
Proving Theorems Automatically,

Semi-Automatically, and Interactively

with TPS

Peter B. Andrews

http://gtps.math.cmu.edu/tps.html

Developers of TPS:

Peter B. Andrews

Eve Longini Cohen

Dale A. Miller, Ph.D. 1983

Frank Pfenning, Ph.D. 1987

Sunil Issar, Ph.D. 1991

Dan Nesmith

Hongwei Xi, (Ph.D. 1998)

Matthew Bishop, Ph.D. 1999

Chad E. Brown

[∼ A] means “A is not true”;

[A ∧ B] means “A and B”;

[A ∨ B] means “A or B”;

[A ⊃ B] means “A implies B”;

[A ≡ B] means “A if and only if B”;

When the relative scopes of several connec-

tives of different kinds must be determined, ∼

is to be given the smallest possible scope, then

∧ the next smallest possible scope except for

∼, then ∨, then ⊃, then ≡.

Bracket and Parenthesis Conventions

Outermost brackets and parentheses may be

omitted.

Use the convention of association to the left

for brackets and parentheses.

Thus αβγ stands for ((αβ)γ).

A dot stands for a left bracket, whose mate

is as far to the right as is possible without

altering the pairing of left and right brackets

already present.

Some Useful Commands in TPS

HELP

?

BEGIN-PRFW and END-PRFW

LIST-RULES

PROVE

X2113:

∀ y∃w R y w ∧ ∃ z∀x[P x ⊃∼ R z x] ⊃ ∃x. ∼ P x

Four proofs of X2113:

• Interactive

• Semi-interactive using GO2

• Semi-automatic using MONSTRO

• Automatic using DIY

Church’s Type Theory

Alonzo Church,

“A Formulation of the Simple Theory of Types”,

Journal of Symbolic Logic 5 (1940), 56-68.

Yα = Fαβ Xβ

(αβ) is the type of functions

to objects of type α

from objects of type β.

This is sometimes written β → α.

A function of two arguments can be repre-

sented as a function of one argument whose

values are functions.

Zα = [[G((αβ)γ)Xγ]Yβ] = GαβγXγYβ

An entity of type ((αβ)γ) may be regarded

both as

a function mapping elements of type γ to func-

tions of type (αβ)

and as

a function of two arguments (of types γ and

β) which has values of type α.

o is the type of truth values and statements.

We identify a set of elements of type β with

the function Soβ which maps the elements in

the set to truth and all other objects of type β

to falsehood, and refer to Soβ as a set. Thus:

Soβ xβ means that Soβ xβ is true.

Soβ xβ means that xβ ∈ Soβ.

Soβ = {xβ | Soβ xβ}.

Similarly, Roβα is a relation between objects of

type α and objects of type β.

λ-Notation

If F (v) = v2 + v + 5

for all natural numbers v,

then F = [λv . v2 + v + 5]

In general, [λv A(v)] denotes the function

whose value for any argument v is A(v).

If A(v) is a statement about v,

[λv A(v)] denotes {v | A(v)}.

If A(u, v) is a statement about u and v,

[λuλv A(u, v)] denotes {< u, v > | A(u, v)}.

λ-Conversion

[λv . v2 + v + 5]7 = 72 + 7 + 5

[λvA(v)]W = A(W)

If A(v) is a statement about v,

[λvA(v)]W means

W ∈ {v|A(v)}, or A(W).

For more information about type theory, see:

Peter B. Andrews, An Introduction to Math-

ematical Logic and Type Theory: To Truth

Through Proof, second edition, Kluwer Aca-

demic Publishers, 2002.

or take

21-700 Mathematical Logic II

(offered every spring)

X5203: # fαβ[xoβ ∩ yoβ] ⊆ # f x ∩ # f y

Semi-interactive proof with GO2.

X5308:

∃ jβ(oβ)∀ poβ[∃xβ p x ⊃ p. j p]

⊃ .∀xα∃ yβ roβα x y ≡ ∃ fβα∀x r x. f x

Semi-interactive proof with GO2. Use ED (the

editor) to construct the wffs needed to instan-

tiate quantifiers from wffs already present in

the proof. Use DIY-L to fill in the gaps auto-

matically.

Automatic proof.

The TPS Library and Classification System

LIB

LIST-OF-LIBOBJECTS

CLASS-SCHEME

UNIXLIB

LS

CD

LEAVE

REWRITING

LIB

LIST-OF-LIBOBJECTS

TYPE > THEORY

FETCH THEO2

HELP THEO2

LEAVE

LIST-RRULES

BEGIN-PRFW

PROVE SUM3

SIMPLIFY-PLAN

SIMPLIFY-PLAN

SIMPLIFY-PLAN*

END-PRFW

The Injective Cantor Theorem

There is no injective function from the

power set P(U) of a set U into U .

Informal Proof:

Suppose h maps P(U) into U .

Let D = {ht | t ∈ P(U) and ht /∈ t}.

Clearly D ⊆ U so D ∈ P(U).

We show that

(1) hD ∈ D;

(2) if h is injective, then hD /∈ D.

Therefore, there is no such injection.

Proof of (1):

Suppose hD /∈ D. Then

D ∈ P(U) and hD /∈ D, so

hD ∈ {ht | t ∈ P(U) and ht /∈ t}.

hD ∈ D (by the definition of D).

Contradiction. Hence hD ∈ D.

Proof of (2):

Suppose h is injective.

Suppose hD ∈ D.

hD ∈ {ht | t ∈ P(U) and ht /∈ t}

(by the definition of D).

Thus hD = ht for some t ∈ P(U) such that

ht /∈ t.

h is injective, so D = t.

ht /∈ t, so hD /∈ D.

This is a contradiction, so we conclude that

if h is injective, then hD /∈ D.

