
A Theory of Consistency for Modular
Synchronous Systems?

Randal E. Bryant1, Pankaj Chauhan1, Edmund M. Clarke1 and Amit Goel2

1 Computer Science Department,
Carnegie Mellon University,
Pittsburgh, PA 15213 USA

{bryant, pchauhan, emc}@cs.cmu.edu
2 Electrical and Computer Engineering Department,

Carnegie Mellon University,
Pittsburgh, PA 15213 USA
{agoel}@ece.cmu.edu

Abstract. We propose a model for modular synchronous systems with
combinational dependencies and define consistency using this model. We
then show how to derive this model from a modular specification where
individual modules are specified as Kripke Structures and give an algo-
rithm to check the system for consistency. We have implemented this
algorithm symbolically using BDDs in a tool, SpecCheck. We have used
this tool to check an example bus protocol derived from an industrial
specification. The counterexamples obtained for this protocol highlight
the need for consistency checking.

1 Introduction

The correctness of a system is defined in terms of its specification. In model
checking [6], for example, a model of the design is verified against a set of tem-
poral logic properties. However, specifications might have errors themselves. The
authors have discovered errors in protocol specifications for the PCI bus and the
CoreConnect bus [4, 9]. This highlights the need to examine specifications more
carefully.

These problems often occur due to the limitations of natural languages used
to describe specifications. However, even formal specifications can have prob-
lems. Sometimes, it is not possible to realize the specification in any implemen-
tation, while at other times, the system could deadlock. Bus specifications often
allow combinational dependencies which are sometimes desirable for efficiency
reasons. These dependencies might cause a module to exhibit deadlock only on

? This work was supported in part by the National Science Foundation under Grant
no. CCR-9803774 and in part by the MARCO/DARPA Gigascale Silicon Research
Center (http://www.gigascale.org). Their support is gratefully acknowledged. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied,
of the U.S. government.



2 Bryant et al.

certain inputs. Problems like these are often attributed to inconsistencies in the
specification. We propose a theory that formalizes the notion of consistency for
modular synchronous systems.

The main contributions of this paper are a model for representing modular
synchronous systems that incorporates combinational dependencies, a definition
of consistency for this model, a method to obtain this model from any given
specification in which each module can be described by a Kripke structure [6],
and an algorithm to check for consistency for this model.

We motivate the paper with the following small examples in which the spec-
ifications are expressed in Linear Temporal Logic (LTL) [6]. They demonstrate
inconsistent behavior as explained.

Example 1. Consider the following trivial example. The specification for a
module consists of two properties:

a. G¬reset: reset should never be asserted.

b. reset: reset should be asserted initially.

We can see that it is impossible to satisfy this specification.

Example 2. As another example, consider an arbiter that receives requests from
two masters with the following specification:

a. G (req0 → X ack0): If master 0 makes a request, it should be acknowledged
in the next cycle.

b. G (req1 → X ack1): If master 1 makes a request, it should be acknowledged
in the next cycle.

c. G¬ (ack0 ∧ ack1): Both masters should not be acknowledged at the same
time.

If both req0 and req1 are asserted, there is no valid next state assignment for
ack0 and ack1. Whatever the arbiter does, at least one property will not be
satisfied.

Before the next example, let us consider a Master and Slave that communi-
cate using the signals req and ack . Suppose that one of the requirements of the
Master is expressed by the LTL formula G(req → req U ack). Once asserted,
req should stay asserted until it is acknowledged. This property allows for req
to be deasserted in the same cycle in which ack is asserted. Therefore, the next
state value of req , i.e. req ′, depends not only on the current state value of req
and ack , but also on ack ′, the next state value of ack . The timing diagram in
figure 1 illustrates this. A combinational dependency such as this can sometimes
lead to inconsistent behavior as seen in the next example.

Example 3. The following is a specification for a device with output req and
inputs busy and ack :

a. G (req → req U ack): Once request is asserted it remains asserted till the
request is acknowledged.

b. G (busy → X (¬req)): A request should not be made if the bus is busy.



A Theory of Consistency for Modular Synchronous Systems 3

req

ack

Fig. 1. Timing diagram showing combinational dependency between req and ack .

In this case, the problem arises when a request has already been made and the
bus becomes busy (possibly because of some other device). The second property
requires req to be deasserted but the first property then requires that ack be
asserted. However, ack is an input and cannot be controlled by the device under
consideration. This means that the specification breaks down on certain inputs.
This problem is similar to that of receptiveness defined by Dill in [8] for asyn-
chronous systems. However, if the specification of the module controlling ack is
constrained (G(busy → X ack)), then the problem disappears.

In our model, which we call the Synchronous Consistency Model (SCM), we
divide a synchronous step into several phases which we call micro-transitions.
After each micro-transition, the state of the system is partially updated. A tran-
sition to the next state is complete after the last micro-transition. The partial
updates to the states due to micro-transitions are represented by micro-states.
Micro-transitions allow us to capture combinational dependencies between sig-
nals.

