Avoiding The State Explosion Problem In
Temporal Logic Model Checking Algorithms

E. M. Clarke and O. Griimberg
Carnegic Mellon University, Pittsbuigh

1. Introduction

Many distributed programs can be viewed at some level of abstraction
as communicating finite state machines. The dream of somehow using
this observation to automate the verification of such programs can be
traced all the way back to the early papers on Petri nets in the 1960’s
(f13), [18]). The temporal logic model checking procedure of Clarke,
Emerson, and Sistda ([6),[7],[20]) also attempts to exploit this
observaton. Their algorithm determines whether the global state
transition graph associated with some concurrent program satisfies a
formula in the temporal logic CTL. The algorithm is linear in both the
size of the global state graph and the length of the specification and has
been used successfully to find errors in network protocols and
asynchronous circuits designs ([4},[9),[17]). A number of other
researchers have extended the basic model checking algorithm or
proposed (1), [3], [12), [15), 119}, {22]).
Although these algorithms differ significantly in the type of'logic that is
used and in the way that issues like fairness are handled, they all suffer

alternative algorithms

from one apparently unavoidable problem: In analyzing a system of N
processes, the number of states in the global state graph may grow
exponentially with N, We call this problem the state explosion problem.
Qur approach to this problem is based on another observation about
distributed programs. Although a given program may involve a large
number of processes, it is usually possible to partition the processes into
a small number of equivalence classes so that all of the processes in a
given class are essentially identical. Thus, by devising techniques for

This rcsearch was partially supported by NSF Grant MCS-82-16706. The second
author, O. Grimberg, is curtently on leave from Technion, Haifa and is partially
supported by 2 Weizmann postdoctoral fellowship.

Permission Lo copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/ or specific permission.

© 1987 ACM 0-89791-239-X/87/0008/0294 75¢

294

automatically reasoning about systems with many identical processes, it
may be possible to make significant progress on the general problem,

In [8]we addressed the problem of devising an appropriate logic for

reasoning about nctworks with many identical processes. The logic that
we proposed is based on computation trees and is calted Indexed CTL',
or ICTL". It includes all of CTL" (171, [10], [11]) with the exception of
the nexttime opcrator and can, therefore, handle both linear and
branching time properties with equal facility. Typical operators include
EF f, which will hold in a state provided that f eventually holds along
some computation path starting from that state and AFf which will
hold in a state provided that feventually holds along all computation
paths. In addition, our logic permits formulas of the form A f{i) and
Yﬂi) where f(i) is a formula of our logic. All of the atomic
propositions that appear within the subformula f{i) must be
A formula of our logic is said to be closed if all
. i i A
model for our logic is a labelled state transition graph or Kripke

subscripted by i
indexed propositions are within the scope of either a A or V

structure that represents the possible global state transitions of some
network of finite-state processes. For a network of N processes this state
graph may be obtained as a product of the state graphs of the individual
processes. Instances of the same atomic proposition in different
processes are distinguished by using the number of the process as a
subscript; thus, A, represents the instance of atomic proposition 4
associated with the fifth process.

Since a closed formula of our logic cannot contain any atomic
propositions with constant index values, it is impossible to refer to a
specific process by writing such a formula. Hence, changing the number
of processes in a family of identical processes should not effect the truth
of a formula in our logic. In {8] we showed how to make this intuitive
idea precise by introducing a new notion of bisimulation [16] between
two Kripke structures with the same set of indexed propositions but
different sets of index values. We proved that if two structures
correspond in this manner, a closed formula of ICTL" will be true in
the initial state of one if and only if it is true in the initial state of the
other. We say that the two structures are IC TL'—equivaIenl. In order
to set up the bisimulation between the two Kripke structures, however,

it is necessary to have an explicit representation of their state transition
refations. Thus, while the results in [8] are a necessary first step, they do
not completely solve the state explosion problem. Sistla and German
[21] have attempted to-remedy this problem, but their algorithm runs
in triple exponential time and would be quite difficult to implement.

The approach that we use in this paper avoids the problem of having]

to explicitly construct the bisimulation relation. Suppose that M has k
identical copies of process P, ie. M, = MoxP". We can think of
M={M,M, ...} a a distributed algorithm with ecach M,
represcnting an instance of the algorithm for a different number of
processes. What we would like to do is to compute the first few Kripke
structures in the sequence M, M,, ... until we reach a point where M,
and M, are ICT L"-cquivalent and then conclude by induction that
for all k2r, M; and M, will be lCTL'-equivalenL Unfortunately, this
scheme doesn’t quite work. In Section 4 we show that it is possible to
select M, and P in such a way that M, is ICTL -cquivalent to M,, but
M, is not ICT! L -equivalent to M, ;- ILis not enough to show that M,and
M, ., have the same behavior. In addition, we must somehow force
M,xP"and M, xP" to have the same behavior for every n20.

We accomplish this by constructing a single process P° called the
closure of P whose states arc abstractions of states in P ”. We prove that
if M,xP' and M,“xP' are equivalent under a suitable notion of
equivalence, then for all k27, M, and M, will be ICI'L'-equivalent.
We call this result the collapsing theorem for networks with many
identical processes. When M has the property that for all k27, M and
M, are lCl‘L'-equivalem. then we say that the algorithm M is
rreducible. By using the collapsing theorem it is possible to reduce an
infinite set of verification problems to a single problem! Thus, we are
able to prove that the algorithm M satisfies some icTL’ specification in
general by considering only a finite number of instances of the
algorithm. Another virtue of our approach is its simplicity. Although
some creativity will in general be required to obtain an cffective closure
for a given algorithm M, the check that M,xP° and M, xP are
equivalent is easily automatible.

