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ABSTRACT

Traditional implementations of conditional critical regions and
monitors can lead to unproductive "busy waiting" if processes are allowed
to wait on arbitrary boolean expressions. Techniques from global flow
analysis may be employed at compile time to obtain information about which
critical regions (monitor calls) are enabled by the execution of a given
critical region (monitor call). We investigate the complexity of computing
this information and show how it can be used tc obtain efficient scheduling

algorithms with less busy waiting.
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SECTION 1

INTRODUCTION

BACKGROUND

Hoare [HO72] and Brinch Hansen [ BH73] have proposed conditional

critical regions as a synchronization primitive for parallel programs. With

this primitive, logically related variables which must be accessed by more
_than one process are grouped together as resources. Individual processes
are allowed access to a resource R only in a critical region of the form
"with R when b do A od" where b is a boolean expression and A is a
statement whose execution may change the values of the shared variables in
R. When execution of a process reaches the conditional critical region, the
process is delayed until no other process is using resource R and condition

b is satisfied. The statement A is then executed as an indivisible operation.

Unfortunately, the standard implementation ([HO72], [BH73]) of
conditional critical regions may result in busy waiting where the scheduler
repeatedly attempts to activate a process that is waiting on a false condition.
The standard implementation uses two queues for each resource R: a main
queue R = and a wait queue R, . When a process wishes to enter a condi-
tional critical region for resource R, it enters R. Processes on % are
allowed to enter their critical regions one at a time and inspect the variables
of R to see if the entry condition b is satisfied. If so, the process com-
pletes its critical region by executing statement A. Otherwise, the process

leaves its critical region and is put on R,,. When a process successfully



executes the body of its conditional critical region and changes the values
of the r.hared variables in R, it may cause some of the conditions on which
processes in Rw are waiting to become true. Thus, all processes in R,
must be transferred to the main queue and allowed to reevaluate their

conditions. (See figure 1,)
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Figure 1

Note that a process may be transferred from Rm to R,, and back
several times before it finally executes its critical region. According to
Brinch Hansen [ BH73] this busy waiting "is the price we pay for the con-
ceptual simplicity achieved by using arbitrary boolean expressions as
synchronizing conditions." Note that essentially the same type of busy
waiting can occur with monitors [HO73] provided that monitor procedures

are allowed to contain wait statements on arbitrary boolean expressions.
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NEW RESULTS OF THIS PAPER

More efficient implementations of conditional critical regions may be
obtained if programs are preprocessed to obtain information about which
conditional critical regions are enabled by the execution of a given condi-
tional critical region. Consider the standard solution to the readers and

writers problem with writer priority [ BH73]. Here, resource R consists

of three shared variables: aw (the number of writer processes waiting to
execute a write statement), rw (the number of writer processes currently
executing write statements), and rr (the number of readers currently

executing read statements). Each reader process has the form

Reader: repeat
R1: with R when aw=0 do rr:=rr+1 od
read;
R2: with R when true do rr:=rr-1 od

forever
and each writer process has the form

Writer: repeat
W1: with R when true do aw:=aw+1 od

W2: with R when rr=0 and rw=0 _(_ig_

rw=1 od
write;
W3: with R when true do
rw:=0; aw:=aw-1 od

forever

Suppose that at some point during a computation reader1 has been

placed on the wait queue Ry, because it is attempting to execute critical



region R1 and aw > 0. If reader_ successfully executes critical region R2,

2

then it is unnecessary to transfer reader, to the main queue R, since the

1
condition on which it is waiting has not changed.

A first step towards obtaining such information at compile time has
been made by Schmid [SC76]. By restricting conditional critical regions

to have the form

CCR: with R(x) when a x + ... +ax +a _=>0 do
— — 11 nn n+l —_
x1:=x1+b1;

he is able to give heuristics for determining when execution of CCRi can

enable the condition of CCRJ_ (the enable relation ea). Schmid's technique,
however, does not easily generalize to more complicated conditional critical
regions which do not obey his restrictions on conditions and assignment

statements.

We investigate the complexity of precisely computing the relation ea.
We show that even for very restricted critical regions it is impossible to
devise feasible algorithms for computing this relation. By using techniques

from global flow analvsis, however, we show that useful approximations to

ea may be obtained for a wide class of conditional critical regions.

We also present a scheduling algorithm for conditional critical regions
which uses the information provided by our flow analysis algorithm to elimi-
nate reevaluation of conditions which cannot be enabled, As with most opti-
mization techniques, we cannot claim that our algorithm is optimal. However,
it.is possible to prove that our algorithm is conservative, i.e., our algorithm

will never fail to determine that an erabled process is really enabled, The
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proof that our algorithm is conservative uses a fixpoint characterization of

the data generated by the flow analysis.

Although global analysis has been applied to many optimization
problems for sequential programs ([AL70], [CO76], [KET71], [HU75],
[KI731]) and to deadlock detection and constant propagation for parallel
programs [RE791, we believe that' this is the first attempt to use such

techniques for the optimization of busy waiting in parallel programs.
OUTLINE OF PAPER

In Section 2 we describe a simple parallel programming language in
which processes access shared data via conditional critical regions. Com-
plexity issues involved in optimization of busy waiting are discussed in
Section 3. Section 4 presents the basic ideas of global flow analysis which
are needed to understand the remainder of the paper. In Section 5 we show
how Kildall's algorithm [KI73] can be modified to obtain information about
which conditional critical regions may be enabled by the execution of a given
conditional critical region, and in Section 6 we show how this information
can be used to obtain more efficient scheduling algorithms. The paper
concludes with a discussion of the results and some remaining open

problems.