The concept of micro-transitions is not entirely new. Most hardware descrip-
tion languages such as VHDL and Verilog have some notion of combinational
dependency. Esterel [2] allows dynamically scheduled sub-rounds. Alur and
Henzinger [1] also break a round (synchronous step) into sub-rounds (micro-
transitions) in the Reactive Module Language(RML). While Alur and Henzinger
describe an operational modeling language, we do not present any language. In-
stead, we decribe how to derive the SCM from modular specifications and check
it for consistency. In RML, the model explicitly specifies the behavior of sub-
rounds. We want the micro-transitions to be synthesized automatically from high
level, declarative specifications.

For our experiments, we have used LTL for specification and tableau con-
struction to derive Kripke structures. Other approaches might be more suitable.
Shimizu et. al. [12] describe a monitor based formal specification methodology
for modular synchronous systems. Clarke et. al. [7] describe a way to obtain
executable protocol specification and describe algorithms that enable them to
debug specifications. However, neither of them incorporate combinational depen-
dencies. We believe that these two approaches are complementary to our work.
Given monitors or executable models, our approach can be used to check for
consistency.



4 Bryant et al.

The organization of the rest of the paper is as follows. In Section 2, we dis-
cuss preliminaries needed for the rest of the paper. We define the Synchronous
Consistency Model and consistency for systems using this model in Section 3.
Section 4 describes how to derive a Synchronous Consistency Model from a mod-
ular specification. We present our algorithm to check the consistency of an SCM
in Section 5. In section 6 we introduce SpecCheck, a prototype tool we have
built for consistency checking. We also describe a system and its specification,
based on an industrial bus protocol, that we checked using our tool. Finally,
we conclude our paper with directions for future research in section 7. In Ap-
pendix A we present the complete specification for the example system described
in Section 6.

2 Preliminaries

As mentioned in the introduction, we derive a Synchronous Consistency Model
from modular specifications where each module is specified as a Kripke structure.
Section 2.1 defines a Kripke structure. Section 2.2 defines parallel composition
for Kripke structures. We will use parallel composition to derive a global state
transition graph for the specification. The example specifications we use in this
paper are expressed in LTL, which is defined in Section 2.3.

2.1 Kripke Structures

A Kripke structure [6] T is a tuple (S, S0, R,AP,L) where S is a finite set of
states, S0 ⊆ S is the set of initial states, R ⊆ S × S is a transition relation, AP
is the set of atomic propositions and L : S → 2AP is a function that labels each
state with the set of atomic propositions true in that state.

If a specification is expressed in temporal logic, then tableau construction
methods [5, 10] produce a Kripke structure for that specification. For example,
the method described for LTL properties in [5] produces a Kripke structure with
every path that satisfies the LTL property. Figure 2(a) shows a tableau for a
module with the only requirement being G(a → X¬b). Figure 2(b) shows a
tableau for G(b → b U c).

2.2 Synchronous Parallel Composition

Let T ′ = (S′, S′0, AP
′, L′, R′) and T ′′ = (S′′, S′′0 , AP

′′, L′′, R′′) be two tableaux.
The synchronous parallel composition [6] of T ′ and T ′′ denoted by T ′ ‖ T ′′ is
the structure T = (S, S0, AP, L,R) defined as follows.

1. S = {(s′, s′′) | L′(s′) ∩AP ′′ = L′′(s′′) ∩AP ′}.
2. S0 = (S′0 × S′′0 ) ∩ S.
3. AP = AP ′ ∪AP ′′.
4. L ((s′, s′′)) = L′(s′) ∪ L′′(s′′).
5. R ((s′, s′′), (t′, t′′)) if and only if R′(s′, t′) and R′′(s′′, t′′).



A Theory of Consistency for Modular Synchronous Systems 5

bs1 s3

a b as0 s2 b c bs4 s6

cs5 s7

(b)(a)

Fig. 2. (a) A tableau for G(a → X¬b). (b) A tableau for G(b → b U c).

If s = (s′, s′′) ∈ S then we say that s′ and s′′ are components of s. Figure 3
shows the structure obtained from the synchronous parallel composition of the
two structures in Figure 2.

This definition of composition models synchronous behavior. States of the
composition are pairs of component states that agree on the common atomic
propositions. Each transition of the composition involves a joint transition of
the two components. The parallel composition of more than two tableaux is
defined similarly.

(s3,s7)

a

(s2,s7)

b(s1,s6)

c(s3,s5)

a b(s0,s6)

a c

(s2,s5)

b c(s1,s4)

a b c(s0,s4)

Fig. 3. Synchronous Parallel Composition of the Tableaux in Figure 2

2.3 LTL

For a set of atomic proposition AP , the set of LTL formulas is defined as follows:

– an atomic proposition p ∈ AP is an LTL formula.
– If f and g are LTL formulas, then ¬f, f ∨g,X f and fUg are LTL formulas.



6 Bryant et al.

The following abbreviations are also used:

– f ∧ g = ¬(¬f ∨ ¬g)
– F f = trueU f
– G f = ¬F¬f

For a complete discussion of LTL and its semantics refer to [6].

3 Synchronous Consistency Model

The model we are proposing augments the state transition graph of the system
with extra information to capture combinational dependencies. As discussed
in the introduction, these dependencies are an important aspect of many bus
protocol specifications [9].

Definition 1 (Synchronous Consistency Model (SCM)). A synchronous
consistency model M is a six-tuple (S,R, P,C, n, Φ) where

1. S is the set of observable states.
2. R ⊆ S × S is a transition relation.
3. P is the set of micro-states.
4. C : S → P maps observable states to micro-states.
5. n ∈ N is the number of micro-transitions in a sequential step.
6. Φ = {φs,i ⊆ P × P |s ∈ S, 1 ≤ i ≤ n} is the set of micro-transition relations.