D is {ht | t ∈ P(U) and ht /∈ t},

which depends on h.

Define IDIAG to be

λ hι(oι)λ zι∃ toι. ∼ t[h t] ∧ z = h t.

Then [IDIAG h] represents the set D.

The Injective Cantor Theorem

x5309A: ∼ ∃hι(oι)INJECTIVE h

Semi-automatic proof using DIY-L and two

lemmas:

THM143D:

∀hι(oι).INJECTIVE h ⊃∼ IDIAG h. h.IDIAG h

THM144B: ∀hι(oι)IDIAG h. h.IDIAG h

THM587: IND ∧ PLUS-INDEQS o(ιι)ι 0ι Sιι⊃

∀xι∀ yι. x + y + y = x + . y + y

TPS finds an automatic inductive proof for

this, though neither induction on x nor induc-

tion on y works.

THM15B: ∀ fιι. ∃ gιι[ITERATE+ f g

∧∃xι. g x = x ∧ ∀ zι. g z = z ⊃ z = x]

⊃ ∃ yι. f y = y

Informal proof of THM15B:

Let x be the unique fixed point of g.

g x = x

f [g x] = f x

g = f ◦ . . . ◦ f so f ◦ g = g ◦ f .

g [f x] = f x

Thus [f x] is also a fixed point of g. Since x is

the unique fixed point of g, f x = x

Therefore, f has a fixed point.

In the automatic proof TPS formulates, proves,

and applies the lemma that f ◦ g = g ◦ f .

Some References

Peter B. Andrews. Transforming Matings into

Natural Deduction Proofs. In W. Bibel and

R. Kowalski, editors, Proceedings of the 5th In-

ternational Conference on Automated Deduc-

tion, volume 87 of Lecture Notes in Computer

Science, pages 281–292, Les Arcs, France, 1980.

Springer-Verlag.

Peter B. Andrews. Theorem Proving via Gen-

eral Matings. Journal of the ACM, 28:193–

214, 1981.

Peter B. Andrews. On Connections and Higher-

Order Logic. Journal of Automated Reason-

ing, 5:257–291, 1989.

Peter B. Andrews. Classical Type Theory, Chap-

ter 15 of Handbook of Automated Reasoning,

edited by Alan Robinson and Andrei Voronkov,

Elsevier Science, Volume 2, 965–1007, 2001.

Peter B. Andrews. An Introduction to Math-

ematical Logic and Type Theory: To Truth

Through Proof, second edition. Kluwer Aca-

demic Publishers, 2002.

Peter B. Andrews and Matthew Bishop. On

Sets, Types, Fixed Points, and Checkerboards.

In Pierangelo Miglioli, Ugo Moscato, Daniele

Mundici, and Mario Ornaghi, editors, Theo-

rem Proving with Analytic Tableaux and Re-

lated Methods. 5th International Workshop.

(TABLEAUX ’96), volume 1071 of Lecture

Notes in Artificial Intelligence, pages 1–15, Ter-

rasini, Italy, May 1996. Springer-Verlag.

Peter B. Andrews, Matthew Bishop, Sunil Is-

sar, Dan Nesmith, Frank Pfenning, and Hong-

wei Xi. TPS: A Theorem Proving System for

Classical Type Theory. Journal of Automated

Reasoning, 16:321–353, 1996.

Matthew Bishop and Peter B. Andrews. Se-

lectively Instantiating Definitions. In Claude

Kirchner and Hélène Kirchner, editors, Pro-

ceedings of the 15th International Conference

on Automated Deduction, volume 1421 of Lec-

ture Notes in Artificial Intelligence, pages 365–

380, Lindau, Germany, 1998. Springer-Verlag.

Matthew Bishop. A Breadth-First Strategy for

Mating Search. In Harald Ganzinger, editor,

Proceedings of the 16th International Confer-

ence on Automated Deduction, volume 1632

of Lecture Notes in Artificial Intelligence, pages

359–373, Trento, Italy, 1999. Springer-Verlag.

Matthew Bishop. Mating Search Without Path

Enumeration. PhD thesis, Department of Math-

ematical Sciences, Carnegie Mellon University,

April 1999. Department of Mathematical Sci-

ences Research Report No. 99–223. Available

at http://gtps.math.cmu.edu/tps.html.

Sunil Issar. Path-Focused Duplication: A Search

Procedure for General Matings. In AAAI–90.

Proceedings of the Eighth National Conference

on Artificial Intelligence, volume 1, pages 221–

226. AAAI Press/The MIT Press, 1990.

Sunil Issar. Operational Issues in Automated

Theorem Proving Using Matings. PhD thesis,

Carnegie Mellon University, 1991. 147 pp.

Dale A. Miller. Proofs in Higher-Order Logic.

PhD thesis, Carnegie Mellon University, 1983.

81 pp.

Dale A. Miller. A Compact Representation of

Proofs. Studia Logica, 46(4):347–370, 1987.

Frank Pfenning. Proof Transformations in Higher-

Order Logic. PhD thesis, Carnegie Mellon Uni-

versity, 1987. 156 pp.

Frank Pfenning and Dan Nesmith. Present-

ing Intuitive Deductions via Symmetric Sim-

plification. In M. E. Stickel, editor, Proceed-

ings of the 10th International Conference on

Automated Deduction, volume 449 of Lecture

Notes in Artificial Intelligence, pages 336–350,

Kaiserslautern, Germany, 1990. Springer-Verlag.

Alonzo Church. A Formulation of the Simple

Theory of Types. Journal of Symbolic Logic,

5:56–68, 1940.

Gérard P. Huet. A Unification Algorithm for

Typed λ-Calculus. Theoretical Computer Sci-

ence, 1:27–57, 1975.