SECTION 2

A SIMPLE PARALLEL PROGRAMMING LANGUAGE

A parallel program will consist of two parts: an initialization part

"x:=e'" in which values are assigned to the program variables x, and

a parallel execution part "resource R(X) cobegin Pl//Pz// ... //Pt coend"

which permits the simultaneous or interleaved execution of the statements
1in the processes Pl’ cens Pt' All variables accessed by more than one
process must appear in the prefix R(x) of the parallel execution part. Each
process Pi is a sequential program composed of simple Algol statements
(assignment, conditional, while, etc.) and conditional critical regions.
Conditional critical regions have the form "with R when b do A od" where
b is a boolean expression and A is a sequence of assignment statements.
Shared variables can only be referenced within critical regions, and critical
regions can only reference shared variables and constants. Thus, we ignore
the flow of information between program variables and synchronization
variables. The programs that we consider can be regarded as the synchro-

nization skeletons of actual parallel programs. In a future paper, we plan

to discuss in detail the interaction between program variables and synchro-

nization variables.

Let P be a parallel program of the form described above where

X = (xl, ceey xm) is the set of shared variables, and the statements of each
process Pi are Sl,Sz, ey Sk . A state of P in an (m+t)-tuple

i
o= (vl, cees vm, pl, v pt) where vj is the integer value of variable



xj and P, is the program counter for process Pi' T will denote the state

(e,1, ..., 1) of the program after initialization X:=e. The function pc,(0)
gives the value of the ith program counter in state ¢, and the function

val(x, o) gives the value of shared variable X in state o. Both functions may

C
be extended in the natural manner to apply to sets of states. We write ¢ == ¢’

if critical region Ci can be executed in state o to produce state o'. Like-

. P ‘s .
wise o, == o0 indicates that state o can occur during execution of program

P on initial state T4
Let CCR be the set of conditional critical regions in program P. An

enable relation for P is a binary relation ea on CCR with the property that

(Ci’ Cj) € ea whenever there is a computation of P of the form

) C; C;

0 Kk kil K+2 and condition bj of region Cj is false in state

o Similarly, we may define a disable relation da for P such that

Cs

. - . i X
(Ci’cj) e€da whenever there exists a computation Og = 0y = Or+1 with

bj true in o, butnotin o

K K1’ Note that any super-set of an enable (disable)

relation is also an enable (disable) relation according to this definition.



SECTION 3

COMPLEXITY ISSUES

We investigate the complexity of computing the minimal ea and da
relations for four different sets of restrictions on the programming language
of Section 2. With each of these restrictions processes are nonterminating

loops of the form repeat Ci :with R when bi do Ai od forever. In describ-

ing the restrictions .Z will denote the set of integers, N the set of non-

‘negative integers, and N d the set of non-negative integers smaller than d.

The first language L 1 ie essentially the language considered by
Schmid [SC76]; L | Programs are required to satisfy the following three

conditions:
1. All shared variables range over the integers Z.
2. The conditions of conditional critical regions are monotone

boolean combinations of linear inequalities of the form

ax +ax +...+ax +a
11 2 2 nn

1 =0,

where a,eN for 1=i<n and a €Z.
i n+1

3. The bodies of conditional critical regions are sequences of
assignment statements of the form x:=x+d where x is a shared variable in

R and de Z.

Theorem. The problem of computing the minimal ea (da)

relation for L1 programs is recursively unsolvable.



Proof: Recall that the halting problem for counter machines [MI167]

is recursively unsolvable, Given an arbitrary counter machine M, we
show how to construct an L 1 program P with the property that a particular
critical region pair (Cl’ CZ) will be in the minimal ea (da) relation for P
-iff M halts. Each variable a of the counter machine M will be represented
by a pair of variables a.+ and a_ such that aJr =a and a =-a. In addition,
P will use the variable pc as the program counter for M. There are four
types of counter machine instructions; we show how each of these instruc-
tions can be simulated using restricted conditional critical regions. We
assume that each statement in the program for the counter program has a
unique label and that L+1 is the label of the statement which follows the
statement labeled L.

1. 1,:a:=a+1" is simulated by:

repe at

with R when (chr -L=0) A(pc—+ L =0)do

aJr:=a+ +1;a :=a - 13
pc i=pc +1;pe :=pe - 1iod

forever

2. "I,:a:= 0" is simulated by:
repeat
with R yilgt_l_(pc+— L= O)A(pc_+ L= 0)A(a+—1 =0) do

a+:= a+— ;8 :=a +1 od

forever

//
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repeat
with R v_ﬂx_g_rl(pc+— L= O)A(pc-- L= O)A(a-z 0) do
pc :=pc + 1;pc :=pc -1od
forever

3. "L: if a> 0 then a:=a -1 else go to N" is simulated by:

(We assume that N =< L. The case in which N = L is similar.)

repeat

with R when (pc+—L20)A(pc-+L20)/\(a+-120)(1_0
+ + - -
a:=a~-1;a :=a + 13
+ + - -
pc :=pc + 13pc :=pc ~1od

forever

//

regeat

with R when (pc - L = 0) a(pc + L= 0)A(a = 0) do

+ + + +

pc :=pc + 1; pc :=pc +1

pc—:=pc—— 1; pc-:= pc_— 1
(N-L times)

od

forever
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4, "L,: Halt" is simulated by:
CI:M
with R when (pc' - L= 0)(pc + L= 0) do
flag: = flag + 1 od
forever

//
C, : repeat
with R when (flag - 1= 0) do od
forever

The variable flag is initialized to 0. Thus, (Cl,Cz)e ea iff M halts. The

case of disablee relation da is similar and will be left to the reader. O

Note that the construction of Theorem 3.1 would be impossible if shared
variables were required to be non-negative. In Language L2 we investigate
the effect of requiring that shared variables be non-negative. L2 programs

are exactly like L 1 programs except that condition (1) is modified as follows:

(1a) After initialization, all shared variables are non-negative, i.e.,

val (x, oo) = 0.

