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Abstract

Many automated finite-state verification procedures can be viewed
as fixpoint computations over a finite lattice (typically the powerset
of the set of system states). For this reason, fixpoint calculi such as
those proposed by Kozen and Park have proven useful, both as ways
to describe verification algorithms and as specification formalisms in
their own right. We consider the problem of evaluating expressions
in these calculi over a given model. A naive algorithm for this task
may require time n?, where n is the maximum length of a chain in
the lattice and ¢ is the depth of fixpoint nesting. In 1986, Emerson
and Lei presented a method requiring about n? steps, where d is the
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number of alternations between least and greatest fixpoints. More
recent algorithms have succeeding in reducing the exponent by one
or two, but the complexity has remained at about n?. In this paper,
we present a new algorithm that makes extensive use of monotonicity
considerations to solve the problem in about n%/? steps.

1 Introduction

Many automated finite-state verification algorithms can be viewed as fixpoint
computations over a finite lattice. Examples include: model checking pro-
cedures for logics such as CTL [7, 8] and PDL [15], methods for computing
strong and weak bisimulation equivalence in CCS [20], and language con-
tainment and emptiness algorithms for w-automata [6]. Approaches based
on fixpoint logics such as the propositional u-calculus [16] are tied even more
directly to fixpoint computation. With the increasing use of binary decision
diagrams (BDDs) [4] for finite-state verification [5, 12, 19], fixpoint-based
algorithms have become even more important, since methods that require
the manipulation of individual states do not take advantage of this repre-
sentation. In this paper, we consider the complexity of evaluating fixpoint
expressions over finite lattices. Our main result is a new algorithm that
makes extensive use of monotonicity considerations to reduce the complexity
of evaluation. The number of steps required by our method is roughly the
square root of the number of steps required by the best previously known
algorithms.

Numerous fixpoint calculi have been described in the literature [13, 16,
21], and our ideas for evaluating fixpoint expressions will work with any
of them. However, for concreteness, we will be using the propositional p-
calculus of Kozen [16]. This logic is designed for expressing properties of
transition systems, and formulas in the logic (with no free propositional vari-
ables) evaluate to sets of states. There have been many algorithms proposed
for evaluating a formula of the logic with respect to a given transition system.
These mostly fall into two categories: local and global. Local procedures are
designed for proving that a specific state of the transition system satisfies
the given formula. Because of this, it is not always necessary to examine all
the states in the transition system. However, the worst-case complexity of
these approaches is generally larger than the complexity of the global meth-
ods. Tableau-based local approaches have been developed by Cleaveland [9],
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Stirling and Walker [22], and Winskel [24]. More recently, Andersen [1] and
Larsen [17] have developed efficient local methods for a subset of the u-
calculus. Mader [18] has also proposed improvements to the tableau-based
method of Stirling and Walker that seem to increase its efficiency (though
Mader does not give a complexity bound). Global procedures generally work
bottom-up through the formula, evaluating each subformula based on the
value of its subformulas. Iteration is used to compute the fixpoints. Because
of fixpoint nesting, a naive global algorithm may require about n? steps to
evaluate a formula, where n is the number of states in the transition system
and ¢ is the depth of nesting of the fixpoints. A linear time algorithm for
evaluating alternation-free fixpoint expressions is given in [2]. Emerson and
Lei [14] improved on this by observing that the complexity of evaluating a
formula really depends only the number of alternations of least and greatest
fixpoints. That is, successively nested fixpoints of the same type do not in-
crease the complexity of the computation. Emerson and Lei formalized this
using the notion of alternation depth, and they gave an algorithm requiring
only about n? steps, where d is the alternation depth. In an implementation,
bookkeeping and set manipulations may add another factor of n or so to the
time required. Subsequent work by Cleaveland, Klein, Steffen, and Ander-
sen [1, 10, 11] has reduced this extra complexity, but the overall number of
steps has remained at about n?. Our new algorithm is also a global method.
By using extensive monotonicity considerations, we are able to show that
only about n%? steps are required to evaluate a formula with alternation
depth d. Thus, our method requires only about the square root of the time
needed by the earlier algorithms.

The remainder of the paper is organized as follows. Section 2 summarizes
the syntax and semantics of the propositional p-calculus and briefly reviews
Emerson and Lei’s work. In section 3 we give our new algorithm, present a

proof of correctness, and show that it requires no more than about n®?

steps.
Section 4 presents an example that shows that our complexity bound is tight,
i.e., there are cases where the algorithm does use n%/? steps. We discuss some

open questions and directions for future research in section 5.

2 The Propositional p-Calculus

In the propositional p-calculus, formulas are built up from:



1. atomic propositions p, p1, pa, ...;

2. atomic propositional variables R, Ry, Rs, ...;

3. logical connectives - A - and -V -;

4. modal operators (a)- and [a]-, where a is one of a set of program letters
a, b, ar, az, ...; and

5. fixpoint operators pR;. (---) and vR;. (---).

(We can also allow negations to be applied to atomic propositions, but this
is not important for our purposes.) Formulas in this calculus are interpreted
relative to a transition system that consists of:

1. a nonempty set of states T (throughout this paper the size of this set
is denoted by n);

2. a mapping L that takes each atomic proposition to some subset of T
(the states where the proposition is true); and

3. a mapping T' that takes each program letter to a binary relation over T
(the state changes that can result from executing the program).