(S,R) defines a synchronous state transition graph. We say that the states in S
are observable. The micro-states in P capture the intermediate stages of compu-
tation within a synchronous transition and are unobservable. For each observ-
able state s ∈ S, there is a corresponding micro-state C(s) ∈ P . We represent
a synchronous transition from s ∈ S as a sequence of micro-transitions begin-
ning at C(s). Without loss of generality, we assume that all transitions between
observable states have the same number n of micro-transitions. The relation
φs,i ⊆ P ×P describes the allowed partial updates in the ith micro-step, starting
from the observable state s. We require that φs,i be defined for all observable
states s and for each micro-step up to n. In order to define what consistency
means, we need the following definitions.

A valid sequence of micro-states is required to begin in a micro-state corre-
sponding to an observable state and obey the micro-transition relations begin-
ning in that state.

Definition 2 (Valid Sequence). A sequence of micro-states 〈p0, p1, . . . , pl〉 is
a valid sequence with respect to a model M = 〈S,R, P,C, n, Φ〉 iff there exists
an observable state s ∈ S such that C(s) = p0, and for all i such that 1 ≤ i ≤ l,(
pi−1, pi

)
∈ Φs,i.

A valid transition sequence is a valid sequence that ends in a micro-state
corresponding to an observable state. A valid transition sequence corresponds to
a synchronous transition in the state transition graph (S,R).



A Theory of Consistency for Modular Synchronous Systems 7

Definition 3 (Valid Transition Sequence). A sequence 〈p0, p1, . . . , pn〉 is a
valid transition sequence with respect to a model M = 〈S,R, P,C, n, Φ〉 iff there
exist observable states s and s′ such that:

1 C
(
s
)

= p0

2 for all i such that 1 ≤ i ≤ n,
(
pi−1, pi

)
∈ Φs,i

3 C
(
s′
)

= pn
4
(
s, s′

)
∈ R

A valid sequence which can not be extended to form a valid transition se-
quence represents inconsistent behavior. We call these sequences divergent se-
quences.

Definition 4 (Divergent Sequence). A sequence is a divergent sequence with
respect to a model M = 〈S,R, P,C, n, Φ〉 iff it is a valid sequence with respect to
M , and it is not a prefix of any valid transition sequence in M .

Definition 5 (Micro-transition Conformance). The set of micro-transition
relations Φ for a model M = 〈S,R, P,C, n, Φ〉 conforms to the transition relation
R iff for every

(
s, s′

)
∈ R there exists a valid transition sequence beginning and

ending in micro-states C(s) and C(s′), respectively.

We are now ready to define what it means for a model to be consistent. If
a model satisfies this definition, then the consistency problems described in the
introduction can be avoided.

Definition 6 (Consistent Model). A model M = 〈S,R, P,C, n, Φ〉 is said to
be consistent iff it satisfies the following conditions:

1 S 6= ∅.
2 R is total, i.e., for every state s ∈ S there is a state s′ ∈ S such that
R
(
s, s′

)
.

3 The set of micro-transition relations Φ conforms to the transition relation
R.

4 There are no divergent sequences in M .

If the model is derived from a specification, then the first condition ensures
that the specification is satisfiable, while the second checks for the absence of
deadlocks. Conformance implies that the micro-transition relation implements
the global transition relation. The absence of divergent sequences guarantees
that the system does not get stuck after a valid sequence of micro-transitions.

4 Deriving an SCM from Modular Specifications

We have defined consistency for an SCM. We now describe a way to derive an
SCM M = (S,R, P,C, n, Φ) from modular specifications. We are given a set of
modules Mi and a partial order ≺ on AP . The relation ≺ is used to capture
combinational dependencies. If b depends on a then a ≺ b. Each module is
described by a Kripke structure Ti.



8 Bryant et al.

The variables occurring in the structure for each module are classified either
as input or output variables for that module. We say that a module Mi controls
its output variables and require that a variable be controlled by exactly one1

module. This allows us to define a function γ from the set of variables to the set
of modules. γ(va) = Ma iff the variable va is controlled by the module Ma.

Let T =
(
S, S0, AP, L,R

)
be the global Kripke structure obtained by the

parallel composition T1 ‖ T2 ‖ . . . ‖ Tm. We restrict the states of T to only those
reachable from S0 to obtain (S,R).

The set of micro-states P is defined as the power set of the atomic proposi-
tions in T , i.e., P = 2AP . The mapping C from observable states to micro-states
is then defined by L.

We use ≺ to derive the number of micro-transitions in a synchronous transi-
tion, n, and the set of micro-transition relations, Φ. We can partition the atomic
propositions AP into disjoint sets by levelizing ≺. A set in the levelized partition
may contain variables controlled by different modules. We further split each set
to obtain the partition Y so that the resulting sets Yi in Y

.
=
〈
Y1, . . . , Yn

〉
have

variables controlled by only one module. The number of sets n in Y determines
the number of micro-transitions in M . Y satisfies the following properties:

1. ∪ni=1Yi = AP , i.e. the partitioning is exhaustive,
2. Yi ∩ Yj = ∅, i 6= j, i.e. the sets in the partition are disjoint,
3. [xi ≺ xj and xi ∈ Yk, xj ∈ Yl]⇒ k < l, i.e. the set of atomic propositions is

levelized by ≺,
4. ∀va, vb ∈ Yi · γ(va) = γ(vb), i.e. all variables in the same partition are con-

trolled by the same module.