(1b) Each critical region
"with R when B(x) do x: = F(X) od"

must have the property that
Ve ZP [(B)AX = 0) == F(X) = 0] .

From (1a) and (1b) it follows that the shared variables x will always be

non-negative during the execution of an L2 program, For L2 programs the

12



problem of determining the ea (da) relations is closely related to the

interval reachability prob_lem for vector replacement systems [KL77].

Definition: An n-dimensional vector replacement system is a finite

i?t of pairs oflvectors {(Ul’ Vl)’ (Uz, V2), ey (Um, Vm)} such that-
UieNn, VieZ for 1<i=<m. ()

Let T be an n-dimensional vector replacement system and let X, ,X

172

be two vectors in Nn We say that x_ is directlv reachable from X 1 if

2

there is a pair of vectors (E, \_/-) in T such that x 1" U=0 and

X, =%, -U+V. We say that x, is reachable from x

2 1 2
- - - . n - _-: -— =— — R
of vectors yl,yz, cee yk in N such that x1 —31, x2 yk, and yj+1 is

-directly reachable from ‘;’j for 1=j=k-1. Let Il’ cee s In be a collec-

tion of intervals of the form [ai,bi) where aie N and either ai € bi or

if there is a sequence

o

bi =+, The interval reachability problem is the problem of determining if

there exists a point re I1 xI, x...x In such that r is reachable by T

from the origin 0.

Note that the ordinary reachability problemn for vector replacement
systems is a special case of the interval reachability problem. From the
work of Lipton [LI77] on the ordinary reachability problem, it follows that
the interval reachability problem is EXSPACE hard. We prove:

Theorem. The interval reachability problem for vector replacement
systems is polynomially reducible to the problem of determining the minimal

ea (da) relation for L2 programs,

: ={(Uu .V U .V -di ional
Proof: Let T {(Ul’ Vl)’ R (Um, Vm)} be an n-dimensional
vector replacement system and let [al,bl), N [an,bn) be a collection of

n intervals which determine an interval reachability prcblem. We construct

13



an L2 program P with m+2 processes where m is the number of vector

pairs in I'. P will contain a process cf the form

repeat
with R wheun (;(--ﬁz 0)A(flagl-1=0)A(flag2-1=0) do
%:=X-T+Vod

forever

for each pair (E,V) in T. In addition P will contain the two processes

Cl’ 02 shown below:

Clz repeat
with R when /n\(xi—aiEO)A(ﬂagl—l20)A(ﬂag2—120) do
i=1
X:=X - a+b;
flagl:= flagl - 1 od
forever
C2: repeat
n
with R mi\=/1(xi-bizO)A(ﬂag2—le) do
flag2:= flag2 - 1 od
forever

For infinite intervals,e.g., bk= +o the construction of C1 and 02 must be
modified slightly. In this case the assignment X, 1= xk— ak + bk is omitted
from the body of C 1 and the disjunct X, - bkz 0 from the condition of Cz.

The variables flagl and flag2 are used to prevent processes C1 and 02

14



from being executed more than once and are initialized to 1; all other shared

variables are initialized to 0.

Note that (C 1’ Cz)e ea iff there is a computation of P such that at

some point the predicate

n n
- = AN ~- -
i.—_/\l(xi ai_O),\j i\_—-/l(xi bizo) AX+b-az=Dh)
n n

is true. Rearranging the predicate we obtain N (%, = ai)/\ /\ (xi = bi)

n i=1 i=1
or simply /\ (ai =X, = bi)' Thus (C 1 Cz)e ea iff there exists a point

i=1

TE I1 X 12 X...X In which is reachable from the origin 0 by a computation
of T. As in Theorem 1 the case of the disables relation is similar and will

be left to the reader.

In language L3 shared variables range over N g Boolean expressions
of conditional critical regions are boolean combinations of atomic formulas
of the form X, = k where X, is a shared variable and ke N a Bodies of con-
ditional critical regions are sequences of assignment statements of the form

xi:=k or xi:=xj where xi, xj, and k are as described above.

Theorem. The problem of romputing the minimal ea (da) relation for

L3 programs is PSPACE complete.

Proof: We first show that the problem of determining the minimal

ea (da) relation for L, programs is PSPACE hard. Recall that the problem

3
of determining if L(M) = ¥ is PSPACE hard when M is a nondeterministic
finite automaton with input alphabet £. Let M =(Q,T, 6,q,F) be a non-
deterministic finite automaton. We show how to construct an L3 program P

with the property that a particular critical region pair (C v Cz) will be in the
minimal ea (da) relation for P iff L(M) # t*. The parallel program P will

15
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guess inputs for M and simulate M on these inputs. The construction is
complicated by the fact that the shortest string o¢ L(M) might be quite long
in comparison to M. Thus, it is necessary to guess the string o one symbol
at a time. Note also that the program P must deterministically simulate

the nondeterministic behavior of M, since an input string ¢ could be accepted

by one computation of M and not accepted by another.

In order to best explain how the program P works, we group the
processes of P into three distinct parts. Part 1 guesses inputs for M one

symbol at a time by setting up race conditions in the parallel program P.

Part 2 deterministically simulates nondeterministic behavior of M. Part3
determines if a string has been found which is not accepted by M. We
assume that the input alphabet of M is ¥ ={o P ok} and that the

state set is Q ={ Aps oo qs} . We also assume (without loss of generality)
that qS is the only final state of M. All variables of the program P will

belong to the same resource R.