The intuitive meaning of the formula (a)¢ is “it is possible to execute a
and transition to a state where ¢ holds”. [-] is the dual of (-); for [a]¢, the
intended meaning is that “¢ holds in all states reachable (in one step) by
executing a.” The g and v operators are used to express least and greatest
fixpoints, respectively. To emphasize the duality between least and greatest
fixpoints, we write the empty set of states as L.

Formally, a formula ¢ depending on free propositional variables Ry, Rj,
..., Ry is interpreted as a k-argument predicate transformer. (A predicate
transformer is simply a mapping from sets of states to a set of states.) We
write this predicate transformer as ¢M. ¢™ is defined inductively by giving
its value ¢™(S) for a vector S = (S, ...,S5;) of arguments.

L pM(S) = L(p).
2. RM(S) = S..
3. (p ADYM(S) = ¢M(S) NyM(S). Disjunction is similar.
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4. ({a)¢ ) (5)={s[3t[(s,t) € T(a) Nt € $M(S)] }.
([al$)™(S) = {5 | Vt[(s,t) € T(a) >t € 6 ()] }.
5. (uR. $)M(S) is defined to be the least fixpoint of the predicate trans-

former 7:27 — 27 defined by:

T(S) = ¢M(57 S)a

where the first parameter of ¢ is the value for R. The interpretation
of vR. ¢ is similar, except that we take the greatest fixpoint.

Within formulas, there is no negation (except potentially on the atomic
propositions), and so the fixpoints are guaranteed to be well-defined. For-
mally, each possible 7 is monotonic (S C S’ implies 7(.5) C 7(5’)). This is
enough to ensure the existence of the fixpoints [23]. Further, since we will
be evaluating formulas only over finite transition systems, monotonicity of 7
implies that 7 is also U-continuous and N-continuous, and hence the least
and greatest fixpoints can be computed by iterative evaluation:

(uR-)M(S) =Ur'(L)  (vR.¢)"(S) =)7(T).

% z

Since the domain is finite, the iteration must stop after a finite number of
steps. More precisely, for some ¢ < |T|, the fixpoint is equal to 7/(L) (for
a least fixpoint) or 7/(T) (for a greatest fixpoint). To find the fixpoint, we
repeatedly apply 7 starting from L or from T until the result does not change.
Since we will be using the concept of alternation depth, we briefly sum-
marize Emerson and Lei’s observations [14]. Consider the expression

pRy. ((a)Ry) V (pRa. Ry V p V (b)Ry).

The subformula pRs. (- - -) defines a monotonic predicate transformer 7 taking
one set (the value of R;) to another (the value of the least fixpoint of R3).
When evaluating the outer fixpoint, we start with the approximation 1L and
then compute 7(L). Now Rj is increased (say to S1), and we want to compute
the least fixpoint 7(S7). Since L C Sj, by monotonicity we know that
7(L) € 7(S1). To compute a least fixpoint, it is enough to start iterating
with any approximation known to be below the fixpoint. Thus here, we can
start iterating with 7(L) instead of L. At the next step, R; will be even



larger, and so we will start the inner fixpoint computation with 7(57). We
never restart the inner fixpoint computation, and so we can have at most
about n increases in the value of the inner fixpoint variable. Overall, we only
need about n steps to evaluate this expression, instead of nZ.

Emerson and Lei show that this type of simplification makes it possible
to evaluate a formula ¢ in about n? steps, where d is the alternation depth
of the formula. The alternation depth of a formula is intuitively equal to
the number of alternating nestings of least and greatest fixpoints. Formally,
the alternation depth is defined as follows. Assume for simplicity that the
formula does not contain any non-atomic subformulas that which do not
contain free propositional variables (these can be independently evaluated
and then treated as atomic propositions).

1. The alternation depth of an atomic proposition or propositional vari-

able is 0;

2. The alternation depth for formulas like ¢ A v, & V ), (a)¢, etc., is the
maximum alternation depth of the subformulas ¢, ¥, etc.

3. The alternation depth of pR. ¢ is the maximum of: one, the alternation
depth of ¢, and one plus the alternation depth of any top-level v-
subformulas of ¢. A top-level v-subformula of ¢ is a subformula v R’. ¢
of ¢ that is not contained within any other fixpoint subformula of ¢.
The alternation depth for v R. ¢ is similarly defined.

3 The Algorithm

To simplify notation, we consider a fixpoint computation of the form:

Fi = puRy.1(Ry, F?)

Fy = v Ry ts(Ry, Ra, )

Fy = pRa. ts( Ry, Ry, Rs, Fy)

Fy = v Ry ba(Ry, Ro, Ry, Ry, F)

Fd = O'de. I/Jq(Rl,RQ, e ,Rd),



where = denotes syntactic equality. Note that d is the alternation depth of
this formula. We write o, Ry. (- - -) to mean pRy. (- - ) if Ry is given by a least
fixpoint, and to mean vRy. (- --) otherwise. Define ¢4 = 14, and let

Gr(Ra,. . Ry) = (R, ooy R,y Frga)

for £ < d. Note that ¥ is a formula with £ 4 1 free propositional variables
(except for t,); the last parameter gives the value of the inner fixpoint.
Then ¢ is obtained from 1t by instantiating the last parameter with the
inner fixpoint. For notational simplicity, we will identify syntactic formulas
with their interpretations in the discussion below. So, depending on context,
a formula like ¢ may mean either the actual formula or the k-argument
predicate transformer ¢4,

3.1 The basic idea

Before going into details of our new algorithm, we illustrate the idea on a
formula involving three fixpoints:

