above that

Ni,ai [=-A[F(P A XP)].

The details of the proof for (2) and (3) are

provided in the appendix. D

Similar combinatorial techniques can also be

used to prove tbe following two theorems:

+ formula E[fp A ~Ql ‘s
4.3 Theorem. The ECTL

not equivalent to any formula q & ECTL.

Proof: Left to the appendix. o

4.4 Theorem. The ECTL formula E~P is not

equivalent to any formula q ~ CTL+.

Proof: Left to the full paper. o

Theorem 4.4 also follows from the results of

[EC80] which depend on recursion-theoretic

techniques. Howe ve r, such techniques will not

suffice to establiah Theorem 4.3. Thus , the

combinatorial proof techniques used here seem to

provide a sharper tool than does recursion theory

in applications such as this.

The following theorem shows that existential

quantification over paths cannot be expressed with

only universal quantification as provided in the

languages of the form B(L(-)):

4.5 Theorem. The BT formula EFp ‘s ‘ot

equivalent to any B(L(F,G,X,U)) formula.

Proof: Suppose EFP s Aq for some linear time

formula q over F,G,X,U. Since ‘EFp is satisfiable,

it must be that ‘q is satisfiable. Thus M,x 1= ‘q

for some structure M = (S,X,L) with X = {x}. Add a

successor s’ to s = first(x) which satisfies P to

get a new structure. That is, let M’ = (S”,X’,L’)

where S’ = s u {s’}, x’ = x ~ {ss’}> L’(s) =

133

L(s) for se S and L’(s’) = {P}. Then M’,s 1= EFP

and, by the supposed equivalence, M’,s 1= Aq. But

then M’,x [= q and also M,x 1= q, a contradiction.

o

+ followsThe portion of the diagram below CTL

from the results in [EH82].

5. RELATION TO PL AND MPL

We assume that the reader is familiar with PL

(see [HKP80] for details). We can translate CTL*

into PL in the following way: To each CTL*

structure M = (S,X,L), we associate the PL

structure Mt = (S, (=,R) where the set of paths of

atomic program A, RA , is equal to X, and for any

atomic proposition P, Mt,s 1= P iff M,s [=P. We

can then give a translation of a CTL* formula p

into an equivalent PL formula pt. We define the

translation inductively, taking the primitive
*

temporal connective of CTL to be E, X, and U

(c,f. the remark in Section 3.1):

Pt = p for atotic propositions p

(-P)t =-(et)

(P A q)
t=pt~qt

(p Uq)t = qt v (Pt ~f.qt)

(Ep)t =:-(<A>pt)

(Xp) t = false ~f_ p t
—---—

(Note this is equivalent to

(~pt))

Then by a straightforward induction on the

structure of CTL+ formulae we can show

5.1 Proposition. For all x ~ X, M,x 1= p iff Mt,x

l=pt and forallsc S, M,s l=piff Mt, (s) [= pt.

Note (p U q)t s qt or (pt suf qt) since the U.——

operator considers the current path while the suf.—7.

operator only depends on proper suffixes. Ep is a

state formula; since in PL we have only path

formulae, we force the truth of the formula to

depend only on paths starting at the first state.

Since MPL has not been widely discussed in the

literature, we briefly review its syntax and

semantics here before describing the translation

from CTL* into MPL (see [AB80] for more details).

To simplify the exposition, we take the liberty of

elightly altering Abrahama on’s notation. In

particular, we use the temporal connective <>, U,

and X instead of their duals [1, w, and y,

respectively.

all paths

corresponding

We also omit the H operator and view

as

to

simply sequences

legal sequences of

of states

transitions

eince blocking will not concern us here.

The syntax of MPL is as follows:

1. Any atomic proposition is a formula.

2. If p,q are formulae then so are ‘p, p ~ q, <>P,

Xp, and p U q.

We take []p to be an abbreviation for ‘<>-p.

A structure M is a triple (S,X,L) as before.