Part 1: This part of the program P will be executed each time that it
is necessary to guess a new input symbol for M. There is one process for

each input symbol in Z, i.e.,
Guess_crl// Guess_o,// ... // Guess_o,
and each of these processes has the form
Guess___cri: repeat
with R when guess =1 do

guess: = 0; input: = oy

sim: =1 od

forever

16



If the variable "'guess'" is initialized to 1, the first process to set ''guess' to
0 will be the one which selects the new input symbol. The variable "sim,"

initially zero, is used to flag the simulation part (part 2) when it can proceed.

Part 2: In this part we deterministically simulate one step in the
nondeterministic computation of M. The simulation uses two sets of 0, 1 —

valued variables

1 1 ' % % %
ql’qZ""qs ql’ Q.Z,---,qs

to represent the possible states that M could be in before and after the new
input symbol is processed. A maximum of k * s + 1 processes are needed

to simulate one nondeterministic move of M:

state #1_sym #1 // ... // state #1_sym #k //
state #2_sym #1 // ... //state #2_sym £k //

state #s_sym #1 // ... // state #s_sym #k //

recopy

The first k*s processes are used to encode the transition function of M

and have the form
State #i_sym #j: repeat

with R when (sim = i) /\(q'i = 1) A (input = crj) do

/* 6(qi,0j) = }qtl, qtz’ th */

g¥:=1;q9%:=1;... q*: =13
t1 q‘z qtr
sim:=1i+10od

forever

17



.o

One additional process is needed to recopy state information from the array

g* into the array q'.

recopy: repeat

with R when (sim =s + 1) do

!« = ¥k« t ¢ = X e
ql. qu... qS- qso

¥:=0; ... q*:=0;
q1 qs 0

sim: = 0; test: =1 od
forever

Part 3: Here we determine if the string guessed so far should be
rejected. If so, then L(M) # ¥ * and we insure that the critical region pair
(C 1 Cz) is included in the minimal enable relation ea. (The case of the
disables relation da is similar.) Otherwise, we arrange for execution to

return to Part 1 of the program and a new input symbol to be guessed,.

LOOP: repeat
with R when (test = 1) /\(q‘S =1) do
test: = 0; guess: =1 od

forever

//
C1: repeat
with R when (test = 1) A(qq #1) do
test: = 0; flag: =1 od
forever

C2: repeat
with R when flag: =1 do
flag: =0 od

forever

18



4

Note that the size of program P is polynomial (linear, in fact) in the size of
the nondeterministic autor_naton M. DMote also that P can be constructed

from M by a LOGSPACE bounded Turing Machine.

We must prove that the minimal ea (da) relation can be computed in
PSPACE. We first show how to construct a nondeterministic PSPACE
bounded Turing macAhine M to recognize strings of the form P#(Cl, Cz)
where P is an L3 program and ( Cl’ Cz) is a pair of conditional critical
regions in the minimal ea (da) relation for P. The machine M keeps a list
of the variables in P and their current values on one of its work tapes. The
list is initialized to reflect the assignments made in the initialization part of

.P. M then repeatedly examines the conditional critical regions in the proc-
esses of P and nondeterministically selects one whose condition is true.
M then executes the body of the critical region and updates its copy of P's
variables. If the selected critical region was C 1 M also checks to see if
execution of C 1 enables (disables) C2. If so, then M accepts its input;
otherwise M selects another critical region and the sequence is repeated.
By Savitch's theorem there is a deterministic PSPACE bounded Turing
machine M' which accepts exactly the same set of input tapes as M. By
using M' repeatedly on all possible pairs of critical regions in P, the mini-

mal ea (da) relation for P can be computed in PSPACE. O

4 is like L3 except that processes are not allowed to

contain loops; i.e., processes are restricted to be single critical regions of

Language L

the form

Proc N: with R when b do S od,

19



Theorem. The problem of determining the minimal ea (da) relations

for L 4 programs is NP-complete.

Proof: The construction is similar to that used in Theorem 3.4 and

will be left to the reader. a

Because of these negative results, we devote the remainder of the
paper to finding good (i.e., non-minimal) approximations for the enable and

disable relations.
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SECTION 4

BASIC DEFINITIONS OF GLOBAL DATA FLOW ANALYSIS

Research on sequential program optimization ([CO76], [GWT76],
[HU75], [KI?3], [KU76], [LD79]) has demonstrated the importance of

modeling information flow in programs with lattice-theoretic concepts.

Definition. An (upper) semi-lattice is a pair (L, v) where L is a set

-of elements and v is a binary meet operator on L such that xvx =X,

Xvy =yvX, and xv(yvz)=(xvy)vz forall x,y, and z in L. O

Let (L, v) be a semi-lattice. We say that x < y if xvy =y and that
x<yif x=y and x #y. The semi-lattice is complete if for each subset s
of L there is a least upper bound vS of S in L with respect to the partial

order = (i.e., VvSeL;x=<vS forall x€S; and if yeL and x < y for all

x€8, then vS < y). A sequence of lattice elements xl,x2, cen Xk is an

ascending chain of length k if X, =X, for all 1 = i< k.

In data flow analysis, programs are modeled by directed graphs where
the nodes correspond to individual statements and the arcs represent the flow
of control. We restate below the formal definition of a flow graph together

with the necessary related terminology from graph theory.

Let G = (N,E) be a directed graph. Ife=(n,n')e¢E, we call n'a
successor of e and n a predecessor of n'. Succ(n) will denote the set of

all successors of the node n. A sequence of edges 7= (no,nl),(nl,nz), .

(nk—l’nk) is called a path from n, to n of length k. A path of length 0

21



is called a null path. Path (n,n') will denote the set of all paths

from n to n',

Definition. A flow graph G = (N,E,no) is a finite directed graph (N, E)

together with a distinguished entry node n 0 such that n 0 has no predecessor
and Path(no,n) # ¢ for all neN. O

Many flow analysis problems can be formulated as information prop-

agation problems in flow graphs ([GW76], [LD79]).