Define the function π : {1, 2, . . . , n} → {1, 2, . . . ,m} such that Mπ(k) is the
controlling module for variables in Yk, i.e., γ(v) = Mπ(k) for all v ∈ Yk. This
function is well defined since the controlling module for all variables in Yk is the
same.

The partitioning Y tells us the order in which next state variables are up-
dated. We begin with an observable micro-state p0 in which no variable has
been updated yet. Then the next state values of variables in Y1, Y2, . . . , Yn are
computed in that order. The ith micro-transition depends on transitions in the
tableau for the controlling module for that micro-step.

Consider the example in Figure 4, which shows an observable state s such that
L(s) = {a, b} in the global Kripke structure of specifications for two modules
M1 and M2. M1 controls a and b and its properties are G(a → X¬b) and
G(b → bU c) (Figure 3). M2 controls c and is unconstrained. The partitioning
Y = 〈{a}, {c}, {b}〉 of variables is a legal partitioning for the given partial order
c ≺ b. The micro-state corresponding to s is p0. Since there are three sets in Y ,
there are three micro-transitions. Figure 4, shows all the legal micro-transitions
for the system starting from observable state s.

1 This allows only closed systems. However, that is not a problem since we can always
introduce an extra module to control the primary inputs to the system, without
restricting their behavior.



A Theory of Consistency for Modular Synchronous Systems 9

1st micro-transition updates a

2nd micro-transition updates c

3rd micro-transition updates b

p

b

3-reachable micro-states

2-reachable micro-states

1-reachable micro-states

0-reachable micro-state

p p

s

a c

a b c

a b

a b

a b b c b

c

C(s) = p
0

p
0

p

p

p

p

2

4 5

30

1

1

L(s) = {a, b}

Fig. 4. Legal micro-transitions possible from C(s0) = p0 = {a, b} for specifications
b→ bU c and a→ X¬b

In the second micro-transition, M2 updates the next state value of c, while
the next state value of a has already been updated, and the next state value of
b will be updated in the next micro-transition. Let sj be the component of s in
M2. Suppose that after the first micro-transition we get to p1, then the partially
updated value of a is false. This restricts transitions in M2 to those next states
where a is false. M2 can update c to either true or false. If c is updated to false,
then M1 is restricted to those transitions in which the next state values of a and
c are both false. But there is no such transition in M1 from sj . Hence there is no
third micro-transition from p1 starting from s. The following recursive definitions
formally capture this idea.

Definition 7 (i-reachability). A micro-state pk ∈ P is i-reachable from s ∈ S
iff there exists a valid sequence of length i + 1 beginning with C(s) and ending
with pk.

Definition 8 (Φs,i). For pa, pb ∈ P , (pa, pb) ∈ Φs,i iff pa is (i − 1)-reachable
from s and there exist sj , sk ∈ Sπ(i) such that:

1. sj is a component of s.
2. Rπ(i)(sj , sk).

3. pb =
(
pa − Yi

)
∪
(
Lπ(i)(sk) ∩ Yi

)
. The micro-state pb is obtained from pa by

retaining the values of all variables except those in Yi. The updated value of
Yi is extracted from sk.

4. pa ∩
(
Y1 ∪ . . . ∪ Yi−1

)
∩ APπ(i) = Lπ(i)(sk) ∩

(
Y1 ∪ . . . ∪ Yi−1

)
. The values

of variables updated before the ith micro-transition agree with their values in
sk.

For every observable state s there is only one 0-reachable micro-state, C(s).
This allows us to compute Φs,1 which in turn gives us the set of 1-reachable
micro-states from s. Using these definitions recursively, we can compute Φ. The
following theorem guarantees that the Φ obtained in this manner conforms to
R.

Theorem 1. The set of micro-transition relations Φ obtained from definitions 7,8
for the SCM M = (S,R, P,C, n, Φ) conforms to the transition relation R.



10 Bryant et al.

Proof: Given s = (s1, s2, . . . , sm) and s′ = (s′1, s
′
2, . . . , s

′
m) such that R(s, s′),

we need to prove that there exists a valid transition sequence beginning and
ending in C(s) and C(s′) respectively. We construct a sequence 〈p0, p1, . . . , pn〉
as follows:

– p0 = C(s)
– pi = (pi−1 − Yi) ∪ (Lπ(i)(s

′
π(i)) ∩ Yi) for all 1 ≤ i ≤ n

If we can prove that (pi−1, pi) ∈ Φs,i for all i ∈ {1, . . . , n} and that C(s′) = pn
then 〈p0, p1, . . . , pn〉 is one such valid transition sequence.To see that (pi−1, pi) ∈
Φ(s,i), we consider sπ(i) and s′π(i). State sπ(i) is a component of s. R(s, s′) ⇒
Rπ(i)(sπ(i), s