An MPL formula is true or false of a triple M,x,y

where M is a structure (S,X,L), x ~ X, and y is a

finite prefix of x (called a stage). If y,z are.- —--

stagea or paths, we write y < z if y is a prefix of—

z. We define (= inductively as follows:

1. M,x,y I=P iff PC L(last(y))

2. M,x,y 1= p ~ q iff M,x,y I=p and M,x,y [=q

M,x,y 1= ‘p iff not(M,x,y 1= p)

3. M,x,y I=p U q iff ~z(y~z~x and M,x,z l=q

and ~w(y <w <z => M,x,w 1= p))

M,x,y 1= Xp iff 3z(M,z,x 1= p and

y~z~xand-~(y<w <z))

4. M,x,y [= <>p iff 3x’(x’E X, y~x’,

and M,x’,y’ 1= P)

While no restrictions are placed on the set of

paths X in defining the semantics of MPL, we must

restrict our attention to structures that are

suffix closed as well as fusion closed in order to

translate CTL* into MPL. These reatrictiona are

necessary since there are CTL* formulae (e.g.,

EGXtrue ~ ‘EXEGXtrue ~ EFEFp A ‘EFp) which are———-

satisfiable only in structures that are neither

suffix closed nor fusion closed whereas every MPL

formula is satisfiable in a structure that is both

suffix closed and fusion closed. This latter fact

arises from the use of stages in defining the

semantics of MPL and is proved in

5.2 Lemma. An MPL formula is satisfiable iff

it is satisfiable in a structure that is suffix

closed and fusion closed.

Proof: Left to the appendix. D

If y is a stage of x, write x/y to indicate

the suffix of x obtained by deleting all but the

last state of the prefix y, i.e. y “ (x/y) =

x. Then we get

5.3 Lemma. If M = (S,X,L) and X is suffix

closed and fusion closed then for all MPL formulae

pandx~X

M,x,y 1= p iff M,x/y, first(x/y) 1= P

134

Proof: A straightforward induction on the

structure of p suffices. Note that we need fusion

closure of X in order to show that M,x/y,first(x/y)

1= <>P imPlies M,x,Y [= <>P. Details are left to

the reader. n

The preceding lemma shows khat, in a suffix

closed and fusion closed structure, we can

essentially omit mention of the stages. Thus, we

will write M,x (= p as an abbreviation for

M,x,first(x) [= p. We can then translate a CTL*

formula p to an MPL formula pt’ simply by replacing

all occurrences of E by <>. We now get:

5.4 Theorem. Given a structure M = (S,X,L)

where X is suffix closed and fusion closed, and

path x G X,

if p is a CTL* path formula then

M,x 1= p iff M,x 1= pt’and

if p is a CTL* state formula then

M,first(x) 1= p iff M,x 1= pt~

What do these translations tell us about the

existence of decision procedures for CTL*?. Note

that a CTL* formula p is satisfiable in a structure

M iff the corresponding PL formula pt is

satisfiable in the structure Mt. Moreover, by the

definition of Mt in terms of M, p is satisfiable in

a structure M meeting certain restrictions on its

set of paths X (e.g., suffix closure or R-

generability) iff iff pt is satisfiable in~ a

structure Mt where RA meets the same restrictions.

However, the definition of PL allows arbitrary sets

of paths in the structure, and the original work

[HKP801 on decidability of PL formula does not

consider the question of restrictions on the sets

of paths. It is true that we can modify the

algorithm given in [HA821 to check if a formula is

satisfiable in a structure where RA iS suffix

closed and/or fusion closed. Alternatively, using

Lemmas 5.2 and 5.3 and Theorem 5.4 together with

the fact ([AB80]) that there is an algorithm for

testing satisfiability of MPL formulae which runa

in deterministic time 0(2
Zcn

), we get

5.5 Theorem There is an algorithm to decide if

a CTL* formula p is satisfiable in a structure

which is suffix closed, fusion closed, and for

ih~ ‘irst ‘tate ‘f ‘ome ‘ath;;;;hr::r;n ;;:eeo~22 p)0

,
Proof: We simply check if pt is satisfiable.

But , the problem of deciding if a formula is

satisfiable in an R–generable structure seems much

harder. It is the limit closure constraint which

causea difficulties. For instance, there is no

analogue of lemma 5.2 for limit closure in the case

of MPL. Consider the formulas <>GXtrue and.—-—.