PRy ¢1(R1, vR,. ¢2(Rla Ry, pRs. ¢3(Rla Ry, Rs)))-

To compute the outer fixpoint, we start with By = L, Ry = T and Rz = L.
Call these values Ry, R3?, and R3% respectively. The superscript on Ry, gives
the iteration indices for the fixpoints involving Ry, ... R;. We then iterate
to compute the inner fixpoint; call the value of this fixpoint R3*. We now
compute the next approximation Ry' for Ry by evaluating vy RY, RY®, R3™)
and go back to the inner fixpoint. Eventually, we reach the fixpoint for R,,
having computed R, R3™, RI', R ..., Ry, R3““. Now we proceed to
R} = ¢1(RY, RY”, R3“*). We know that RY C R, and we are now going to
compute R}*. Note that the values R9* and R}* are given by

ng = vR,. 1/}2(]%?7 RQ, ,UzRS ¢3(R?7 R27 R3))

and

R%w = vR,. ¢2(R}7 RQ, ﬂRS 77[)3(]%%7 R27 RS))

By monotonicity, we know that R}* will be a superset of R}“. However, since
Ry is computed by a greatest fixpoint, this information does not help; we still



must start computing with R1° = T. At this point, we begin to compute the
inner fixpoint again. But now let us look at R3™ and R:. We have

Rgow = MR3' 77Z)3(R(1J7 Rgov R3)

and

RéOw = /LRg ¢3(R%, R%O, Rg)

Since R} C R} and RY° C R.°, monotonicity implies that R3* C R:%. Now
Rs is a least fixpoint, so starting the computation of R3% anywhere below
the fixpoint value is acceptable. Thus, we can start the computation for R
with R} = R3™. Since R3® is in general larger than L, we obtain faster
convergence. Also note that since R} C R} and R C R3*™, we will have
RY' C R}'. This means that we can use the same trick when computing
R3': we start the computation from R}'® = R3'. In general, we can start
computing Ry from RY° = RY*. Similarly, once we find R? (or in general,
RI), we can start computing the inner fixpoints from RY™ (RE™).

If we use this idea, how many steps does the computation take? The
dominating term is the number of steps made when computing the inner
fixpoint. With previously known algorithms, this inner computation starts
from L each time, and hence may involve about n® steps (one factor of n
for each of the three fixpoints). In our case, if we fix a particular j, then we
have

RY® C RY* = RY° C RyY* = RY° C - = RY° C Ry,

This implies that for each j, we can have at most n strict inclusions among
the values of Ry™ that we compute, and so for each j we take only about
n steps. Since there can be up to n different j values, we take only about
n? steps while computing the inner fixpoint, thus saving a factor of n.

The relationship between the different approximations to R3 is shown in
figure 1. The computation of least fixpoints proceeds from bottom to top,
and the computation of greatest fixpoints proceeds from left to right. When
computing with approximation R{, we save the “frontier” values Ré_w and
use them as the initial approximations jo+1)—0 when computing with R{H.
We have at most n strict inclusions within each vertical chain in the figure.

Note that we can build this type of table for arbitrarily nested fixpoints.
Suppose, for example, that we were also computing an outer greatest fixpoint
for a relation Ry. Figure 1 would correspond to a series of computations



Ry% D Ryt D...D> Ry
Ul U Ul
Ul Ul Ul
w01 wll P wwl

R3 2 R3 2 2 R3
U U Ul

Rg)OO 2 Rg)lO 2 . 2 ngO
Il Il I
Il Il I

Ry o Ry™ o...O R
Ul U Ul
Ul Ul Ul

101 111 . 1wl

RS 2 RS 2 2 R3
U U Ul

R%’OO 2 R%’IO 2 . 2 R%wo
I I I

R D R 2...D Ry~
Ul Ul Ul
U U Ul

R%Ol 2 Rgll 2 . 2 ngl
Ul Ul Ul

RgOO 2 Rglo 2 . 2 ngo

Figure 1: Relationships between approximations for R



with Ry at T. If we then compute the next approximation for Rg, it will
be smaller than the initial approximation. Then by monotonicity, when we
go through the computations for Ry, R,, and R3 again, we will get at each
stage something smaller than during the first set of computations. For Rs,
this means that we can use the frontier fixpoint values produced during the
first set of computations as initial approximations when doing the second set
of computations. The effect is to build a second table like the one in the
figure to the right of the previous table. This process would be repeated for
each new approximation for Ry. As before, we could argue that the number
of strict inclusions along any chain (now running horizontally) would be
bounded by n. At first it seems that these ideas must lead to a polynomial
time algorithm for evaluating formulas of arbitrary alternation depth. This
appears reasonable because we have a bound of n on the number of strict
inclusions going both horizontally and vertically, so the number of distinct
entries in a table should be about n?. Unfortunately, this intuition is not
correct. The problem arises because the chains may not “line up” due to
fixpoint computations converging in less than n steps. The result is that we
can only guarantee that the algorithm will take no more than about n?/?
steps. We will give an example in section 4 that demonstrates that this
bound is tight.

3.2 A simple version of the algorithm

Now we turn to the details of the algorithm. For reasons of notational sim-
plicity, the first approach that we will describe will be one that always iterates
n times when computing a fixpoint, even when convergence is achieved ear-
lier. It will also only save frontier values for least fixpoints. Afterwards we
will prove that terminating the computation of least fixpoints once conver-
gence is achieved is allowable. This will be enough to give us the desired
time bound on the algorithm. We will then give the general algorithm that
saves frontier values and terminates once convergence is achieved for both
types of fixpoints.

