A Unified Approach For Showing Language Containment
And Equivalence Between Various Types Of w-Automata

" E. M. Clarke, 1. A. Draghicescu
Carnegie Mellon University, Pittsburgh

R. P. Kurshan
AT&T Bell Laboratories, Murray Hill

Abstract We consider the language containment and equivalence problems for six different
types of w—automata: Biichi, Muller, Rabin, Streett, the L-automata of Kurshan, and the V-
automata of Manna and Pnueli. We give a six by six matrix in which each row and column
is associated with one of these types of automata. The entry in the i* row and j* column is
the complexity of showing containment between the i* type of automaton and the j*. Thus, for
example, we give the complexity of showing language containment and equivalence between
a Biichi automaton and a Muller or Streett automaton. Our results are obtained by a uniform
method that associates a formula of the logic CTL* with each type of automaton. Our algorithms
use a model checking procedure for the logic with the formulas obtained from the automata. The
results of our paper are important for verification of finite state concurrent systems with fairness
constraints. A natural way of reasoning about such systems is to model the finite state program
by one w-automaton and its specification by another.

This research was partially supported by NSF grant CCR-87-226-33.

1

1. Intrgduction

1.1. Background

w—Automata were first used by Biichi in a paper on the decision problem for the logic S1S [7].
A short time later Muller showed that such automata were also useful for modeling the behavior
of asynchronous circuits [3]. Like a conventional automaton on finite words, an w-automaton
consists of a set of states, an input alphabet, a transition relation and a start state. The difference
between the two occurs in the definition of what it means for a word to be accepted by an
automaton. Since the notion of a final state is not appropriate for a machine that accepts infinite
words, another method must be used for defining acceptance. In Biichi’s definition, some states
were specified as accepting states. In order for a word to be accepted, these states must occur
infinitely often during a run of the machine on the word. The definition that Muller used was
somewhat more complicated. His acceptance condition consisted of set in which each element
was a set of states. In order for a word to be accepted by an automaton, the set of states that
occurred infinitely often during a run of the machine on the word must be one of the elements
of the acceptance set. Other acceptance conditions have been given by Rabin [10], Streett [11],
Kurshan [9], and Manna and Pnueli [16]. It can be shown that cach type of automaton accepts
the same class of languages (i.e. the w-regular langauges); however, the translation from one
type of automaton to another may be quite complex [12].

The language containment and equivalence problems for w—automata are defined in exactly
the same way as for automata on finite words. Let M; and M, be two automata on infinite
words with the same alphabet . L(M;) will be the language accepted by M;. The language
containment problem (or simply the containment problem when this is unambiguous) is the
problem of determining whether L(M;) C L(M2). The equivalence problem, on the other hand,
is the problem of deciding whether £L(M,) = L(M;). Given an algorithm for the containment
problem, we can easily obtain an algorithm for the equivalence problem, since £(M,) = L(M2)
iff L(M,) C L(M3) and L(M,) C L(M,). If M, is nondeterministic, then determining whether
L(M,) C L(M,) will in general be PSPACE hard, since the corresponding problem for ordinary
automata on finite words has this complexity !. Consequently, in this paper we will only
consider the case in which M, is deterministic. M,, however, can be either deterministic or
nondeterministic.

In recent years the study of w—automata has experienced a somewhat surprising rebirth. The
renewed interest is apparently due to several factors. First of all, there has been a significant
amount of research during this period on abstract models for concurrent programs. An important
part of this research has been the study of various notions of fairness. Several of these notions
involve some event holding infinitely often. Because of the similarity to the way that acceptance
is defined for Biichi automata, it is natural to use such automata in modeling programs with this
type of fairness constraint. Some automatic verification techniques for finite state concurrent
programs have exploited this similarity with considerable success. The approach used by Kurshan

1 This complexity is reversed in the case of V-automata. See Section 3.

2

(9], models both the program and its specification by w—automata. To show that a program is
correct, he uses an algorithm for testing containment between the two such automata [8]. A
second reason for interest in w-automata comes from research on temporal logic. There is a
close relationship between w—automata and the models for a formula of linear temporal logic.
Specifically, given a formula f of linear temporal logic, it is possible to construct a Biichi
automaton that accepts those infinite sequences that are models for f. This relationship has also
been exploited in an approach to automatic verification called temporal logic model checking ([11,
[2]). In this case the specification of a finite state program is given by a temporal logic formula.
By the property mentioned above it is possible to extract a Biichi automaton from the temporal
logic formula and show containment in the same way that Kurshan does. Finally, research in
VLSI on problems like clock skew has led to increased interest in asynchronous circuits. Models
for such circuits like the one originally proposed by Muller have been resurrected in hopes of
obtaining a better understanding for this class of circuits [4].