[]G<>Xtrue given by Abrahamson ([AB80], p. 110)..——--

If M = (S,X,L) then M,x,y 1= <>GXtrue iff there is—---

an infinite path in X extending y and M,x,y

1= []G<>X~ru_e_iff every finite path extending y can

in turn be extended by another path in X. It is

eaey to check that ‘<>GXtrue_____ ~ []G<>Xtrue is-----

satisfiable in a structure that is suffix closed

and fusion closed but not limit closed. However,

as Abrahamaon points out, his decision procedure

will generate structures that are not limit closed

for certain formulae satisfiable in limit closed

structures, and there is no obvious modification of

his algorithm for MPL to force it to generate limit

closed models whenever possible. Similarly, there

is no obvious modification of the [HA82] algorithm

to force RA to be limit closed. Thus, the problem

of finding an elementary time algorithm to decide

if the CTL* formula p is satisfiable in a limit

closed (or R-generable model) remains open.

We remark that in [AB80] a complete

axiomitization is given for MPL which also applies

to CTL*, provided we restrict our attention to

structures which are suffix closed and fusion

closed. The problem

axiomatization which

structures remains open.

6. CONCLUSION

We believe that

of finding a complete

applies to R-generable

linear time logics are

generally adequate for verifying the correctness of

pre-existing concurrent programs. For verification

purposes, we do not usually care which computation

path is actually followed or that a particular path

exists because we are typically interested in

properties that hold of all computation paths. It

is thus satisfactory to pick an arbitrary path and

reason about it. Indeed, Owicki and Lamport [OL80]

give convincing evidence of the power of this

approach. In these situations, the simplicity of

linear time logic is a strong point in its favor,

and we see only one advantage in considering the

use of a branching time logic. Namely, linear time

logics, as interpreted over branching time

structures, are not closed under negation. While

it may be possible to prove that a property holds

for all executions of a correct program, if a

program is incorrect because the property does not

135

hold along some execution, it will be impossible to

disprove the property for the program as a whole.

As Abrahamson [AB80] notes “It is out of the

question to attempt to disprove a property when we

can’t even state its negation.”

Furthermore, there are other situations for

which we want the ability to explicitly assert the

existence of alternative computation paths and must

use some system of branching time logic. This

arises from the nondeterminism - beyond that used

to model concurrency - present in many concurrent

programs. Consider an instance of the mutual

exclusion problem where each process Pi is

functioning as a terminal server. At any moment,

Pi (nondeterministically) may or may not receive a

character. A key attribute of a correct solution

is that it should be possible for one particular Pi

to remain in its noncritical section, NCSi, forever

(awaiting but never receiving a character from the

keyboard) while other Pj continue to receive and

process characters. It should also be possible for

Pi to receive a character and then enter its trying

region, TRYi. From there it eventually enters the

critical section, CSi, where the character is

processed before returning to NCSi. But, no matter

what happens, once Pi is in NCSi it either remains

there forever or eventually enters TRYi. To express

this property. one can use a branching time logic

formula involving a term (intended to hold whenever

pi is in NCSi) of the form EGi_n_N~_S-i ~ EFinTRYi—----

~ A(GinNCSi V FinTRYi). However, using Theorem

4.5, this is provably not expressible in linear

time logic, i.e., in a language of the form

B(L(-)). , The natural candidate formula, A(GinNCSi.

V F$KCQ\i), allows a “degenerate” model where all

paths satisfy FinTRYi and no path satisfies. ----

GinNCSJ..—-—.

This ability to existentially quantify over

paths is particularly useful in applications such

as automatic program synthesis from temporal logic

specifications (cf. [CE81], [EC82]) where very

precise and thorough specifications are needed. Of

course, it is possible to successfully synthesize a

wide class of interesting programs using only

linear time logic (cf. [MW81], [w082]); but, as the

remarka above demonstrate, some means external to

the logic must be used if we wish to ensure the

existence of alternative computation paths. We’

also note that explicit path quantification can be

helpful in ensuring that a program exhibits an

adequate degree of parallelism (i.e., that it can

follow any one of a number of computation paths and

is not a degenerate solution with only a single

path).

7. APPENBIX

Proof of Theorem 4.1: We firat define the set

of basic formulae, B, as follows:

1. Any propositional formula (i.e. boolean

combination of atomic propositions) is a B
formula.

2. If pl,pn are propositional formulae then

P1 U (P2 U . . . (pn_l U GPn). ..) is a B

formula which we abbreviate [PI,Pnl.

Intuitively, [Pi,...,Pnl means that there is

a finite segment (possibly of length O) where

PI holds , followed by a segment where p2

holds, ..., followed by a segment where pn_l

holds , and then pn holds ever after.

3. If p is a propositional formula then GFp ia a

B formula.