As in the discussion earlier, we will superscript relation names with vec-
tors of iteration indices to show various approximations. Each iteration index
will be a number between 0 and n, inclusive. We will let j and 7 denote vectors
of iteration indices. For example, we could write R as R} with 7 = 000.
When we write such an expression, it is implicit that the length of the vector
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corresponds in the right way to the depth of nesting of the fixpoint. Variables
7 and 7 will denote individual iteration indices. By the juxtaposition a vec-
tor of iteration indices with some expressions denoting individual indices, we
mean the vector formed by concatenating the values of the expressions onto
the end of the vector. So if 7 = 00, then R}’ would mean R3. The notation
0 will indicate a vector of all zeros of an appropriate length. Given a vector
of iteration indices, the notation p(j) will be the vector of indices that corre-
spond to least fixpoint variables. In our earlier example, Ry and Rs3 are the
least fixpoints, so x(123) would denote the vector 13. Similarly, v(j) selects
the indices corresponding to greatest fixpoints. We will also need a partial
order on vectors of indices. The notation 7z < 7 will mean that 7 and j have
the same length, that v(7) = v(j), and that p(2) is lexicographically less than
or equal to pu(j). If the first and third indices represent least fixpoints, then
312 < 410. The relation < holds between successive elements in the vertical
chains in figure 1. The notation p(j) will denote the immediate predecessor
of 7 under <. This exists whenever u(7) # 0. Note that v(p(j)) = v(}),
and that u(p(7)) is the immediate predecessor of u(j) in the lexicographic
ordering. The notation h(7,!) will denote the vector of length [ that agrees
with 7 on the initial indices. As an example, h(312,2) = 31.
The algorithm will consist of computing the following approximations:

1. f o, = v:
(a) R{;O =T.
(b) RV = o (RyOPY L RpUIAD ORI RIT). (Note that RPT, is

an (inner) fixpoint since we must have convergence in at most n
steps.)

2. f o =
(a) R = L if u(30) = 0.
(b) RY = Ry™ if pu(j0) # 0.
(c) R = ou By, ATV BRI,
The evaluation is to be done in computation order. Computation order is
simply the natural order of evaluation. Formally, it is the total order on

vectors of iteration indices of potentially different lengths defined as follows.
7 occurs before 7 in computation order when:

11



1. 7 and j have the same length and 7 strictly precedes j lexicographically,
or

2. 7 is shorter than 7, and 7 is lexicographically less than or equal to

h(7. [2]), or
3. jis shorter than 7z, and h(z, |j|) strictly precedes j lexicographically.

For our earlier three relation example, computation order is: 0, 00, 000, 001,
...,00n, 01, 010, ..., Onn, 1, 10, etc. Thus, we would compute R}, R3®, R3"
ooy R R etc. The result returned from the algorithm is R}. Notice
that © < 7 implies that 7 preceded j in the computation order. This fact is
used throughout the paper.

3.3 Proof of correctness

As a preliminary step to proving the correctness of the above algorithm, we
show that the elements in a vertical chain are related by set inclusion.

Lemma 1 For allz, j and k, if 1 < 7, then R, C Ri.
Proof The proof proceeds by induction on j in the computation order.
1. If o, = v and j = 7’0, then R, = T, and hence R} C R}, for all 7 < .
2. Suppose oy = v and j=7'(j +1). Then
Rl = (B0 RO R R,

Since ¢ = j, we know that j and 7 have the same values for the v indices.
This implies that : = 2'(j 4+ 1) and that R}, must be defined by:

: h(7';, h(7'j k- T otlin
k :'Ivbk(Rl( ]1)7"'7Rk(—lj 1)7RkJ7Rk-}]—1)‘
Now h(z'y,1) < h(j'5,1) for | < k, and so by the induction hypothesis
R;L(f/jvl) g th(jljvl)

Similarly, sz C Rilj and Rg_ﬁ C Riiﬁb Since ¥ is monotonic, R} C
AL
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3. If oy = p and p(3) =0, then R, = 1. Since? < j, u(2) =0, s0 R, = L
also.

4. Suppose op = p, p(7) # 0, and 7 has the form j'0. If 7 = j, then
P = Riﬁ Otherwise, 7 < p(j)ﬁ. Ther} by the inductiO{l hypothesis,
R, C Ri(]). But by definition R; = Rz(]), and so R, C R;.

5. If o), = p and j has the form 7'(5 + 1), then
Ry = gu( Ry R R R,

When 7 = j, we have R. = Ri; otherwise 2 < 7’j. By the induction
hypothesis R} C Rf;lj. Hence we just need to show that Rf;lj C Ri (G+1)
If >0, then

GRER A  I AOL R AN ]

Now h(j'(j—1),1) = h(7'7,1) for | < k, and hence R, 7= Rf(jlj’l).
Since 7'(j — 1) < 7'4, the induction hypothesis implies R?, b Ne Rf;/j.
Similarly, R‘;E_l)n C Ril_ﬁ? Then monotonicity of ¥, implies that
R{;,j C RY, which is the desired result.

For the case j = 0, we want to show that Rf:o - Rf;ll. We have two
cases, depending on the value of p(3'0).