Definition. An information propagation problem is a 5-tuple

<G,L,v ,F,x0> where G = (W,E,no) is a flow graph,
(L, v) is a complete upper semi-lattice with join v,
F ={ f:L—~L tecE} is a set of transition functions, and
X€ L is the initial information attached at node n o a

A transition function fe: L —L, where ecE, specifies how information
changes when it flows through edge e. To solve an information propagation
problem is to merge, for each node n of the flow graph, the set of infor-

mation which can be propagated from X, through a path from n 0 to n.

Definition. Let I = <G,L, v, F,x0> be an information propagation

problem. The join of paths solution (JOP) to I is the mapping JP N—-L

such that, for each neN,

JPm) = v £ (x 0)

TE Path<n0,n>

— ° ° ° : .
where fn—fe fe fe if 1r—e1,e2,...

22



In our definition of an information propagation problem we require that
the semi-lattice be complete so that the JOP solution is always well defined.
However, it is often difficult to solve for the JOP ([KUT76], [LD76]). Vari-
ous algorithms ([GW76], [KI73], [KU76], [HU75], [LD79]) have been

proposed for approximating join of paths solutions by fixpoint techniques. -

Definition. Let I=<G,L, v,F,x. > be an information propagation

0
problem, A fixpoint of I is a mapping such that FP(nO) =X and

FP(n) = v f(

(FP(n')), n #no .. O
(n',n)eE

n',n)

It can be shown that if each f is continuous (i.e., f (VU) =_vVv_{ (X)),
e e xXeU e

then I has a least fixed point.
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SECTION 5

COLLECTION OF INFORMATION IN PARALLEL PROGRAMS

Let P be a parallel program with processes Pl’ Pz, cee s Pt'

Assume that Ci 1’ C , C are the critical regions which occur in

i2* ° "’ ik,
process Pi and that each Cij has the form "with R Whenbij do Aij od,"

where Aij consists of assignment statements. Let ST(i,])

» ={o | % =1—)>-cr, pci(c) =j} be the set of program states which may
precede the execution of Cij' In general it is impossible to calculate
ST(i,j) since this would require simulation of all possible executions of the
program P. However, by using techniques from global flow araiysis it is
possible to obtain good approximations for ST(i,j). Before discussing such

techniques we describe how flow graphs are constructed for parallel programs.

We assume that for each process Pi a flow graph Gi = (Ni’Ei’niO) is
constructed such that every conditional critical region Cij is represented
by a single node. Each process also has a special start node . The

composite flow graph G = (N,E,no) for P is constructed as follows:

t
. = U )
1 N=U N {no}
t
= ' i i < '
2. E=U, EiU{(nO,I‘iO)IISI_t}UE , where

1
E' ={(niq,njr)]q £0, T#0, andi#j}
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The flow graph for solution to the readers and writers problem is shown

in figure 2. For simplicity we consider only the case of one reader process
and one writer process. In the flow graph an undirected edge (n,n') between
critical regions in different processes represents two directed edges (n,n')
and (n',n). Note that many of the interprocess edges are unnecessary
because they are not part of possible execution paths. During the execution
of our flow analysis algorithms, the interprocess edges need never be

explicitly constructed, and many inactive edges will not be used at all.

Figure 2
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Let LS = #(Z) where I is the set of program states for P. Note
that (LS,U) is a complete upper sen.i-lattice. If flow graph G is con-
structed as described above, then transition functions fe: LS—LS for G
may be defined as follows: We first define the function fn: LS — LS, for each

node nn, such that

fn(X) ={ post(n, o) ! o€ X and the instruction at n is

executable under o} ,

where post(n, o) denotes the state resulted by executing the instruction at n
under the state o. For instance, if n represents a conditional critical region
' Cij’ then fn(X) ={ Aij(cr) | ceX & bij(a) =true}. For an edge e = (n,n'),

where n' = nrq’ the function fe: LS — LS is defined as

£ (X)={oef (X)|pc (0)=q}

Theorem. Consider the information propagation problem

I=<G,LS, u,{fe}, g >, then

a. Each transition function :fe is continuous with respect to the

lattice (LS,U).
b. The least fixpoint of I is the JOP solution to I.

c. If JP: N—LS is the JOP soluticn to I and n is a node

representing critical region Cij’ then JP(n) = ST(i,j).
Proof: omitted. (]

Theorem 5.1 shows that it is sufficient to approximate the JOP solu-
tion in order to obtain an approximation for ST(i,j). The flow analysis

algorithm (see figure 3) that we use to approxzimate the JOP solution is a
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Algorithm F':

input: An information propagation problem
1=<G,1LS,v, {fe} , 0>

output: A mapping COV: N—1S.

method:
begin

1. for each node neN
2. do COV(@):=¢ od
3. modify list: =1list of all nodes in N;
4, while modify_list # ¢ do
5. pop n from modify_list;
6. for n'eSucc(n) do
7. save: = COV(n');
8. Ccovn'): = W(COV(n') U f(n’n,)(COV(n)))
9. if save # COV(n') and n'e modify_list

10. then add n' to modify_list

11. od

12. od

13. end

Figure 3

modification of Kildall's algorithm [KI73]; it uses the characterization of the
least fixpoint of a continuous function as the limit of a sequence of finite

approximations in order to compute ST(i. j).

To insure that our algorithm terminates we use a widening operator
W [CO76]. For each neN, the successive values assigned to COV(n) at

statement 8 in our algorithm form an ascending chain in LS. The purpose

28



of the widening operator is to guarantee a finite bound on the length of

suct chains.