′
π(i)), and pi = (pi−1 − Yi) ∪ (Lπ(i)(s

′
π(i)) ∩ Yi) by construction. It

then remains to be shown that pi−1 ∩ (Y1 ∪ . . . ∪ Yi−1)∩APπ(i) = Lπ(i)(s
′
π(i))∩

(Y1 ∪ . . . ∪ Yi−1).
We now prove by induction that pi ∩ (Y1 ∪ . . . ∪ Yi) = L(s′) ∩ (Y1 ∪ . . . ∪ Yi). It
then follows that (a) pi−1∩(Y1 ∪ . . . ∪ Yi−1)∩APπ(i) = Lπ(i)(s

′
π(i))∩(Y1 ∪ . . . ∪ Yi),

and (b) pn ∩ (Y1 ∪ . . . ∪ Yn) = L(s′) ∩ (Y1 ∪ . . . ∪ Yn). Since the partitioning Y
is exhaustive, (Y1 ∪ . . . ∪ Yn) = AP , pn = L(s′) = C(s′).

For the base case, we consider p1. By our construction p1 = (p0 − Y1) ∪
(Lπ(1)(s

′
π(1)) ∩ Y1). This implies p1 ∩ Y1 = (Lπ(1)(s

′
π(1)) ∩ Y1). Since s′π(1) is a

component of s′, p1 ∩ Y1 = L(s′) ∩ Y1.
For our inductive hypothesis, assume that pi−1 ∩ (Y1 ∪ . . . ∪ Yi−1) = L(s′) ∩

(Y1 ∪ . . . ∪ Yi−1).

pi = [pi−1 − Yi] ∪ [Lπ(i)(s
′
π(i)) ∩ Yi]

⇒ pi ∩ (Y1 ∪ . . . ∪ Yi) = [(pi−1 − Yi) ∩ (Y1 ∪ . . . ∪ Yi)] ∪ [Lπ(i)(s
′
π(i)) ∩ (Y1 ∪ . . . ∪ Yi)]

= [pi−1 ∩ (Y1 ∪ . . . ∪ Yi−1)] ∪ [Lπ(i)(s
′
π(i)) ∩ Yi]

= [L(s′) ∩ (Y1 ∪ . . . ∪ Yi−1)] ∪ [Lπ(i)(s
′
π(i)) ∩ Yi]

by induction hypothesis

= [L(s′) ∩ (Y1 ∪ . . . ∪ Yi−1)] ∪ [L(s′) ∩ Yi]
because s′π(i) is a component of s′

⇒ pi ∩ (Y1 ∪ . . . ∪ Yi) = L(s′) ∩ (Y1 ∪ . . . ∪ Yi)ut

5 Algorithm to Check Consistency

The heart of our algorithm for checking consistency is a procedure for computing
the set of i-reachable micro-states from an observable state s. We compute the
i-reachable micro-states from s by updating the next state values of Yi variables
in the (i−1)-reachable micro-states from s. The valuation of Ỹ = Yi+1∪ . . .∪Yn
remains unchanged. As in the previous section, Mπ(i) is the controlling module
for the variables in the partition Yi. Given γ, it is easy to compute π(i). In this
computation, if we find that there exists an (i − 1)-reachable micro-state for
which there is no successor micro-state, then we have a divergent sequence of
length i− 1. This implies that the model is inconsistent by definition 6.



A Theory of Consistency for Modular Synchronous Systems 11

The explicit-state algorithm RecCheck shown in Figure 5 returns false if
there is a divergent sequence beginning with C(s). The loop in line 4 iteratively
computes Pi, the set of i-reachable micro-states from s. Line 6 assigns Yi+1 ∪
. . .∪Yn to Yafter. In line 7, we initialize Pi to the empty set. The loop beginning
in line 8 checks for every (i − 1)-reachable micro-state pi−1, if we can extend
any valid sequence of length i ending in pi−1. If it can be extended, then all
i-reachable micro-states pi which extend these sequences are added to Pi (line
13) and the flag extended is set to true. If there is a divergent sequence, extended
remains false in line 15 and the procedure terminates by returning false. In line
9, l denotes the valuation of the variables that have been updated in the previous
steps (Ybefore = Y1 ∪ . . . ∪ Yi−1). Line 10 initializes the extended flag to false.
The loop beginning in line 11 iterates over all states sk in the image of sj in the
controlling module for the ith micro-transition. Line 12 checks if sk is compatible
with the updates made in the previous micro-transitions (l). Line 17 adds Yi to
Ybefore.

The explicit-state procedure SpecCheck for checking consistency is also
described in Figure 5. Note that we do not check the micro-transition relation
for conformance since that is guaranteed by Theorem 1. In fact, we do not
explicitly construct Φ. We check for divergent sequences by the i-reachability
procedure in Figure 5.

As mentioned, the algorithms presented in this section are explicit-state.
We have implemented symbolic state versions of these algorithms in our tool,
SpecCheck, described in the next section.