(a) If u(370) = 0, then RJ = 1, and trivially leo C Ry

(b) If u(70) # 0, then R} 0= Rp(J 0, Define 7" so that 7"n = p(7'0).
By deﬁmtlon,

R?C'O — Qbk(RiL(j (n—1), ) Rk(l(n 1),k—1) RJ "(n—1) Rk-|—(1 1)n )

Also
=1 h = , k— =1 =1 n
R = i (RYVOD RO RO, RO,

Now h(j"(n — 1),1) = h(3'0,1) for | < k, and so the induc-

tion hypothesis implies that R, A(7"(n=1):0) C R ha'o. Similarly,

R! "(n—1) C R{CO and R?H_(l” Un ¢ R{cff, Then by monotonicity of

Y, we have Rf;lo C R‘]zll, which is the desired result. a
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Now we show that the fixpoints are correctly computed.
Theorem 1 For all j and k, if 7 has the form j'n, then
RL = 0, Ry ¢u(RVWD . RMETD Ry

In particular,

R? = MRI ¢1(R1)
Proof Again, we proceed by induction on j in computation order.

1. A§sume o = v. R} is computed by the sequence R‘]ZIO =T, Rill, cees
R;.". We have

- h(7'd, h(7' i k— iy .
R‘;c (J+1) = ¢k(R1(]Jl)7"'7Rk(—]1J U,Ri],Ri_ﬁl)-

Note that h(3'7,1) = h(j',1) for [ < k. Hence, we can rewrite the above
equation as

RO = (R, RSV R R,
By the induction hypothesis,
R = orsa Rir. b (BRI REVIY Ry,

Now h(j',1) = h(3'7,1) for [ < k, and we also have that h(3'5, k) = 7'7.
Substituting gives

7'in _ h(7',1) h(7'k=1) p3'j
Ry = orpiBigr G (B 7, R 2T By Ria).

Now we see that Rf:o, cees Riln is just the standard iterative computa-
tion of the fixpoint. Since we must have convergence within n steps,

Riln =vR;. gék(RiL(j/’l), e ,Rz(_ill’k_l), Rk)

2. The case when o = p and p(7') = 0 is analogous to the previous one: we
start with R ® = 1 and compute the standard series of approximations.
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3. Assume 0 = p and u(7') # 0. Here, we start the computation with
R‘,ZIO = Rz(jlo). Define j” so that 7"n = p(j'0). To ensure that R is
equal to the desired fixpoint, we first show that the initial approxima-
tion Rz(jlo) is a subset of the fixpoint. By the induction hypothesis, we
know that

Rf;“” = pRy. gbk(Rf(ju’l), . ,RZ(_;”’]C_I), Ry).
We want to know that this is a subset of
p Ry gbk(RiL(jl’l% SR JRZ(—jll’k_l)a Rk)

By the definition of j”, we have that 7” < j’. Hence h(7",1) < h(7',1)
for all [ < k. Using the previous lemma, we see that th(j”’l) C R?(j/’l).

Then monotonicity implies
R™ C pRy. ¢p(RYVVY LRI Ry,

Now we simply proceed as in the previous two cases, using the fact that
to compute a least fixpoint with iteration, it is only necessary that the
initial approximation be a subset of the fixpoint. a

As mentioned, the algorithm given above does not stop the computation
of a fixpoint when convergence is achieved. As a result, it will take about
n? steps when evaluating the alternating fixpoint formula that we are con-
sidering. To see what potential problem might arise with terminating the
computation early, let us consider how an implementation of the algorithm
would work. The idea will be to keep a table of frontier values for each
least fixpoint. This table is indexed by the iteration indices for the enclosing
greatest fixpoints, and initially all the entries are L. When computing a
least fixpoint, we take the table value corresponding to the current greatest
fixpoint iteration indices and use that as our initial approximation. After
computing the fixpoint, we store the result back in the same spot in the ta-
ble. In our earlier example with three fixpoints, the table for B3 would have
n + 1 entries, since there is one enclosing greatest fixpoint. During the com-
putation of the R, the table entries will be used and replaced. Just after we
compute R}, the jth entry in the table will contain the fixpoint value RY™.
Suppose now that we cut off the computation of RY as soon as convergence
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is detected. Then some of the table values for R3 will not be updated. For
our three fixpoint example, this is not too complex, but in the general case
it is hard to argue that “stale” table values will not cause problems. Fortu-
nately, we can easily prove that when computing a least fixpoint, we can stop
as soon as convergence is detected. To do this, we just need to show that
once we obtain convergence, none of the table values for the inner fixpoints
can change. More precisely, we consider a situation in which R‘z(]—l_l) = Rf;j
for the least fixpoint variable R;. A table value for an inner least fixpoint
variable R; after the computation of Ry is of the form R} ,, where 7' agrees
with 77 on the first k& indices and where u(7’) = p(j7)n ... n (the indices for
least fixpoint variables nested between Ry and R; are n). The same table
value after the computation of R‘]Z(j ) s R} ”, where 7 differs from j’ only
at position k, and at that position, 7" has j 4+ 1 instead of j. We claim that
these two table values must be equal.

Theorem 2 Assume o, = p and Ri(jﬂ) = Rij. Then for all I > k and 7'
and 3" such that:

we have R;l = R‘Z”. (Note that we are not requiring o; = v here.)

Proof We proceed by induction on j' in computation order. Note that since
7" and 3" differ only on the index for Ry, fixing 7' also fixes 7”.