L2. New Resuits of this paper

We consider the problem of deciding containment between all of the various types of w—automata
mentioned in the first paragraph. We give a 6 x 6 matrix where each row and column corresponds
to one of the types of automata (See the figure at the end of Section 5.). The entry in the i row
and j* column is the complexity of showing containment between the i** type of automata and
7. The entriés on the diagonal of the matrix give the complexity of deciding containment of
two automata of the same type. We give a single uniform framework for establishing all of these
results. We show how each entry in the matrix can be reduced to the problem of determining
whether a certain temporal logic formula is true of a Kripke structure obtained from the two
automata. We can efficiently determine whether the formula is true of the structure by using a
model checking algorithm for the logic.

The particular logic that we use is called CTL* ([1], [2], [5]). It combines both branching-
time and linear-time operators and is quite expressive. The syntax includes path quantifiers, A
("for all paths™) and E ("for some path™), that are used as prefixes for formulas containing arbitrary
combinations of the usual linear time operators G ("always"), F ("sometimes™), X ("nexttime"),
and U ("until"). Although the model checking problem for full CTL* is PSPACE-complete {13],
Emerson and Lei [6] give a restricted class of CTL* formulas (called fair—CTL) for which there
is a model checking algorithm with polynomial complexity in the size of the CTL* formula and
also in the size of the Kripke structure. We use a modification of this algorithm to obtain our
results.

Our strategy for all of the cases in the matrix is essentially the same. We first express the
acceptance conditions for the two automata by a formula in CTL*. Then we manipulate the
formula to obtain one that can be handled by the model checking algorithm of Emerson and
Lei. Since we are able to solve the containment problem by using an an efficient algorithm with
practical complexity, the algorithms that we obtain for the entries in the matrix have practical
complexity as well and are reasonably easy to implement. Moreover, since we use a uniform
approach for obtaining our results, it is relatively simple to understand how the differences in

3

the complexity among the various entries arise.

Although some of our results were previously known (See [8] for instance.), most of our
results are new, because no one else has considered the hybrid cases (Biichi contained in Streett,
etc.) that we consider. Even some of the cases on the diagonal are new. For example, we
give a low order polynomial algorithm for deciding containment between deterministic Muller
automata. As far as we know, no polynomial algorithm has been given for this case before. A
naive algorithm to solve this problem would probably have exponential complexity.

1.3. Outline of paper

Our paper is organized as follows: In Section 2 we give formal definitions for the various types
of w-automata that we consider in this paper. In Section 3 we give the syntax and semantics
for the branching-time temporal logic CTL*, and briefly discuss the model checking algorithm
of Emerson and Lei. We precisely state the problem that the algorithm solves and give its
complexity in the size of the CTL* formula and the size of the Kripke structure. Section 4 is
the heart of the paper. In this section we show how to describe the various types of automata
in CTL* and tell how to use the fair~CTL model checking algorithm for deciding containment
between different types of machines. The paper concludes in Section 5 with a discussion of our
results and some directions for future research.

2. w-Automata

A (nondeterministic) w-automaton over an alphabet X is a tuple (S, so, 8, F) where § is a finite
set of states, so is an initial state, § : Sx X — P(S) is a transition relation and F is an acceptance
condition. The automaton is deterministic if Vs € S,Va € T :| 6(s,a) |< 1. The automaton
is complete if Vs € S,Ya € £ :| §(s,a) |2 1. In this paper we will always assume that the
automata are complete. It is easy to see that this does not affect the complexity of containment.

A path in M is an infinite sequence of states sos152... € S that starts in the initial state and
has the property that Vi > 1,3a; € £ : 6(si,a:) D Siv1. A path so5152... € ¥ in M is a run of
an infinite word @ya;... € Z¥ if Vi > 1 : 8(si, @) 2 Siv1.