Definition: Let (L,v) be an upper semi-lattice. A mapping W:L—-L

is a widening operator if it satisfies the following properties for all x and

y of L:
(1) W is monotone, i.e. x =y implies W(x) = W(y)
(2) W is increasing, i.e. x = W(x) . a

We say that W is finitely convergent if for any ascending chain u 15U =

in L, the ascending chain defined by e W(ui) for i = 1 is eventually stable

i.e., dk = =
_(.e., k>0[vi vk

for all i = k]).
Lemma: When Algorithm F terminates with output COV: N—1S

we have COV(n') = W(COV(n') U f’n (COV(m))) for each edge (n,n') in E.
\

')

Proof: Omitted. O

The following theorem shows that, as long as Algoriihm F converges,
the output mapping COV:N—LS always forms a covering of the JOP solution
to the information propagation problem 1. Such a covering is a '"conserva-
tive approximation' of the join of paths solution; any property of the parallel
program that holds in all states of COV(n) will also hold at node n during

program execution.

Theorem: Let JP: N— LS be the JOP solution to the information
propagation problem I=<G,LS,U ,{fe} , #>. Assume that Algorithm F
terminates on I with output COV: N—LS. Then JP(n) € COV(n) for

all n in N.



Proof: We prove the theorem by contradiction. Assume that the
assertion of the theorem is false. By the definition of the function JP,

we have
JP(n) = V) I (g) forall neN
« € Path (n o,n T

Thus, there exists a node n and pata m€ Path(n, 1) such that f ﬂ_(¢)¢ COV(n).
Consider such a node-path pair in which the path m has minimal length. It

is clear that the path 7 is not the null path, since JP(n O) =@ =COV (no)

always holds. Hence, let 7r=e1,e2, e s ek where ek= (n',n), Let 7'

be the subpath of = of length k-1, i.e., T =e ez, cees € g We have

f (¥ ccovn') since 7' is shorter than 7. Smce Algorithm F terminates
on I, we have COV(n) = W(COV(n) U fek(COV(n'))) by the lemma. Hence
COV(n) U fg (COV(n')) C COV(n), which in turn implies that

ek(COV(n')) C COV(n). Therefore, f (Qf) = ek(f (9 €1, (COV(n')) C COV(n)

leads to a contradiction to our choice of 7. This proves the theorem. O

To illustrate our flow analysis technique, we examine the behavior of
Algorithm F with several different widening operators. The first two
examples that we consider are based on the solution to the readers and
writers problem shown in figure 2. I1=<GL,LS, U ,{fe}, g> will be the
corresponding information propagation problem, where Gl is the flow graph
in figure 2. Recall that the vector of shared variables is X = (aw,TIW,TT),

and the initial state Ty is (0,0,0,1,1).

Example: We first consider the identity widening operator WO’ i.e.,
A\ O(X) =X for all XeLS. In this case, Algorithm F behaves like
Kildall's algorithm.

When Algorithm F is applied to I1 with the widening operator W 0’
the algorithm terminates, and the output COV:N—LS is the join of paths

solution to 11:
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7 = = ' = [
Cov@_ ) = COV(n, ) ={o}, covin ) ={0,(1,0,0,1,2)},
cov ,) ={(0,0,1,2,1),(1,0,1,2,2)}, OV, ) ={0,(0,0,1,2,)},

COV(n,,) ={(1,0,0,1,2),(1,0,1,2,2)}, COV(n,,) ={(1,1,0,1,3)}. O

Example: Let W 1 1.S— LS be the widening operator such that, for
m+t
XeLS, W 1(X) = _Xl Tl'i(X), where wi(X) is the projection of X to the ith
. 1= ' . '
component, Hence W 1 collapses both values of shared variables and the

program counters. With W1 Algorithm F produces the following suboptimal

approximation of the JOP solution to I1:

covin, ) = CoVim, ) = {0 }, covm, ) ={0,1}x {(0,0,n}x {1,2},
covin ,) ={0,1}x(0,1,2) x {1,2},

covn,,) ={(0,0}x{0,1}x{1,2} x {1},
COV(nzz)={(1,0)}x{0,1}x{1,2}x{2}. O

Algorithm F converges on Il in the above two examples. However,
neither W 0 nor W 1 is finitely convergent; with these widening operators
Algorithm F may fail to terminate on information propagation problems
with unbounded semi-lattices. To demonstrate how unbounded semi-lattices
can be handled, we consider the unbounded buffer problem. In this problem
two "classes' of processes, called "producer" and "consumer," work on an
unbounded buffer. At any moment there can be at most one producer process
and at most one consumer process working on the buffer. In order to avoid
buffer underflow these processes need to be synchronized. A well-known
solution to this problem is as follows: There are three shared variables
in the resource UB:np, nc, and b denoting the number of producers, the
number of consumers, and the number of portions contained in the buffer

respectively. Initially, X = (np,nc,b) =(0,0,0).
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producer:
repeat
PR1: with UB when np = 0 do np:=np+1 od;
produce;
PR2: with UB when true do np:=np-1:b:=b+1 od

forever

consumer:

regeat
CS1:with UB when nc =0 & b> 0 do

nc:=nc+1; b:=b-1 od

consume;

CS2:with UB when true do nc:=nc-1 od

forever

Consider the information propagation I=< G2,LS, U ,{fe }, >, where G2
is described in figure 4. Note that Algorithm F fails to terminate on I2 if
either W0 or W1 is used. What we need is a widening operator that pro-

duces finitely representable coverings for infinite sets.

n20

n21

n22

Figure 4
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Example: We first consider a widening cperator W_ on the semi-

I
lattice (®(Z),u), where I=[a,b] is a finite interval in Z. For each

Xed’' (Z) we define WI(X) = U VI(r), where VI(r) is (~~,a) if r<a,(b,+w)
reX )
if r> b, and r otherwise.