1. Assume o; = v and j' has the form 2'0. Then 7" has the form 2”0, and
so Rl =R/ =T.

2. Assume o; = v and j’ has the form ¢’(m + 1). Let j” have the form
t"(m +1). We have

7! h(z'm,1) h(z'm,l—1) 7! 7!
) ’ s 7'm 7'mn
R[ - 1/)I(R1 9. 7Rl—1 7Rl s FU41 )
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and

7! h(z"m,1) h(z"m,l-1) 7! 7!
J ’ s 7'm 7 mn
Rl = ¢Z(Rl 7-"7Rl—1 7Rl 7Rl+1 )

Now h(z'm,0) = h(z"m,o) for o < k. By hypothesis, Rz(flm’k) =

RZ(?”m’k)(We have that h(z'm,k) = jj and h(z"m,k) = j(j + 1)) By
the induction hypothesis, RM™2) = RE"m0) for | < o < 1. Also by
the induction hypothesis, B{ ™ = R; ™ and R},%" = R}, 7". Hence
le . le/

=4y

3. Assume o; = u. Let ¢" and 2" be chosen so that ' =i'n and 7" = 1"n.
By the previous theorem, we have

R = uRy. gy(R™Y L RICY R

and

R?” = uhy. gél(RiL(iu’l), o ,RZ}L_(?"Z_I), Rl)

As in the previous case, we have: h(z’,0) = h(z",0) for o < k; Rz(il’k) =

Rz(g”,k); and REC'2) = R for k < o < 1. Hence R;l = R;Il. 0

Note that this result, combined with our earlier correctness theorem and
monotonicity lemma, implies that once Ri(]ﬂ) = Rij, then R} = R} for any
v and ¢’ with v(2) = v(¢’) and with 7 and ¢’ between j(j + 1) and jn...n in
computation order. In other words, no table values will change if we keep
iterating for Ry, and hence we can safely stop this part of computation.

3.4 Complexity analysis

Now we analyze the complexity of the algorithm. We will just be counting the
number of approximations produced to avoid details such as how relations
are represented. Let T} denote the maximum number of approximations
that can be produced for R;. Obviously 7y = n + 1 and Ty = (n + 1)
It Thy1 is a greatest fixpoint, then each time we evaluate it, we produce
n + 1 approximations. The fixpoint can be evaluated at most T} times, so
when o341 = v, Thy1 < (n+ 1)Ty. For o441 = p, the fixpoint can also be
evaluated at most T} times. For this fixpoint, there are (n 4 1)LF+1)/2] table
entries (since there are |(k + 1)/2| enclosing greatest fixpoints). Over all
the evaluations, each of these increases monotonically, so the total number
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of changes in these table values is bounded by n(n + 1)l(*+1)/2] During each
of the T}, evaluations, we can also make one extra step to detect convergence.
The overall number of steps is bounded by the sum of these numbers: Ty <
Ty + n(n + 1)W“+1)/2J <Ti+ (n+ 1)1+W“+1)/21. In our fixpoint formula, &
is even for least fixpoints, so this simplifies to Tx41 < Tp 4+ (n + 1)(k+2)/2.
Overall, we get

Tor < k(n + 1)k Torgr < (k+ 1)(n + 1)+

and so

Te < [k/2](n + 1)1+Lk/2j.

Summing the 7% for all d of the fixpoints in our formula, we get a total of
O(d*(n + 1)'*14/2]) steps to do the evaluation.

3.5 The general algorithm

Figure 2 is a pseudo-code version of the algorithm that works for formu-
las of arbitrary form, and that saves information and stops iterating after
detecting termination for both types of fixpoints. The potential problems
with stale table values are avoided by storing frontier values in queues; the
length of a queue tells us the number of approximations were produced when
computing the frontier represented by the queue. We will not give a proof of
correctness here. In the algorithm, the frontier values for starting the fixpoint
computations are stored on stacks. There are two stacks for each fixpoint
variable R, one associated with the current frontier (/g) and one associated
with the frontier being constructed (Fr). Each stack element is either a set
of states (representing an earlier fixpoint value), or a queue (representing a
frontier). The queue elements may themselves be either queues (representing
sub-frontiers) or sets of states. We will write stacks using angle brackets and
queues using square brackets, with the top of a stack and the head of a queue
being on the left. Initially, the Ir stack for a top-level fixpoint variable R
holds either T or L, depending on whether R is a greatest or least fixpoint.
The stack Iy for a least fixpoint variable R nested inside k greatest fixpoints
holds L nested inside k queues ([[...[[L]]...]]). The initial value for a stack
corresponding to a greatest fixpoint variable nested inside a number of least
fixpoints is similarly defined.

As an example of the algorithm’s operation, we consider a formula with
three fixpoints: pRy. vRy. uRs. (--+). Initially, Ir, = (L), Ir, = ([T]), and
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1 function eval(¢)

2 Handle base cases, logical operations, etc.

3 if ¢ = pR.Y(R) then

4 set R to the top element of Ip
5 for each inner v variable R’
6 push [] on Fr
7 repeat
8 for each inner v variable R’
9 let ) be the queue on top of Ir
10 dequeue € from ()
11 if () is now empty, enqueue e again
12 push e on I
13 Rogqa:=R
14 R := eval(v)
15 for each inner v variable R’
16 pop e from Fri
17 let ) be the queue on top of Fg
18 enqueue € in ()
19 pop g
20 if R 7£ Rold then
21 for each inner p variable R’
22 pop g
23 pop e from Fr
24 push e on I
25 until R = Rold
26 push R on Fp
27 return R
28 if ¢ = vR.¢¥(R) then
29 Analogous code to the above