An infinite word is accepted by a Biichi, Muller, Rabin, Streett or L automaton if it has an
accepting run in the automaton. An infinite word is accepted by a V-automaton if all its possible
runs in the automaton are accepted.

LM)={aa;...€ Z¥ | a1a,... is accepted by M}.

The infinitary set of a sequence $os152... € S¥, inf(sos1...), is the set of all the states that
appear infinitely many times in the sequence.

If M is a Biichi automaton then F C S is a set of states (as in the case of automata on finite
words) and a path p is accepted by M if inf(p) N F # 9.

4

The acceptance condition of a Muller automaton is a set F C P(S) of sets of states. A path
is accepted by the Muller automaton if inf(p) € F.

In the case of Rabin automata, the acceptance condition has the form F = {(U, V1), ...,
(Un, Va)}, where U, V; C S. In this case, a path is accepted by M if there exists i € {1,...,n}
such that inf(r) C U; and inf(r) N V; # 0.

The Streett acceptance condition has the same form as that of Rabin, but the semantics is
different. A path is accepted by a Streett automaton with F = {(U;, V)),..., (U, V.)} if for every
i € {1,...,n}, either inf(r) C U; or inf(r) N V; #0.

If M is an L automaton, the acceptance condition is a pair F = (Z,V), where Z C P(S)
and V C S. A path is accepted by the automaton if either inf(r) C U for some U € Z or
infryNV+#0.

The acceptance condition of a V-automaton is F = (U,V) C § x S. A path is accepted by the
automaton if either inf(r) C U or inf(r) N V #90.

3. The Computation Tree Logic CTL*

There are two types of formulas in CTL*: state formulas (which are true in a specific state) and
path formulas (which are true along a specific path). Let AP be the set of atomic proposition
names. A state formula is either:

o A if A€ AP.
e If f and g are state formulas, then —f and f V g are state formulas.

e If f is a path formula, then Ef is a state formula.
A path formula is either:

e A state formula.

e If f and g are path formulas, then —f, fV g, Xf, and fUg are path formulas.

CTL* is the set of state formulas generated by the above rules.

We define the semantics of CTL* with respect to a structure M = (S, R, L), where

e S is a set of states.

e R C S x S is the transition relation, which must be total. We write s; — s2 to indicate
that (s1, 52) € R.

e £ :S — P(AP) is a function that labels each state with a set of atomic propositions true
in that state.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We define a path in M to be a sequence of states, * = SoS; ... such that for every i 2 0,
i — Si1. 7 will denote the suffix of = starting at s;.

We use the standard notation to indicate that a state formula f holds in a structure: M,s =f
means that f holds at state s in structure M. Similarly, if f is a path formula, M, 7 |= f means
that f holds along path 7 in structure M. The relation |= is defined inductively as follows
(assuming that f; and f; are state formulas and g; and g; are path formulas):

sEA iff A€ L().

s E-A if sBh.

sEAVA iff sEAforsEfR

s EE(g1) iff there exists a path 7 starting with s such that 7 = g;.

T EfA iff s is the first state of 7 and s |= fi.

T g iff s

TEaVE iff tEsnorT g,

Xy if *Ea

7 EgUg iff there exists a k> O such that 7* =g and forall 0 < j < k, 7/ = g1.

O 001 W H Wi

We will also use the following abbreviations in writing CTL* formulas:

~(=fV -g) *A(f)
trueUf oGf

-E(=f)
—F~f.

of AN g
oFf

m

Let X = (S, R, £) be a finite Kripke structure. The mode! checking problem for a logic L is to
determine which states in S satisfy a given formula f of L. This problem is PSPACE—complete
for CTL* [13]. However, for restricted CTL* formulas of the form

E[\/(A(FGp; v GFg;))]

izl j=l
where p;; and g; are propositional formulas, Emerson and Lei [6] give a polynomial model
checking algorithm. ‘

Theorem 1 Let K = (S, R, L) be a Kripke structure and f be a CTL* formula of the above
form. There is an algorithm for finding the states of S where f is true that runs in time

O3 n|R|+Y_nt|S|+D
=1 =1

where T is the time necessary to label the states satisfying p;j and qij for i € {1.....n}, j €

{1,...,m}.