6 Implementation and Experimental Results

We implemented a prototype tool, SpecCheck, that performs consistency check-
ing on a given specification for a synchronous modular system. The input to
the tool is a list of modules along with a set of properties expressed in LTL for
each module, and a partial order, ≺, on the atomic propositions used. To derive
tableaux for LTL properties, we used a slight modification of the construction
described by Clarke et. al. in [5] symbolically using BDDs [3]. After deriving a
tableau for each LTL property, we compose tableaux of all LTL properties to
derive a Kripke structure for a module and in turn compose these modules to
form a global Kripke structure. There is no unique tableau for an LTL property.
We have observed spurious deadlocks in some cases, depending on the tableau
construction used. Our modification to the method of [5] gets rid of the spurious
deadlocks in our examples. We compute the set of i-reachable micro-states, Pi,
symbolically using BDDs. Pi is a set of tuples (s, p), where (s, p) ∈ Pi if and only
if p is i-reachable from s. The set of states is encoded using AP ∪A, where A is
a set of auxiliary state variables which are used to differentiate between states
with the same labelling. The label of a state can be obtained by existentially
quantifying the auxiliary variables. The set of micro-states is encoded using AP .
SpecCheck is implemented in Moscow ML [15] which is an implementation of



12 Bryant et al.

RecCheck(s, n, Y, π, 〈T1, T2, . . . , Tm〉)
1 Ybefore ← ∅
2 Yafter ← Y

3 P0 ← L(s)

4 for i = 1 to n

{
5 sj ← Component(s, π(i))

6 Yafter ← Yafter − Yi
7 Pi = ∅
8 for every pi−1 ∈ Pi−1

{
9 l← pi−1 ∩ Ybefore

10 extended ← false

11 for every sk ∈ Sπ(i)

{
12 if (Rπ(i)(sj , sk) and (Lπ(i)(sk) ∩ Ybefore) = l)

13 Pi = Pi ∪ {(pi−1 − Yi) ∪ (Lπ(i)(sk) ∩ Yi)}
14 extended ← true

}
15 if (extended = false)

16 return false

}
17 Ybefore ← Ybefore ∪ Yi

}
18 return true

SpecCheck(〈T1, T2, . . . , Tm〉, γ,≺)

1 (S,R)← Compose(〈T1, T2, . . . , Tm〉)
2 if (S = ∅) return false

3 if R is not total return false

4 Ŷ = Levelize(AP,≺) /* levelize ≺ */

5 (Y, π) = ModPartition(Ŷ , γ)

/* refine Ŷ so that each partition has variables controlled by only one module */

6 for every s ∈ S
{

7 if (RecCheck(s, n, Y, π, 〈T1, T2, . . . , Tm〉) = false) return false

}
8 return true

Fig. 5. RecCheck, algorithm to check for the absence of divergent sequences and
SpecCheck, algorithm to check consistency



A Theory of Consistency for Modular Synchronous Systems 13

Master 1

Master 0

Arbiter Slave

req0

bus_lock

ack0

req1

ack1

valid

Ack

comp

busy locked master_id

Fig. 6. Example System

standard ML [11]. The symbolic computations are performed using MuDDy [13]
which is an ML interface to the BuDDy [14] BDD package.

We used our tool to check specifications for the system depicted in figure 6.
Two version of specifications for this system are described in more detail in the
appendix A. The system consists of two master devices and one slave connected
to an arbiter.

The general flow of control is as follows. The masters request control of the
bus using their respective req signals. The arbiter passes the request to the slave
(valid) and when the slave acknowledges the request (Ack), the arbiter passes the
acknowledgement to the requesting master (ack0 or ack1). After acknowledging
a request, the slave indicates completion of the request by asserting comp.

The busy signal is used to indicate when the bus is busy. Master 0 can also try
to lock the bus by asserting bus lock along with its request. If the bus is locked,
this is indicated by locked. In the locked state, the arbiter ignores requests made
by master 1.

The master id signal indicates which master currently controls the bus. If
the bus is idle, the value is undefined. Arbitration occurs when the bus is free.
The first master to make a request when the bus is free is granted the bus
(by setting master id appropriately). If both masters make a request, then the
request from master 0 gets priority. In version A, the arbiter asserts valid one
cycle after arbitration, whereas in version B, valid is asserted in the same cycle.
In the appendix A, we have precisely described the properties of these modules
in LTL.

Figure 7(a) shows a counterexample for version A, demonstrating a deadlock,
while figure 7(b) demonstrates a receptiveness problem with version B.

In figure 7(a), there is no valid next state because of the following properties.

1. G(((req0 ∨ req1 ) ∧ ¬busy)→ X valid): If there is a request and the bus not
busy, then in the next cycle valid must be asserted.

2. G(locked ∧ ¬req0 → X¬valid): If the bus is locked and master 0 is not
making a request, then valid cannot be asserted in the next cycle.



14 Bryant et al.

bus_lock

req0

ack0

req1

ack1

valid

Ack

comp

busy

master_id

locked

No possible
assignment

No possible
assignment

(b)(a)

bus_lock

req0

ack0

req1

ack1

valid

Ack

comp

busy

master_id

locked

Fig. 7. (a) Deadlock in the specifications. (b) Receptiveness problem in specifications

Property 1 requires valid to be asserted in the next state, while property 2
requires it to be deasserted. Hence there is no possible next state in the trace
shown. This inconsistency can be removed by replacing the first property with
the following two properties:

1(a). G((req0 ∧ ¬busy) → X valid): If master 0 makes a request and the bus is
not busy, then in the next cycle valid must be asserted.

1(b). G((req1 ∧¬(busy ∨ locked))→ X valid): If master 1 makes a request and the
bus is neither busy nor locked, then in the next cycle valid must be asserted.