Figure 2: Pseudo-code for the general algorithm
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Ir, = ([L]). All the stacks Fg,, Fgr,, and Fg, are empty. The computation
proceeds as shown in figure 3. In the figure, pR;: L denotes a call to the
evaluation routine for the formula pR;. (---) with L on the top of the stack
IR, (i.e., the evaluation of the fixpoint starting from L). The notations
“start H;” and “end R;” denote the start of an iteration for computing
R; and the end of an iteration, respectively. The notation “return R3*”
indicates returning a fixpoint value for Ry. Finally, pRs: L — R3 denotes
the evaluation of uRs.... starting with L and yielding R3" as the result.
The figure shows how the state of the stacks evolves during the computation.
During each iteration for the fixpoint gR.(---), we pull out the next sub-
frontier for the inner v variables (lines 8-12), recursively evaluate the inner
fixpoints, and build up sub-frontiers for subsequent evaluations (lines 15-19).
If the computation of R has not yet converged, we discard the old frontiers for
the inner p fixpoints and replace them with the new frontiers that have been
built up (lines 21-24). Note that with two successive y fixpoints, this simply
results in picking up the inner fixpoint from the previous stopping point.
Hence the algorithm also makes use of Emerson and Lei’s observation [14].

4 A worst-case example

We now give an example that shows that even the general algorithm (figure 2)

may take about n%? steps. Consider the transition system shown in figure 4.

There is a transition on a from state s;41 to state s; for all 2 > 0, and there
i1s a transition on b from state sy to state s; for all 2 > 0. We also assume
there is an atomic proposition that is true only in state so. We will abuse
notation and denote this proposition by sy as well.

For the formula to evaluate, we take:

Fi=1AuRy. 50V (a)Ry

V(L AvR.(a)R] V F)
Fy= LA pRy soA[bB](R1V RY)V (a) Ry

V (L AR, (b)(Ry A R})V (a)R} V F3)

Fis1 = LA pR 1. 50 AN [B](R; V RV {(a)Rit1
V(LA R (B)(Ri A RD Y (a) Ry, V Figa)
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Figure 3: Example computation of the algorithm in figure 2
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Figure 4: Transition system for worst-case example

F,=1.

In the formula given above T means true and L means false. The additional
T and L are needed so that the inner fixpoints do not interfere with the outer
fixpoints. This formula is obviously equivalent to a much simpler formula,
but it will serve to illustrate the kind of frontier structure that can cause
exponential behavior. To understand how this expression works, consider
F;y1. When the union of R; and R. is T, the fixpoint for R;1; will be T as
well, and otherwise it will be L. Similarly, when R; and R! have a nonempty
intersection, the fixpoint for Rj , will be T, and otherwise it will be L.
Consider the following pairs of (R;, R}) values:

(J-7 T)? ({50}’ T — {30})7 R (T - {Sn—l}a {Sn—l})v (Ta J—)'

If we imagine storing all the fixpoint approximations in tables as in figure 1,
then we can think of these pairs as analogous to “diagonal” elements. Above
the diagonal (i.e., if we add elements to either set in the pair), the union
of R; and R} is T and they also have a nonempty intersection. Hence the
fixpoints for both R;y; and R}, will be T. Below the diagonal (if we remove
elements from either set in the pair), the union is not T and the intersec-
tion is empty. Here, both R;y; and R;, ; will have a fixpoint of L. On the
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diagonal, R;11 has a fixpoint of T and R}, has a fixpoint of L. Thus, if
R;yq starts at L and R;-_H starts at T, then we will do about n? evaluations
of F;,, while computing these two fixpoints. Of these n? evaluations, n of
them will represent diagonal values for (Ri11, R,,), and for these elements,
we will get the same effect within the computation of Fj 5. Let us say that
a configuration for all the fixpoint variables Ry, R}, Ra, ..., is a “diagonal
configuration” when each pair (R;, R}) is a diagonal element. Then adding
another pair of fixpoints will increase the number of possible diagonal con-
figurations by a factor of n. To see that all these diagonal configurations
will occur during the computation, we note that any two diagonal configura-
tions for the variables Ry, R}, ..., R;, R, are incomparable with respect to
set containment. Hence computing the fixpoints for R;y; and R, for one
of these configurations will give us no information about the fixpoint values
for any of the other configurations. This implies that the computations for
Ri1y and R}, will always start from L and T, respectively (for diagonal
configurations of Ry, ..., R}), and thus that all diagonal configurations for
Ry, ..., Ripq, Ri; will occur. We can analyze exactly the number of times
during the computation in which a fixpoint variable iterates from L to T or
from T to L while running the algorithm of figure 2. For R;, this occurs
(n +1)""! times. For R!, it happens (n + 1)' times. This implies that £} is
evaluated (n 4 1)? times. The alternation depth of the formula is d = 2¢ — 2,
so this is (n + 1)1+d/2 steps.

5 Conclusion

We have presented a new algorithm for evaluating a formula in the propo-
sition p-calculus with respect to a finite transition system. Our algorithm
/2 steps, where d is the alternation depth of the formula. The
best previously known algorithms required about n? steps. A straightfor-
ward implementation of our algorithm would require an extra factor of n or
so for bookkeeping and set manipulations, but we believe that methods such
as those used by Cleaveland, Klein, Steffen, and Andersen [1, 10, 11] could
be used to reduce this extra complexity. It is not as clear whether efficient
local procedures can be developed that make use of our ideas, but this is an
interesting question. It would also be interesting to see whether it is possible
to make even more use of monotonicity considerations. This is certainly pos-

takes about n
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sible, at least conceptually. Suppose, for example, that uR. (R, Ry, ..., Ry)
is a subformula of the formula that we are evaluating. We could imagine
saving every fixpoint value computed for R together with the values for the
parameters Ry, ..., Ri. Then before evaluating the subformula for some
new set of parameters, we take the union of all previous fixpoints for R for
which the parameters used were all subsets of the current parameters. This
becomes the initial approximation. Note though, that an algorithm based
on this idea would still take about n?/2 steps on the example described in
section 4. Thus, pure monotonicity considerations seem unlikely to lead to a
polynomial time algorithm.