In this paper we will need somewhat more complicated (although equivalent) CTL* formulas in
order to obtain better time bounds for our algorithms. The new formulas have the form

L) mj
El\/(\(FGp; v GFgy) A (/\ GFry) A FGpy)].
1

il jal =
In this case the complexity is
O (m+D+D|R|+D (m+Dm+mi+1)| S| +T)
=l =l

where T is the time required to find the sets of states satisfying py, ¢y, ry and p; forall i €
{1,...,n} and j € {1,...,n;}. Essentially the same algorithm and proof can be used in this case
as well.

4. Complexity Resuits for Varous Types of w-automata

4.1. Biichi, Muller, Rabin, Streett and L automata

Let M = (S, 50, 6, F) be a Biichi, Muller, Rabin, Streett or L automaton.

Let ¢p be a linear formula over S that expresses the acceptance condition of M, more precisely,
¢ is a linear formula over S that has the property : an infinite path in M is accepted by F if
and only if it satisfies ¢p.

We will show below that it is possible to express both the acceptance condition of M and its

negation in the form

non m; :

V(AFGp;; v GFgy) A (/\ GFry) A FGp:)

=l j=l =l
where pjj, gij, 7 and p; are propositional formulas. With each of these five different types of
w—automata, we first give the acceptance condition and its negation as CTL* path formulas.
Then we state the values of n, n;, and m; that show why the formulas have the general form
above.

e Biichi
¢r = GF(\/ 5)
seF

n=1, n1=0, m1=1

-¢r =FG(\/ 5)

seF
n=1, n1=0, m1=0

¢ Muller

¢r =\ FG(\ A /'\ GFs) or

AcF s€A
n=| F| andforcvcryAeF :na=0,my=A]|

We will show that ¢ is equivalent to the following formula
(VFGV DA AACY FG(V sV GF(V s) v GF)
AEF s€A ACFi€A g,
BeF

To establish this result it is sufficient to prove that for a given C € S, C will be in F if
and only if the following condition holds :

1.3AeF : CCAand

2. YA€ F, Vi€ A at least one of the following holds:
(@) 3BCA:BeF,CCBor
(b) CNA#0bor
(c)teC

The "=" direction is proved by the following argument:

1. holds for A =C,

2. for any A € F either A = C and therefore ¢) holds, or CNA #0 then b) holds, or
C C A in which case a) holds.

The "<«" direction is even simpler. By 1) there exists a minimal A € F such that C C A.
Then by 2) for A as a) and b) are false, it must be the case that A C C.

Using this result, it is easy to show that —¢ _can be expressed as follows:

-¢r =(A\ GF\/)V V VCA GF(\ 9AFG(V 9)

AP 4eX ACFI€A 5, scB €A
BeF ot
n=1+Zur|A|, m=0, m =|F|
and forevery A€ F, t€A : ny, =0, my;,=|{BCA | BEF}|

e Rabin
or= \/ (FG(V 9HA GF(\/ 5)
U VeF seU
n =| F I, nwy.vy =0, muogwvy = 1
-¢r= A\ (GF(\/ 5)VFG(Y s))

U.V)er seV s€U
n=1, m={F|, m=0

o Streett

¢r= N\ (FG(\ 9V GF(V 5))

{UWerF s€U
n=1nm "'Fla ml-o
~¢r= \/ (GF(\ 5)AFG(V 9))
UVvef €0 3
n=Fl|, ngn=0, myn=1

o L
or =\ FG(\ s)V GF(\/ 5)

Uez s€U
n=1+|2Z|, n =0, m1=1andf0ra11U€Z tng=0, my=0
-¢ =FG(\/ A A\ GF(\/)
s€V UezZ €U
n=1, n1=0, m =|Z|

We now show how to compute the complexity of the containment problem by using the
formulas for ¢ and —¢r for the five different types of w—automata. Let M = (S, 50, 6, F) and
M = (S,sp,6', F") be two complete Biichi, Muller, Rabin, Streett or L automata over X' such
that SNS =0.

Let KM, M) = (S x S, (S0, 55), £, R) be the Kripke structure over SU §' for which L(s,s') =
{s,5'} and (5,5 YR(t,) & (Jae€ £ :6(s,a)d tand §'(s’,a)3 1).