In figure 7(b), an incomplete trace for version B is shown. In the last cycle,
only req0 , bus lock , req1 and locked are assigned. If req1 had remained deasserted
in the last cycle, there would have been no problem. But because it is asserted,
there is no possible assignment for valid . The following properties lead to this
receptiveness problem.

3. G((¬valid ∧¬busy)→ X((req0 ∨ req1 )↔ valid)): If valid is deasserted and
the bus is not busy, valid is asserted in the next cycle if and only if there is
a request in that cycle.

4. G(locked ∧valid → req0 ): When the bus has been locked by master 0, ignore
all requests by master 1, so valid just reflects master 0’s requests.

5. G(locked → X(locked ↔ bus lock)): If the bus is locked, it remains locked
while master 0 keeps bus lock asserted.

Just like for version A, this inconsistency can be resolved by replacing prop-
erty 3 with the following two properties:

3(a). G((¬valid ∧ ¬busy ∧ locked) → X(req0 ↔ valid)):If valid is deasserted and
the bus is not busy but locked, valid is asserted in the next cycle if and only
if master 0 makes a request in that cycle.



A Theory of Consistency for Modular Synchronous Systems 15

3(b). G((¬valid ∧ ¬busy ∧ ¬locked) → X((req0 ∨ req1 ) ↔ valid)):If valid is de-
asserted and the bus is neither busy nor locked, valid is asserted in the next
cycle if and only if there is a request in that cycle.

7 Conclusion and Future Research

We have proposed a theory for consistency of modular synchronous systems
with combinational dependencies, and developed an algorithm that allows us to
check for inconsistencies. The algorithm has been implemented in a prototype
tool, SpecCheck, which has been used to find bugs in the examples described in
the paper.

Nevertheless, there are a number of directions for future research. We have
assumed that the partial order ≺ on AP is specified by the user. We believe
that it may be possible to derive this order automatically from a specification in
temporal logic. The starting point in our check for consistency is a modular spec-
ification given as a collection of Kripke structures. We have observed that it is
possible to obtain spurious deadlocks with SpecCheck, depending on the tableau
construction method used. Similar issues are discussed in [6]. A better under-
standing of tableau construction methods and how they are used in SpecCheck
should enable us to eliminate the spurious deadlocks that we have observed. We
need to understand better what consistency means for actual implementations.
The standard notion of simulation between an implementation and a more ab-
stract model is not sufficient to guarantee consistency for the implementation.
Finally, we need to extend SpecCheck to handle hierarchical systems. We believe
that this can be done within our current framework.

References

1. R. Alur and T.A. Henzinger. “Reactive modules.” In Proceedings of the 11th IEEE
Symposium on Logic in Computer Science, pp. 207-218. 1996.

2. G. Berry, G. Gonthier. “The synchronous programming language Esterel: De-
sign, semantics, implementation.” Technical Report 842, INRIA. 1988.

3. R. E. Bryant. “Graph-based algorithms for boolean function manipulation.” IEEE
Transactions on Computers, C-35(8), pp. 677-691. 1986.

4. P. Chauhan, E. Clarke, Y. Lu, D. Wang. “Verifying IP-Core based System-On-
Chip designs.” In Proceedings of the IEEE ASIC/SOC Conference, pp. 27-31.
1999.

5. E.Clarke, O. Grumberg. H. Hamaguchi. “Another look at LTL model checking.”
Formal Methods in System Design, 10, pp. 47–71. 1997.

6. E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press. 1999.
7. E. Clarke, Y. Lu, H. Veith, D. Wang, S. German. “Executable Protocol Specifica-

tion in ESL.” To appear in FMCAD 2000.
8. D.L. Dill. Trace theory for automatic hierarchical verification of speed-independent

circuits. ACM Distinguished Dissertations. MIT Press, 1989.
9. A. Goel, W. R. Lee. “Formal Verification of an IBM CoreConnect Processor Local

Bus Arbiter Core.” 37th ACM/IEEE Design Automation Conference. 2000.



16 Bryant et al.

10. D. E. Long. “Model Checking, Abstraction and Compositional Reasoning.” PhD
Thesis, Carnegie Mellon University, 1993.

11. Milner, Tofte, Harper, MacQueen. The Definition of Standard ML. MIT Press,
1997.

12. K. Shimizu, D. L. Dill, A. J. Hu. “Monitor-Based Formal Specification.” To appear
in FMCAD 2000.

13. K. F. Larsen, J. Lichtenberg. MuDDy. Version 1.7.
http://www.itu.dk/research/muddy.

14. J. L. Nielsen. BuDDy–A Binary Decision Diagram Package. Version 1.7.
http://www.itu.dk/research/buddy.

15. S. Romanenko, P Sestoft. Moscow ML. Version 1.44.
http://www.dina.dk/~sestoft/mosml.html.

A Example Specifications

Slave Specification

Slave specifications are identical for both versions. We require that:

1. Slave should acknowledge only valid requests.
2. Slave should not assert comp before the first request is acknowledged.
3. comp should be asserted only once per request. If comp has been asserted

once, then it will be deasserted until another request has been acknowledged.

Master Specification

Version A

1. Once asserted req0 should remain asserted until it is acknowledged.
2. Once asserted req1 should remain asserted until it is acknowledged.
3. Master 0 can request to lock the bus by asserting bus lock only when req0

is asserted.

