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[∼ A] means “A is not true”;

[A ∧ B] means “A and B”;

[A ∨ B] means “A or B”;

[A ⊃ B] means “A implies B”;

[A ≡ B] means “A if and only if B”;

When the relative scopes of several connec-

tives of different kinds must be determined, ∼

is to be given the smallest possible scope, then

∧ the next smallest possible scope except for

∼, then ∨, then ⊃, then ≡.



Bracket and Parenthesis Conventions

Outermost brackets and parentheses may be

omitted.

Use the convention of association to the left

for brackets and parentheses.

Thus αβγ stands for ((αβ)γ).

A dot stands for a left bracket, whose mate

is as far to the right as is possible without

altering the pairing of left and right brackets

already present.



Some Useful Commands in TPS

HELP

?

BEGIN-PRFW and END-PRFW

LIST-RULES

PROVE



X2113:

∀ y∃w R y w ∧ ∃ z∀x[P x ⊃∼ R z x] ⊃ ∃x. ∼ P x

Four proofs of X2113:

• Interactive

• Semi-interactive using GO2

• Semi-automatic using MONSTRO

• Automatic using DIY



Church’s Type Theory

Alonzo Church,

“A Formulation of the Simple Theory of Types”,

Journal of Symbolic Logic 5 (1940), 56-68.

Yα = Fαβ Xβ

(αβ) is the type of functions

to objects of type α

from objects of type β.

This is sometimes written β → α.



A function of two arguments can be repre-

sented as a function of one argument whose

values are functions.

Zα = [[G((αβ)γ)Xγ]Yβ] = GαβγXγYβ

An entity of type ((αβ)γ) may be regarded

both as

a function mapping elements of type γ to func-

tions of type (αβ)

and as

a function of two arguments (of types γ and

β) which has values of type α.



o is the type of truth values and statements.

We identify a set of elements of type β with

the function Soβ which maps the elements in

the set to truth and all other objects of type β

to falsehood, and refer to Soβ as a set. Thus:

Soβ xβ means that Soβ xβ is true.

Soβ xβ means that xβ ∈ Soβ.

Soβ = {xβ | Soβ xβ}.

Similarly, Roβα is a relation between objects of

type α and objects of type β.



λ-Notation

If F (v) = v2 + v + 5

for all natural numbers v,

then F = [λv . v2 + v + 5]

In general, [λv A(v)] denotes the function

whose value for any argument v is A(v).

If A(v) is a statement about v,

[λv A(v)] denotes {v | A(v)}.

If A(u, v) is a statement about u and v,

[λuλv A(u, v)] denotes {< u, v > | A(u, v)}.



λ-Conversion

[λv . v2 + v + 5]7 = 72 + 7 + 5

[λvA(v)]W = A(W )

If A(v) is a statement about v,

[λvA(v)]W means

W ∈ {v|A(v)}, or A(W ).



For more information about type theory, see:

Peter B. Andrews, An Introduction to Math-

ematical Logic and Type Theory: To Truth

Through Proof, second edition, Kluwer Aca-

demic Publishers, 2002.

or take

21-700 Mathematical Logic II

(offered every spring)



X5203: # fαβ[xoβ ∩ yoβ] ⊆ # f x ∩ # f y

Semi-interactive proof with GO2.

X5308:

∃ jβ(oβ)∀ poβ[∃xβ p x ⊃ p. j p]

⊃ .∀xα∃ yβ roβα x y ≡ ∃ fβα∀x r x. f x

Semi-interactive proof with GO2. Use ED (the

editor) to construct the wffs needed to instan-

tiate quantifiers from wffs already present in

the proof. Use DIY-L to fill in the gaps auto-

matically.

Automatic proof.



The TPS Library and Classification System

LIB

LIST-OF-LIBOBJECTS

CLASS-SCHEME

UNIXLIB

LS

CD

LEAVE



REWRITING

LIB

LIST-OF-LIBOBJECTS

TYPE > THEORY

FETCH THEO2

HELP THEO2

LEAVE

LIST-RRULES



BEGIN-PRFW

PROVE SUM3

SIMPLIFY-PLAN

SIMPLIFY-PLAN

SIMPLIFY-PLAN*

END-PRFW



The Injective Cantor Theorem

There is no injective function from the

power set P(U) of a set U into U .

Informal Proof:

Suppose h maps P(U) into U .

Let D = {ht | t ∈ P(U) and ht /∈ t}.

Clearly D ⊆ U so D ∈ P(U).

We show that

(1) hD ∈ D;

(2) if h is injective, then hD /∈ D.

Therefore, there is no such injection.



Proof of (1):

Suppose hD /∈ D. Then

D ∈ P(U) and hD /∈ D, so

hD ∈ {ht | t ∈ P(U) and ht /∈ t}.

hD ∈ D (by the definition of D).

Contradiction. Hence hD ∈ D.



Proof of (2):

Suppose h is injective.

Suppose hD ∈ D.

hD ∈ {ht | t ∈ P(U) and ht /∈ t}

(by the definition of D).

Thus hD = ht for some t ∈ P(U) such that

ht /∈ t.

h is injective, so D = t.

ht /∈ t, so hD /∈ D.

This is a contradiction, so we conclude that

if h is injective, then hD /∈ D.



D is {ht | t ∈ P(U) and ht /∈ t},

which depends on h.

Define IDIAG to be

λ hι(oι)λ zι∃ toι. ∼ t[h t] ∧ z = h t.

Then [IDIAG h] represents the set D.



The Injective Cantor Theorem

x5309A: ∼ ∃hι(oι)INJECTIVE h

Semi-automatic proof using DIY-L and two

lemmas:

THM143D:

∀hι(oι).INJECTIVE h ⊃∼ IDIAG h. h.IDIAG h

THM144B: ∀hι(oι)IDIAG h. h.IDIAG h



THM587: IND ∧ PLUS-INDEQS o(ιι)ι 0ι Sιι⊃

∀xι∀ yι. x + y + y = x + . y + y

TPS finds an automatic inductive proof for

this, though neither induction on x nor induc-

tion on y works.



THM15B: ∀ fιι. ∃ gιι[ITERATE+ f g

∧∃xι. g x = x ∧ ∀ zι. g z = z ⊃ z = x]

⊃ ∃ yι. f y = y

Informal proof of THM15B:

Let x be the unique fixed point of g.

g x = x

f [ g x] = f x

g = f ◦ . . . ◦ f so f ◦ g = g ◦ f .

g [ f x] = f x

Thus [ f x] is also a fixed point of g. Since x is

the unique fixed point of g, f x = x

Therefore, f has a fixed point.

In the automatic proof TPS formulates, proves,

and applies the lemma that f ◦ g = g ◦ f .
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