If M’ is deterministic, then
LM C LMY & KM,M) E -E(¢r A ~¢p)

where ¢ and ¢ express the acceptance conditions of M and M’ respectively. Suppose that or
and —¢% have the form : deterministic V-automaton with acceptance condition expressed by

n n my
= V(A\(FGp; vV GFgy) A \ GFr; A FGp))

i=1 j=i =l

—¢pp = V(/\(FGp{, Vv GFgj) A /\ GFrj; A FGp)).

=1 j=1
Then K(M,M') = E(¢r A ~¢p) if and only if

m
KM,M) E E[V V(/\(FGp., V GFg;) A /\(F(;p,d V GFg,) A /\ GFr; A \ GFry AFG(p; A p}))]

=1 k=1 j=1 I=1

and therefore, as shown in Section 3, the inclusion £(M) C L(M’) can be checked in time

0(i2(u,~+n2+1)(| S| &+ S| S| i+ ny+m+my+1)).

=l k=l

(AT S ()7 Hudwmue)uod ay) Jo £)xaidwod sy,

‘uoewoine

1NN € st uoewome o Ji |y | VI =3 Yy |V =8pue| gl=S ldl=S | Ssl=adsl=al9l=2 | 9l=2a0ym

A+ 92 Jaa+ pa _ Jpn+ J9 _ Jaa+ Jo2 _ Bpa+ J22 _ A+ pa wa
.)
I faa | fimasfae | faas Jlae | Sinas Jfpa _ Bdlpa+ 3o | fpasfao | 0
(f + Haas S(S+ D+ 19puou
Jraspo | pipmetas | difams o | DA _ e || T
Jaavfao | fiparfaa | ffpas fpa | Siaas Sipe _ Bdiaat 3fpa | fpasfpa | P
(S5 + Dt | (83 + 8 J)pat 19puou
San+ a2 | B+ P+ 22 _ Jsaa+ ff23 t [_ 312 80+ 22 SN
19puou
Ad+ 22 JAd+ 22 _ Jaa+ J2a _ A+ J2 _ B+ 829 A+ 29 :_wsm
19puou 19p 19p 19p 19p 19p W
A 1 naang uiqey NN yong N

It is easy to see that the time required to label the states with the propositional subformuilas p;;,
g, etc. is dominated by the other terms of the complexity formula. Finally, to obtain each entry
in the submatrix determined by the first five w-automata, we substitute the values of n, n;, and
m; for the acceptance condition of the first automaton and ', n, and mm, for the negation of the
acceptance condition for the second automaton.

4.2. V-automata

The deterministic V-automata are a subclass of the deterministic Streett automata. Therefore we
can complete the list in the previous section with

e deterministic V
ér =FG(\/)V GF(\/ 5)
se€U seV

n=1nm=1 m=0

-~¢r = GF(\/ s)AFG(V s)
€U 34
n=2,m=0,m=1 m=0 mm=0

Once we have the values for n, n; and m; we can use the same technique as in Subsection 4.1

for computing the complexity of each entry in the last row of the matrix.

In order to check L(M) C £(M") where M is a Biichi, Muller, Rabin, Streett, L or deterministic
V-automaton and M’ is a nondeterministic V-automaton we must use a different approach.

Let M = (S, o, 6, F) be a Biichi, Muller, Rabin, Streett, L or deterministic V-automaton with
the acceptance condition expressed by

Ao m;
or = VV(\AFGp; v GFg;) A /\ GFr; A FGp;)
izl j=l =l
and let M' = (§', 55,68', (R', §")) be a complete V—automaton. Notice that the Rabin automaton
My = (S, S, 8 Flis = (Rlisats Stua)) With Ry = 37 and S, = R is such that £L(M,,) = COMD.

Then we have :
LM C LM,) & LN LML) #0 & KM, M,,) =E@rAdr)
and therefore the time complexity to check L(M) C £L(M’) in this case is

OQ_m+1(6|18 +1S|S| (ni+mi+1))
=1

Each entry in the column of the matrix for nondeterministic V-automata can be obtained by
substtuting the values of n, n;, and m; for the acceptance condition of the automaton in the
corresponding row.