For a general parallel program with m variables and t processes,

R |

we define a widening operator Wp REREEE % LS— 1S, where I 1 m

are given finite intervals in Z, such that

m t
W, ..., ®=]xw [val.(X)] x| X pe.x
I I RO W A 7P

1 m i=1 i j=1

This widening operator not only collapses the values of each shared variable,
but also widens the collapsed value sets into intervals. The intervals
Il’ ceey Im may be chosen by examining the program text. One heuristic-
for this purpose is as follows:

Let a, and bi be the maximum and minimum constants which are
assigned to or compared with X, in the program text. Let ci(di,resp. )} be

the maximum (minimum, resp.) integer k such that xi:=xi+k appears in the

program text. Then we choose Ii as the interval [min(ai,ai+di), max(bi,bi+ci)]]

If we apply the above heuristic to the parallel program for the unbounded
buffer problem, we get I =1 = 13 =[-1,1]. Using the widening operator

1 2
WIl’ we obtain the approximation:

Iy, I3

COV(n) = g, COV(n, ) = COV(n, ) ={oo},

Cov(n, ) ={0}x[0,1] x[0,0) x{1} x{1,2},

covin,,) ={1}x[0,1] x [0,«)x{2}x{1,2},

COV(n21)=[0,1]x{0}x[O,oo)x{l,Z}x{l},

COV(n,,) =[0,1] x{1}x [0,y x{1,2}x{2}. 0
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‘

In the above example we have implicitly assumed an efficient interval
calculus [CO76]. The interval calculus is usually easy to implement:
[a,b] + [c,d] =[a+c,b+d], [a,b](-1) =[-b,-a], etc. We will not discuss

interval calculus further in this paper, however.

In defining the flow graph for a parallel program we consider all
possible interprocess edges. However, many of these interprocess edges
never occur in any execution path of the program. In an actual implemen-
tation of the flow analysis algorithm such interprocess edges need never be
explicitly constructed. Currently, the only place in Algorithm F where the
edges are used is in the for-loop "for n'eSucc(n) do" which begins at
statement 6. Consider, for example, the assignment statement at state-
ment 8. When n represents a conditional critical region, say Cij’ the only

states that can appear in f (COV(n)) must result from a state oge COV(n)

(n,n')
such that pci(a) =j. Thus, the for-loop "for n'eSucc(n) do ... od" may be

implemented as

for i=1totdo /* t is # of processes */
for jepci(COV(n)) do
Let n' be the node nij;
od

od

This implementation eliminates many of the references to redundant edges

and increases the efficiency of the algorithm,

For each node n the successive values assigned to COV(n) is an
ascending chain. Assume that there is a finite upper bound d on the lengths
of such chains. Then a worst case bound on the time complexity of
Algorithm F is 0 [G! * d) extended steps, where an extended step is the

work required to calculate a function application fe(X) or to do a widening
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operation. As the examples demonstrate, the extended steps can be
efficiently implemented if an appropria‘e interval calculus is used. The
bound d on the lengths of ascending chains can also be kept low if proper
widening opez:atoxjs are chosen. For instance, suppose the widening oper-

ator Wp o Im is used in Algorithm F, then d is bounded by
(]Ill + e #] Iml +ky+o k) (recall that k; 1s the number of conditional

critical regions in the process Pj).

By using more sophisticated widening operators it should be possible
to get faster convergence and to obtain even better approximate solutions.

Various propagating sequences [RE79] can also be constructed to further

limit the number of interprocess edges considered in the flow analysis.
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SECTION 6

CONSTRUCTION OF THE SCHEDULER

In this section we show how the information generated by the flow
analysis in Section 5 can be used to construct a good scheduler for condi-
tional critical regions. Our scheduler is an extension of the one described

by Schmid [SC76].

In Schmid's implementation (see figure 5) the conditional cﬁtical

| regions in a program are divided into "equivalence classes’ so that éll
regions with the same condition and instruction part are placed in the same
class. For each class the ea and da relations are constructed using
heuristics about how the execution of one critical region affects the condi-

tion of another. This part of Schmid's method heavily depends on the

(A XXX N Y]

- . enabled_list
scheduler

Figure 5
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restriction that conditions are linear inequalities and that assignment
statements only increment (or decremert) shared variables. During exe-
cution of a program, all processes that want to enter a conditional critical
region are entered in the queue Qv' When a process has entered a region
CCRi and found that the condition is not satisfied, the process is placed in
the queue Qi’ together with all other processes that want to execute a region
of the same equivalence class. When a process has executed a region CCRi,
it enters into the enabled list all (classes of) ""regions" CCRj for which

(CCRy, CCR,) €ea holds.

The scheduling of conditional critical executions is controlled by a
special process cailed the "scheduler' in Schmid's implementation. The
"scheduler" examines whether the condition for a class in enabled_ list is
true. If this is the case, it transfers the processes that are waiting in Qi
for that class to the queue Qs' If (CCRi, CCRi) €da, then only one of the
waiting processes is transferred; otherwise they all are. The queue QS
has the highest priority; a process can only enter a critical region if there
is no process ahead of it on Qs' Note that it is unnecessary to retest the

condition of a process on Qs before starting execution.

We will use the same system diagram that Schmid used (figure 5) to
describe our implementation. For simplicity we will only consider the case
in which every conditional critical region belongs to a distinct equivalence
class. The modification of our scheduling algorithm to handle the case in
which equivalence classes may contain multiple critical regions will be

discussed in a future paper.

In our implementation the minimal enable relation ea (disable relation
da) for a program P is decomposed into two disjoint relations sea and wea

(sda and wda, resp.). The prefix letter "s" ("w') stands for "strong'"
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("weak') and indicates that the corresponding property occurs in all possible
(in only some) executions of the program. The four relations sea, wea, sda,

and wda can be formally defined as follows:

1. (CCRi, CCRJ.) esea iff there is no computation of the form

P CCR
Op =0, => 0. such that condition t,)J' of critical region
CCR, is false in state ¢, and also in ¢ .
J k k+1
2. wea = ea - sea.