This suggests another line of research: trying to place lower bounds on
the complexity of the evaluation process. Suppose we cast the problem as
a language recognition problem, where a string gives a formula, a transition
system, and a designated state, and a string is in the language if the desig-
nated state of the transition system is in the interpretation of the formula.
We note that the recognition problem is in NP. The basic idea for showing
this is to use an algorithm that computes least fixpoints by iterating, and
that guesses greatest fixpoints. The guess for a greatest fixpoint can be easily
checked to see that it really is a fixpoint. Further, while we cannot verify
that it is the greatest fixpoint, we know that the greatest fixpoint must con-
tain any verified guess. Then by monotonicity, the final value computed by
this nondeterministic algorithm will be a subset of the real interpretation of
the formula. If the designated state is in the computed result, the string
is accepted, and if not, the string is rejected. When the greatest fixpoints
are correctly guessed, the string is accepted iff the designated state is in the
real interpretation of the formula. Also note that we can negate formulas
(the syntax we gave allows negation only at the atomic proposition level, but
we can always drive negations inwards using semantic equivalences). Hence
the complexity of recognizing the language is the same as the complexity of
recognizing the complement of the language. Thus, the problem is in the
intersection of NP and co-NP. This suggests that it would be very difficult to
prove that there is no polynomial time algorithm for the problem. However,
it might be possible to prove something about a restricted class of algorithms.
A natural class to consider is “oblivious” algorithms. These are methods that
only make use of the structure of the nesting of fixpoints, and perhaps the
fixpoint values. Formally, given a formula like pRy.¢1( Ry, vR2.02( Ry, R2)),
we would view ¢, and ), as being given by oracles. The complexity of an
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algorithm would be measured in the number of calls to the oracles. This is
a natural class of methods. For example, both Emerson and Lei’s original

algorithm and our new one can be viewed as members of this class. A proof
that no algorithm of this class can make do with just a polynomial number of
oracle queries would imply that any polynomial time algorithm would have
to do something clever based on the structure of the formula.

References

(1]

H. R. Andersen. Model checking and boolean graphs. In B. Krieg-
Bruckner, editor, Proceedings of the Fourth FEuropean Symposium on
Programming, volume 582 of Lecture Notes in Computer Science.
Springer-Verlag, February 1992.

A. Arnold and P. Crubille. A linear algorithm to solve fix-point equations
on transition systems. IPL, 29:57-66, 1988.

G. V. Bochmann and D. K. Probst, editors. Proceedings of the Fourth
Workshop on Computer-Aided Verification, volume 663 of Lecture Notes
in Computer Science. Springer-Verlag, July 1992.

R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677-691, August 1986.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10?° states and beyond. In Proceedings of the
Fifth Annual Symposium on Logic in Computer Science. IEEE Com-
puter Society Press, June 1990.

E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified ap-
proach for showing language containment and equivalence between var-
ious types of w-automata. In A. Arnold and N. D. Jones, editors, Pro-
ceedings of the 15th Colloguium on Trees in Algebra and Programming,

volume 407 of Lecture Notes in Computer Science. Springer-Verlag, May
1990.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skele-
tons for branching time temporal logic. In D. Kozen, editor, Logic of

25



[8]

[10]

[11]

[12]

[15]

[16]

[17]

Programs: Workshop, Yorktown Heights, NY, May 1981, volume 131 of
Lecture Notes in Computer Science. Springer-Verlag, 1981.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244—
263, April 1986.

R. Cleaveland. Tableau-based model checking in the propositional mu-

calculus. Acta Informatica, 27(8):725-747, September 1990.
R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the

modal mu-calculus. In Bochmann and Probst [3].

R. Cleaveland and B. Steffen. A linear-time model-checking algorithm
for the alternation-free modal mu-calculus. Formal Methods in System

Design, 2(2):121-147, April 1993.

O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In J. Sifakis, editor,
Proceedings of the 1989 International Workshop on Automatic Verifica-
tion Methods for Finite State Systems, Grenoble, France, volume 407 of
Lecture Notes in Computer Science. Springer-Verlag, June 1989.

J. W. de Bakker. Mathematical Theory of Program Correctness.
Prentice-Hall, 1980.

E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of
the propositional mu-calculus. In Proceedings of the First Annual Sym-
posium on Logic in Computer Science. IEEE Computer Society Press,

June 1986.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18:194-211, 1979.

D. Kozen. Results on the propositional mu-calculus. Theoretical Com-

puter Science, 27:333-354, December 1983.

K. G. Larsen. Efficient local correctness checking. In Bochmann and

Probst [3].

26



[18]
[19]

[20]

[21]

[22]

23]

[24]

A. Mader. Tableau recycling. In Bochmann and Probst [3].

K. L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. PhD thesis, Carnegie Mellon University, 1992.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

D. M. R. Park. Finiteness is mu-ineffable. Theory of Computation
Report No. 3, University of Warwick, 1974.

C. Stirling and D. J. Walker. Local model checking in the modal mu-
calculus. Theoretical Computer Science, 89(1):161-177, October 1991.

A. Tarski. A lattice-theoretic fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5:285-309, 1955.

G. Winskel. Model checking in the modal v-calculus. In Proceedings of
the Sixteenth International Colloguium on Automata, Languages, and
Programmang, 1989.

27