Version B

1. Once asserted req0 can only be deasserted one cycle after the cycle in which
ack0 is asserted.

2. Once asserted req1 can only be deasserted one cycle after the cycle in which
ack1 is asserted.

3. Master 0 can request to lock the bus by asserting bus lock only when req0
is asserted.

Valid Signal

Version A

1. If there is a request and the bus is not busy, then in the next cycle valid
must be asserted.



A Theory of Consistency for Modular Synchronous Systems 17

2. Once asserted valid can only be deasserted one cycle after the cycle in which
Ack is asserted.

3. If valid is deasserted, and either the bus is busy or there is no request then
valid should remain deasserted in the next cycle.

4. If Ack is asserted, valid should be deasserted in the next cycle.
5. If the bus is locked and master 0 is not making a request, then valid cannot

be asserted in the next cycle.

Version A Version B

Slave Specification

G(Ack → valid)
¬comp U Ack
G(comp → X (¬comp U Ack))

Master Specification

G (req0 → req0 U ack0 ) G(req0 ∧ ¬ack0 )→ X req0
G (req1 → req1 U ack1 ) G(req1 ∧ ¬ack1 )→ X req1
G(¬bus lock → (¬bus lock U req0 )) G(¬bus lock → (¬bus lock U req0 ))

Valid Signal

G(((req0 ∨ req1 ) ∧ ¬busy)→ X valid) G ((¬valid ∧ ¬busy)
→ X((req0 ∨ req1 )↔ valid))

G((valid ∧ ¬Ack)→ X valid) G((valid ∧ ¬Ack)→ X valid)
G (¬valid ∧ ¬((req0 ∨ req1 ) ∧ ¬busy) G(¬valid ∧ busy → X¬valid)
→ X¬valid)

G(Ack → X¬valid) G(Ack ∧ valid → X¬valid)
G(locked ∧ ¬req0 → X¬valid) G(locked ∧ ¬req0 → ¬valid)

Arbiter Acknowledgement Signals

G(¬master id ∧X Ack ↔ X ack0 ) G(ack0 ↔ Ack ∧ ¬master id)
G(master id ∧X Ack ↔ X ack1 ) G(ack1 ↔ Ack ∧master id)

Busy Signal

G(¬busy → ¬busy U Ack)
G(Ack → busy) G(¬busy → X(busy ↔ (Ack ∧ ¬comp)))
G(busy ∧ ¬comp → X busy
G(comp → X¬busy) G(busy → X(¬busy ↔ comp))

Master id Signal

G((locked ∨ busy)→ (master id ↔ X master id))
G(¬(locked ∨ busy)→ X(req0 → ¬master id))
G(¬(locked ∨ busy)→ X(req1 ∧ ¬req0 → master id))

Locked Signal

G (¬locked → X(locked ↔ bus lock ∧ (¬master id ∧Ack)))
G(locked → X(locked ↔ bus lock))

Table 1. LTL specifications for the example system depicted in Figure 6

Version B

1. If valid is deasserted and the bus is not busy, valid is asserted in the next
cycle if and only if there is a request in that cycle.

2. Once asserted valid can only be deasserted one cycle after the cycle in which
Ack is asserted.



18 Bryant et al.

3. If valid is deasserted and the bus is busy then valid should remain deasserted
in the next cycle.

4. If Ack is asserted in response to a valid then valid should be deasserted in
the next cycle.

5. When the bus has been locked by master 0, ignore all requests by master 1.

Arbiter Acknowledgement Signals
Version A

1. If current master is 0 and an acknowledge is received in the next cycle then
ack0 is asserted in the next cycle, otherwise ack0 remains deasserted.

2. If current master is 1 and an acknowledge is received in the next cycle then
ack1 is asserted in the next cycle, otherwise ack1 remains deasserted.

Version B

1. If current master is 0 and an acknowledge is received then ack0 is asserted,
otherwise ack0 remains deasserted.

2. If current master is 1 and an acknowledge is received then ack1 is asserted,
otherwise ack1 remains deasserted.

Busy Signal
Version A

1. If busy is deasserted, it remains deasserted until an Ack is received.
2. If an Ack is received, busy is asserted.
3. Once asserted busy can only be deasserted one cycle after the cycle in which

comp is asserted.
4. If comp is asserted, busy should be deasserted in the next cycle.

Version B

1. If the bus is not busy then in the next cycle the bus is busy if and only if
the slave acknowledge a request and does not complete it in that cycle.

2. If the bus is busy then the bus remains busy till the slave asserts comp. Once
comp is asserted, the bus is no longer busy.

Master id Signal

The arbiter arbitrates by setting master id to denote which master is controlling
the bus. Both versions behave identically when setting master id .

1. master id remains unchanged if the busy is either busy or locked.
2. If the bus is neither busy nor locked then master 0 is given control of the

bus if it makes a request.
3. If the bus is neither busy nor locked then master 1 is given control of the

bus if it makes a request and master 0 is not making a request.

Locked Signal

1. If the bus is not locked then in the next cycle the bus is locked if and only
if a bus locking request from master 0 is acknowledged by the slave.

2. If the bus is locked, it remains locked while master 0 keeps bus lock asserted.

The initial state of all the signals is deasserted.