4. If p is a propositional formula,and

[Pg, no. . ..po 1,..., [P&.. .,P:ml, [cl~>. ..)q:ol$

Frl, ..., Frn are B formulae, then F(p

A [p:,p.ol A...A [P~>..., P:ml

A x[q~,q~ol /l Frl A...A Frn) is also

a B formula. (hy of the terms in the

conjunction may or may not be present.)

Let ~+ be the closure Of B under conjunction and

disjunction. Note that the formulae of B+ can be

written in conjunctive or disjunctive normal form,

where the literals are formulae of B.

Claim. For every linear time formula over F

and G, there is an equivalent formula of B+.

Proof of Claim: First note that given any

linear time formula over F and G, we can use

deMorgan’s laws and duality (e.g. ‘Fp = G-P) to

drive the negations inward until only the atomic

propositions appear negated. Since B+ contains the

propositional formulae and is closed under

conjunction and disjunction, it then suffices tO

show that if p C B+, then Fp and Gp are equivalent

to some B+ formula.

For Fp note that, since F(ql V q2) E Fql

V Fq2, it suffices to ahow Fp is equivalent to
+

some B formula just when p is a conjunction of

formulae in B. This follows directly from 4 above

136

and the observation that F(ql ~ GFq2) = Fql

~ GFq~.

Similarly, since G(ql ~ q2) ~Gql ~ Gq2~ it
~+

suffices to show GP is equivalent ‘0 ‘ome

formula just when p is a disjunction of formulae in

B. This follows using the observation below

p’ and the q~ are Propositional ‘Ormulae):

“ 1 V VjFqj V VkGFq~G(p’ V Vi[P~,...~P~i

(where

)

~
Gp’ V Vi[P’, P$>. ..~P: 1 VVkGFq~ V
VXFq: V

i

V~,j[i(qj A XGP’) V F(qj ~ X[P’,P&,P~i]

Intuitively, the first line of the right hand

side takes care of the case that no qj is ever

true, and the second line covers the case that some

‘j
is true infinitely often. The third line

corresponds to all qj being true onlY finitelY

often: the last time any qj is true, either GP’ or

one of the [pi, ..., pi.] will be true at the next

state. This would be ~ B+ formula except that q =

qj in some GFqj may not be a propositional formula.

If q in GFq is not a propositional formula,

note that q still must be in the form of 4 above

since it is the argument to F. Note also the

equivalence below:

GF(P ~ [pO, O..,P~o] ~...~ [P&O .,P;ml ~
8‘k:>ooo)qkol~ Frl ~...~ Frn)

=
GFp ~ F([p~,p~]) ~...~ F([P&.. .,P~m]) ~

F([q~,q~o]! ~ GFrl ~...~ GFrn

By repeatedly applying this equivalence, we can get

down to the case where GF only takes a

propositional formula as an argument. This

completes the proof of the claim. D

It remains to show that if p is a B+ formula,

then Ep is equivalent to an ECTL+ formula. Since

E(q V q’) E Eq V Eq’, it suffices to Prove the

result in the case where p is a conjunction of B

formulae. We proceed by induction on the number of

formula of the form Fr (corresponding to rule 4

above) which appear as any subformula in p.

If p has no F’s, then it is of the fOrm

q A [P~,P~ol /1. .A [P~J...~P~ I ~ ‘i GFri

where q is propositional. We fir~t show that a

conjunction of formulae of the form [Po,Pnl is

equivalent to a disjunction of such formulae. Given

[Po,enl. [ql),qm] we say that the ordering

of terms in [PO A qo,pi
k A qjk~. ””>pn A qm]

is consistent provided that if p ik A qjk appears
before pih A qjh then ik ~ ih and jk ~ jh. NOW

observe that

[PI),Pnl A [qo, . ..>qml =
V {[PO A qo,pik A qjk,en A qml

with consistent ordering of terms}.

Thus , we can aasume (if p has no F’s) that p

is of the form q A [po,pn] A Ai GFri by

again using the fact that E[q V q’] e Eq V Eq’.

But

E[q A [Po, ..., Pnl A Ai GFri] s q A
E[po U EIPl U . . . EIPn_l U E[GPn A Ai Glki] ...]].

This is an ECTL+ formula as desired since GF s ~.