11

5. Directions for Future Research

An obvious question is whether there are any reasonable acceptance conditions for w—automata
that we have not considered. Certainly we have included all of the models that are commonly
discussed in the literature, but are there any that don’t fit in our framework? One possibility
is to use a formula of linear-temporal logic as the acceptance condition for an automaton. For
example, given an arbitrary formula f of linear-temporal logic onc can define an f-automaton

that accepts an infinite word iff the word satisfies the formula f. The same question can be
posed for Wolper’s logic ETL [15] and, in fact, for any temporal logic with models that are
sequences of states. This notion of acceptance at first appears more general than the previous
ones that we have discussed, but it is really not. Assume that the alphabet for f is ~. By using
a construction of [14] it is possible to obtain a nondeterministic Biichi automaton with alphabet
P(X) that will accept an infinite word iff the word satisfies the formula f. Consequently, this

problem is essentially the same as the problem of showing containment between some (possibly
nondeterministic) w—automaton and a nondeterministic Biichi antomaton.

The question of how to handle the containment problem when both automata are nondeter-
ministic, is another important problem for research. In this case, the problem is at least PSPACE
hard, since the containment problem for conventional automata on finite wordss has this com-
plexity. In some cases it is possible to show that the containment problem for certain types
of w—automata is also in PSPACE. We conjecture that this is true for all of the cases in the
complexity matrix, but we have not been able to prove this result yet. Of course, to say that a
particular problem is in PSPACE is not really very useful in practice. Concrete time bounds like
2" or 27" are much more useful. We have already obtained some results of this type and we
hope to complete the matrix for the nondeterministic case with bounds of this sort in the near
future.

Finally, although our algorithms for testing containment are the best that we know, we are
currently unable to show that many of them arc optimal. In fact, we suspect that some are
not optimal and may be improved in the future. We believe that additonal research would be
valuable in this direction. To aid in the search for better algorithms, it would be quite helpful to
have lower bounds for the non-optimal cases in the matrix. A related question that we have not
fully considered is the usefulness of our present complexity measure. Currently, the entries in
our matrix are worst case execution times. While this measure is certainly an important factor
in evaluating the efficiency of our algorithms, it is not the only factor of interest. Since the
automata may have many thousands of states, the amount of memory available is frequently the
limiting factor rather than the execution time. Complexity measures that take this into account,
are probably more useful than time complexity alone. Devising sach measures and finding
algorithms that are efficient with respect to the new measures are also important directions for
research.

12

References

[1] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. ACM Transactions on Programming Languages and Systems, 8(2):244—
263, 1986.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, 1986.

[3] D.L.Dill and E. M. Clarke. Automatic verification of asynchronous circuits using temporal
logic. IEE Proceedings, 133, part E(5), Sep 1986.

[4] E. A. Emerson and J. Y. Halpem. Decision procedures and expressiveness in the temporal
logic of branching time. JCSS, 30(1):1-24, 1985.

(5] E. A. Emerson and C. L. Lei. Temporal reasoning under generalized fairness constraints.
In Springer LNCS 210, STACS86, Orsay, France, January 1986.

[6] J. R. Biichi. On a decision method in resticted secon-order arithmetics. In Proceedings,
International Congres on Logic Method and Philosophy of Science, 1960, pages 1-12,
Stanford University Press, 1962.

[7] R. P. Kurshan. Complementing Deterministic Biichi Automata in Polynomial Time. JCSS,
35:59-71, 1987. '

(8] R. P. Kurshan. Testing Containment of w-Regular Languages. Technical Report 1121-
861010-33-TM, Bell Laboratories, 1986.

[9] Z. Manna and A.Pnueli. Specification and verification of concurrent programs by V-
automata. In Proceedings - Fourteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, 1987, pages 1-12, ACM, 1987.

[10] D. E. Muller. Infinite sequences and finite machines. In Switching Cicuit Theory and
Logical Design: Proceedings, Fourth Annual Symposium, pages 3—16, 1963.

[11] M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans-
actions, American Mathematical Society, 141:1-35, 1969.

[12] S. Safra. On the complexity of w—automata. In Symposium on Foundations of Computer
Science, IEEE, Oct 1988.

[13] A. P. Sistla and E. M. Clarke. Complexity of propositional temporal logics. Journal of the
Association of Computing Machinery, 32(2):733-749, 1986.

[14] R. S. Streett. Propositional dynamic logic of looping and converse is elementary decidable.
Information and Control, 54:121-141, 1982.

13

[15] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proceedings of the Conference on Logic in Computer Science, Boston, Mass., June 1986.

[16] P. Wolper. Temporal logic can be more expressive. Inf. Control, 56:72—-79, 1983.

14