3. (CCRi, CCRJ_) € sda iff there is no computation of the form
p  CCR,

00 = Gk = Gk+1 such that condition bj of critical

region CCRJ, is true in state ¢, and also in o

k k+1°

4, wda = da - sda.

The information obtained by the flow analysis in Section 5 can be used
in a straightforward manner to approximate the six enable and disable rela-
tions. Let G be a flow graph for a parallel program in which conditional
critical regions are indexed as described in Section 5. Assume that after
executing Algorithm F we obtair the approximation COV: N—LS for the
JOP solution to the information propagation I= <G,LS, U, {fe} I>.

Let n and n' be essential nodes representing two critical regions Ciq and
er which occur in different processes and are therefore connected by edge
e = (n,n") in the flow graph. To simplify our notation, we identify a predicate

with the set of states which make it true.



A. Put (C, ,C, ) in ea if there exists a state o0 € COV(n)Nb, Nb,
iq’ jr iq jr

ol = 1) =
such that ¢ -fe(a)G bjr and pcj(o-) T.

B. Put (Ciq’ er) in sea if there does not exist a state
o€ COV(n)Nb, Nb. suchthat o' =f (0)€ b, and pec.(o') =T.
iq Jr e jr j

C. Put (C, ,C. ) in wea if (C, ,C, )eea - sea.
q° Jr iq’ “jr

D. Put (C, ,C, ) in da if there exists a state o€ COV(n) Nb, Nb,
iq’ jr iq jr

t — b 1y —
such that ¢ fe(a)Ebjr and pcj(o) T.

E. Put (Ciq’ er) in sda if there does not exist a state
ge COV(o)Nb, Nb, such that ¢' = f (o)eb, and pc (o') =T.
iq Jr € r ]

F. Put (C, ,C.) in wda if (C, ,C. )eda - sda.
iq> jr iq’ Tjr

Note that efficient computation of the four enable and disable relations also

requires the use of interval arithmetic.

During execution the system works as follows: A process that wanis
to enter a critical region is placed in Qv' When a process has entered a
region CCRi and found out that the condition for CCRi does not hold, the
process is placed in Qi' When a process has executed a region CCRi and
leaves it, the system will move a process Pk to Qs if there is a process
Pk waiting in Qj such that (CCRi, CCRJ.)&' sea. Then all other critical
regions CCRh with (CCRi, CCR.h)e ea are pushed on enabled list. At the
same time all critical regions CCR]. on enabled_list with (CCRi, CCRj)e sda

are removed from enabled_list. The scheduler still works the same way as

described in [SC76] .
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Consider, for example, a solution to the readers and writers problem

with two reader processes and one writer process:

X:=(0,0,0); /*x=(aw,rw,rr) */
resource R(}_()
cobegin
Reader_1
//
Reader_2

//
Writer_1

coend

If we apply Algorithm F to this problem with the widening operator WO’

we get the JOP solution:

1,

COV(n ) =¥, COV{n, -)=COV(n, )=COV(n y={ o,

30

COV(n11)= {00, 01, 02, 03, 04} , COV(n12)={ 05, 06’ 07, 08},

covi, )={o,, 0110y, 0 07} , COV(ny,)={0,,0,, O o),
COV(n31)={crO, Ogs 0 06} R COV(n32)={ Oy 0410n 08},

where

o0 = 0,0,0,1,1,1), 01 =(1,0,0,1,1,2),

0'2’:(1’1:091:1’3)5 =(0,0,1,1,2,1),

I3
G4=(170’1’1’2’2)’ 05=(090’1,2’191),

06=(0’O,2’2’211)9 U7=(1’O’1,2’1’2)’

0y =(1,0,2,2,2,2).
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The method described earlier in this section may be applied to the

JOP solution to determine the enable and disable relations:
ea ={ (W3,R1), (R2,W2), (W3,W2)}
sea = { (W3,R1), (W3,W2)}
wea ={ (R2,W2)}
da = { (W1,R1), (R1,W2), (W2,W2)}
sda =da, wda=¢.

This information, in turn, can be used to construct the efficient implemen-
tation for the program shown in figure 6. Q1 (Q2 , resp.) is the waiting
<jue11e for the conditional critical region R1 (W2, resp.). The procedures

enter, unblock_one, and unblock_all are used to access the two waiting queues.
reader: repeat

R1l: with R do
if not aw =0 then enter(Ql);
rr: =rr+l
od;
read;
R2: with R do
Tr: =7rr-1;
if rw=0 & rr =0 then unblock_one(Qz)
od

forever

Figure 6 (continued)
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writer: repeat
Wil:with R do
| aw: = aw+1;

remove R1 from enabled_ list
od

W2:with R do
if not (rr=0 & rw=0) then enter(Qz)
TW: = ITW+1;
remove W2 from enabled list
od

write;

W3:with R do
TW:=TW-1; aw: =aw-1;
if aw =0 then unblock_all(Ql) .
else unblock one (Qz)
od

forever

Figure 6 (concluded)
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SECTION 7

CONCLUSIONS

We have demonstrated how global flow analysis techniques can be
used to reduce the incidence of busy waiting in conditional critical regions.
We believe that similar techniques may be applicable to other important
problems in parallel computation. In particular, it should be fairly easy
to modify the flow analysis algorithm presented in sections 4 and 5 so that
it can be used to detect deadlock and to prove mutual exclusion of state-
ments in parallel processes. If stronger widening operators are used [CL77],
our algorithm should also be useful in the automatic verification of parallel

programs.
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