In general, p has the form

q A [Po,..., enl A Frl A... A Frm A Ah GFsh

where q is propositional. Observe that

Ep s

qA
v. EIPO U EIPI U . . . E[pj U E[Pjs.. .,Pn] A riIpj

A Ak+i Frk A Ah GFShl...ll

(Intuitively, we are disjuncting over which ri gets

satisfied first and in which segment pj this

occurs.) E([pj,Pn] A ri A Ak+zi ‘rk A Ah

GFsh) has one fewer F so we are almost ready to

apply the induction hypothesis. Only one problem

remains: one of the conjuncts forming ri might be a

formula of the form X[qo,qm]. Note that the

following equivalences hold:

GFs s XGFS

[Po,Pnl ~ Vj(pj A X[pj>..., pnl)

Fr.arj V XFrj

Xql A xq2 = x(ql A q2).

By repeatedly applying these equivalences, we can

rewrite [pj, ..., Pn] A ri A Ak+ Frk A Ah ‘Fsh
as a disjunction of formulae of the form p’ A Xq’

is a propositional formula and q’ is a B+
where p’

formula. But E(P’ A Xq’) s P’ A ExM’, and q’
will have less F’s than the original p. By

induction, we are done. O

proof of Theorem 4.2 (continued:) We now

argue by induction On IPI, that fOr all CTL

formulae p,

(*) if IPI <i then (Mi,ai I=P iff Ni,ai I=P).

Note that (*) trivially implies if Ipl < i then-—

137

(Mi+l,ai 1= P iff Ni+l,ai 1= p) which in turn can

be seen to imply

(**) if
[PI ~ i then (Mi+l, bi+l 1= P iff

Ni+l, bi+l 1= P).

We take EXq, E[q U r] and A[q U r] aa our primitive

operators in the induction since any CTL formula is

equivalent to one using only these modalities. The

argument proceeds in cases based on the structure

of the CTL formulae p. The cases where p is an

atomic proposition, a conjunction q ~ r, or a

negation ‘q are easy and left to the reader.

If p is of the form EXq then,

Mi+l,ai+l [=EXq

iff

Mi+l!bi+l l=qor Mi,ai I=q orNi,ai

iff

Ni+l,bi+l 1= q (by **) or Mi,ai 1= q o:

iff

Ni+l,ai+l 1= EXq.

If p = E[q U r] then,

Mi+l,ai+l l= E[q Url iff

(1) Mi+l,ai+l I=r or

(2) Mi+l,ai+l [= q, Mi+l,bi+l 1= r or

(3) Mi+l,ai+l l=q, Mi+l,bi+l !=q,

Mi, ai I = E[q U r] or

(4) Mi+l,ai+l I=q, Mi,ai l=E[q Url or

(5) Mi+l,ai+l l=q, Ni,ai l= E[qUrl

iff

. q

Ni,ai [=q

(1) Ni+l,ai+l I=r (by (*)) or

(2) Ni+l,ai+l l=q, Ni+l,bi+l I=r

(by (*), (**) resp.) or

(3) Ni+l,ai+l [= q> Ni+l>bi+l 1= q

(by (*), (**) resp.), Mi,ai l= E[qUr] or

(4) N’i+l,ai+l I = q (by (*)), Mi,ai 1= E[q u r] or

(5) Ni+l,ai+l [=q (by (*)), Ni,ai l=E[q Url

iff

‘i+l,ai+l l= E[q Ur].

In the last case, if p = A[q U r] then,

– A[q U r] iffMi+l,ai+l !–

(1) Mi+l,ai+l [= r or

(2) Mi+l,ai+l 1= q, Mi+l,bi+l 1= r,

Mi,ai l=A[q U r], Ni,ai [=A[q Ur] or

(3) Mi+l,ai+l 1= q, Mi+l,bi+l 1= q,

Mi,ai l= A[q Url, Ni,ai l=A[q Ur]

iff

(1) Ni+l,ai+l 1= r (by (*)) or

(2) Ni+l,ai+l I=q, Ni+l,bi+l l=r (by (**)),

Mi,ai 1= A[q U r], Ni, ai 1= A[q u r] or

(3) Ni+l,ai+l 1= q, Ni+l, bi+l /= q (by (**)),

‘i,ai /=A[q Ur], Ni,ai I=A[q Ur]

iff

‘i+l’ai+l 1= ‘[q u ‘]”

It remains to establish our claim that CTL and

ECTL+ are of equivalent expressive power on the two

sequences of models. For any ECTL + formula Eq, q

can be placed in disjunctive normal form. Since

E(q’ V q“) s Eq’ V Eq” and 6P’ ~ bp” s ‘&(P’

~ P“), it suffices to show the equivalence for any

ECTL+ formula of the form pl = E[p ~ $ ql

A . ..A ~qn /1 %] where Ep,ql,qn are CTL+

formulae. TO show this, we observe that every

maximal path in one of the structures M~ or Ni ends

in a self-loop at the state d. Using c to denote

either ai or bi, we thus have that Mi,c 1= pl iff

Mi,c 1= Ep and Mi,d 1= ql /1... A qn A r.

Moreover, Mi,d [= ql A...A qn A r iff M.i,c

l= EFAG(ql A... A qn A r). Thus, Mi,c 1= PI iff

Mi,c [= Ep A EFAG(ql A...A qn A r) and

similarly, for Ni. The latter formula is in CTL+.

+ formula q’By [EH82], we know that for any CTL

there exists an equivalent CTL formula q. So we are

done. O

Proof of Theorem 4.3: We inductively define

two sequences of models Ml,M2,M3, . ..e and

N1,N2,N3, . . . such that for all i, Mi,ai 1= E[FP A

‘?Q] and Ni,ci l=-E[%P /l~Q1. We show that ECTL iS

unable to distinguish between the two sequences of

models, i.e. for all ECTL formulae P with IPI < i,

Mi,ai 1= p ~ff Ni,ci 1= p. The result follows since

if E[f!’p A FQ] were equivalent to some ECTL formula

P’ of length i then we would get a contradiction:

Mi,~ [= P’ iff Ni,ci 1= p’ while Mi,ai 1= E[~p

A FQ] and Ni,ci [=-E[~P A ~Q]. We define Ml, Nl

to have the graphs shown below:

138

M,;ca,

b,

to ~ c,* o

lb~d,

where al [= P ~ ‘Q; bl [= ‘P ~ Q, c1 I=P ~ ‘Q,

and dl 1= ‘p ~ Q. Assume we have defined M{ ,N+ .

Then Mi+l, Ni+l have the graphs below:

where ai+l l= PA-Q, b i+~ l=-p A Q, ci+~ 1= P

A ‘Q, and di+l 1= ‘P A Q.

Details are given in the full paper. o

Proof of Lemma 5.2: Suppose M = (S, X,L) and

M,x,y 1= p. Let Xl ‘{z~X[y~z}andMl=

(S,X1,L). It is easy to check that Ml,x,y [= p.

TO simplify the notation, assume for now that Xl is

countable (the case where Xl is uncountable is

considered below) and consists of the distinct

paths x=x0,xl,x2,x3, We now unwind Ml into a

“tree-like” model. Define a set T = {tij I i,j

~ O} of “fresh” states distinct from S. we WiII

inductively define a set of paths X’ =

{YO, Yl, Y2, ...} over ‘T which is fusion closed along

with a mapping h:T --> S as follows: Suppose X. =

(so, s1,sk..) (which could be finite or

infinite) . Then define y. = (tO(),t()l, . ..tOk).) and.

h(toj) = sj for all j. We can extend h so that if y

= (Uo,um..) then h(y) = (h(uo),h(um)) .).

Note that h(yo) = XO, Now suppose we have

constructed the paths yi for all j < i so that

h(yj) = xi. We now define yi = (tk:,j) where for

all j < 1-+ [xil

length j stage of

extend h so that

those states of

i. Also let L’ be

kj is the least k’such that the

Xk is also a stage of xi. Now ,

h(yi) = Xi. Let T’ consist of

T which occur in yi fOr sOme

a labelling of states in T’ such

that L’(t) = L(h(t)). Now define M’ = (T’,X’,L’).

Then we can show, by a straightforward induction on

the structure of formulae, that for any formula q,

if [wI ~_ [yl then M’,z,w I=q iff M,h(z),h(w) I=q.

Next define X“ = {xi I xc X’}. Using the

observations that no state occurs twice along any

path, and that two paths have a state in common iff

they have a common prefix including the state, it

is easy to check that X“ is fusion closed and

suffix closed, Let M“ = (T’,X’’,L’). Then we can

argue by induction on the length of formulae q,

that for x~X’, M’,x,y 1= q iff M“,x,y 1= q. Thus,

M,, is a fu,ion closed and suffix closed model of

P.

If xl is not countable, a similar argument

goes through (although we seem to need the well

ordering principle - which is equivalent to the

axiom of choice - to order the paths first). O

8. REFERENCES

[AB80]

[BMP81]

[cE81]

Abrahamson, K., Decidability and
Expressiveness of Logics of Processes,
PhD Thesis, Univ. of Washington, 1980.

Ben-Ari, M., Manna, Z., and pnueli, A

The Temporal Logic of Branching Time. 8~~
Annual ACM Symp. on Principles of

Programming Languages, 1981.

Clarke, E. M., and Emerson, E. A,, Design

and Synthesis of Synchronization

Skeletons using Branching Time Temporal

Logic, Proceedings of the IBM Workshop on

Logics of Programs, Springer-Verlag
Lecture Notes in Computer Science //131,

1981.

[cES83] Clarke, E. M., Emerson, E. A., and

Sistla, A. P., Automatic Verification of
Finite State Concurrent Programs: A
Practical Approach, this POPL conference,
1983.

[EC80] Emerson, E. A., and Clarke, E. M.,
Characterizing Correctness Properties of
Parallel Programs as Fixpoints. Proc. 7th

Int. Colloquium on Automata, Languages,
and Programming, Lecture Notes in

ComPuter Science #85, Springer-Verlag,
1981.

[EC82]

[EH82]

Emerson, E. A.,
Branching Time

Synchronization
TR-208, Univ. of

in SCP)

and Clarke, E. M., Using
Logic to Synthesize

Skeletons, Tech. Report

Texas, 1982. (to appear

and Halpern, J. Y.,Emerson, E. A.,
Decision Procedures and Expressiveness in

the Temporal Logic of Branching Time.

14th Annual ACM Symp. on Theory of
Computing, 1982.

139

[EM81]

[FL791

[GPss80]

[HA82]

[H081]

[HKP80]

[LA80]

[MW81]

[0L801

[PN77]

[PN81]

[PR57]

[PR671

[RU71]

[w081]

[W082]

Emerson, E. A., Alternative Semantics for

Temporal Logics, Tech. Report TR–182,
Univ. of Texas, 1981. (To appear in TCS)

Fischer, M. J., and Ladner, R. E,

propositional Dynamic Logic of Regular
Programs, JCSS VO1. 18, pp. 194-211,

1979.

Gabbay, D., Pnueli, A., et al., The—..
Temporal Analysis of Fairness. 7= Annual
ACM Symp. on Principles of Programming
Languages, 1980.

Halpern, J. Y., Deterministic Process
Logic is Elementary, to appear in FOCS,
1982.

Hailpern, B., and Owicki, S., MOdular

Verification of Concurrent Programs Using
Temporal Logic, Stanford TR, 1981.

Harel, D., Kozen, D., and parikh, R.,

Process Logic: Expressiveness,
Decidability, and Completeness, 12th
Annual ACM Symp. on Theory of Computing,
1980.

Lamport, L., “Sometimes” is Sometimes

“Not Never.” 7th Annual ACM Symp. on

Principles of Programming Languages,

1980.

Manna, Z., and Wolper, P., Synthesis of

Communicating Processes from Temporal

Logic Specification, IBM Workshop on

Logics of Programs, Springer–Verlag

Lecture Notes in Computer Science #131,

1981.

Owicki, S., and Lamport, L., Proving

Liveness Properties of Concurrent

Programs, Computer Systems Laboratory,
Stanford Univ., 1980.

Pnueli, A., The Temporal Logic of

Programs, 19th Annual Symp. on

Foundations of Computer Science, 1977,

Pnueli, A., The Temporal Logic of

Concurrent Programs, Theoretical Computer

Science, V13, pp. 45-60, 1981.

Prior, A., Time and Modality, Oxford

Univ. Press, London, 1957.

Prior, A., Past, Present, and Future,

Oxford Univ. Press, London, 1967.

Rescher, N., and Urquhart, A., Temporal

Logic, Springer-Verlag, Berlin, 1971.

Wolper, P., Temporal Logic can be more

Expressive, 22nd Annual Symp. on

Foundationa of Computer Science, 1981.

Wolper, P., Specification and Synthesis

of Communicating Processes Using an

Extended Temporal Logic (Preliminary
Version) , 9th Annual ACM Symp. on

Principles of Programming Languages,

1982.

140