Our paper is organized as follows: Section 2 describes the model for
networks of finite state processes that we use in the paper. Section 3
reviews the syntax and semantics of the logic CTL" and its extension
ICTL® for reasoning about systems of identical processes. This section
also gives the definition of ICTL" equivalence. In Section 4 we state the
basic properties that process closures should have and give an
appropriate notion of equivalence for structures obtained from such

processes. Scction 5 contains the collapsing theorem discussed above.

In Section 6 we give a polynomial algorithm for determining
cquivalence between process closures and show that the ideas in
Scction 5 lead to an effective verification procedure. In Section 7 we
show how the collapsing theorem can be used to verify two simple

295

concurrent algorithms. The paper concludes in Section 8 with a
discussion of some possible extensions of this work.

2. Finite State Processes.

Qur model of computation is similar to the CCS model used by
Milner [16]. Let 4 be a set of primitive open actions such that a € 4
whenever a € A and @ = a. The set ACT of process actions contains the
open actions in 4, a special action A used for transitions that do not
require syncronization, and syncrenization actions of the form a a where
ais in A. The A action and the synchronization actions are called
completed actions.

A process Pis a 5-tuple P = 4P, S, R, 5, L> where,

o APis the set of atomic propositions,

S is the set of states.

e RC SXACTxS. We write s, % s to indicate that
(s,a.5)€R.

e 5, € S is the initial state,

o L : S — P(AP)is a function that labels each state with a set
of atomic proposition.

A path w is a sequence of states 5,5, ... such that for each i there
exists a completed action a with 5; %+ 5;,.,.

Let P, = <AP,.S.R.si, LD and P, = <AP,S, R, 55, LY be two
processes. The product process P XP, = CAP.S. R, 5, L> is defined as
follows:

¢ AP is the disjoint union of AI’1 and AP,
*§ = S,XS,
o R will contain two types of transitions.

o(5,85) % (s1.5)) if 5% 5] and 5 = s Jor
- [, % s and 5 = s}
where a is either an open action or the A action.
o(sl.sz)"—ab(s{.s;) iff [5, L 5/ andszé-*sglor
[s,5§ s; and s, = s3] or
[5% 5 and 5 =]

o5 =(s‘_;%)
o L: 5X§;—P(AP) such that I((s, s)) is the disjoint
union of L(s;) and L(s,).

We define the product P" to be (...(PxXP)X ...)xP,_)xP)
where each P, is a copy of P with the atomic propositions that label the
states indexed by i The action names are uneffected by this indexing.
n} A
state ¢ in P" can either be viewed as an n-tliple (s,s,)or as a pair
(5. ... 5pey)sy) where s, is the component of process i, We will also
use the convention that of; is s, the i™ component of the mtuple

In this case we say that P” is a process with index set [={1, ...

representation of o.

Let M and P be as shown in Figure 2-1, then the product MxP is
shown in Figure 2-2.

Intuitively, a distributed algorithm consists of a finite set of
componcnt processes with some rules for connecting these processes
together to form networks of different sizes, In this paper we copsidera
simple but important class of distributed algorithms such that in each
instance of the algorithm all but a finite number of the processes are
identical and each process can communicate with every other process.
We represent an instance of such an algorithm by a product of the form
M, = MyxP' for r >0, where M, gives the combined behavior of the
component processes that are not identical. We expect that our results
also hold for distributed algorithms with more complicated rules for
combining component processes. '

3. Indexed CTL"®

There are two types of formulas in CTL": state formulas (which are
true in a specific state) and path formulas (which are true along a
specific path). Since our logic is based on CTL’, we will have the same
two types of formulas. Let AP be a set of proposition names, which are
indexed by a finite set of indices 7 (a subset of N). A state formula is
either:

Figure 2-2: The Product M x P.

296

oA, ifde APand i€l
o If fand g are state formulas, then = fand fV g are state
formulas. Moreover, if fhas exactly one free index variable
i.then Y fis a state formula. (We will write £(i) to
indicate that f has a free index variable i)
o If fis a path formu!la, then E(f) is a state formula.
A path formula is eith r:

o A state formula,
o If fand g are path formulas, then - f, fvg, \l/f(i). and
fU g are path formulas.

We define the scmantics of Indexed CTL" with respect to a structure
K =<AP, 1 S, R, 5, LD, where

o AP is the set of atomic formulas.
o Jis the set of index values (a subset of N).
o S'is a sct of states.
o RCSxS is the wansition relation, which must be total in
both of its arguments. We write 5, — 5, to indicate that
(5,5)€R.
® 5 is the initial state.
o L: S—P(APxI) is the proposition labeling. We will write
A, instead of (A4.i).
L;(s) will be the restricton of L to the set of atomic formulas indexed
by i We only consider tramsition relations where every state is
reachable from the initial state. We define a path in K to be a sequence
of states, o = s,5,... such that for every i21, 5~ 5, »' will
denote the suffix of w starting at s,

Note that structures are different from processes. A structure may be
obtained from a process with index set I by restricting the transition
relation of the process so that only transitions on completed actions are
allowed, Also, if some state in the process has no transitions on
completed actions, we add to the corresponding state in the structure a
transition from that state back to itself. It will sometimes be convenient
to refer to a process in a context which requires a structure instead.
When this happens, the required structure is the one obtained from the
process by the above conventions.

We use the standard notation to indicate that a state formula fholds
in a structure: K.sk=f means that f holds at state s in structure K.
Similarly, if fis a path formula, X,» = f means that fholds along path
« in structure K. The relation k= is defined inductively as follows
(assuming that f and f; are state formulas and g and g, are path
formulas):

1sk= A, = Ali L(s).
25k o= shkf,
3. ske=fVS o skforskf,

4.5k \{A(i) e there exists an i ¢ [such that
- sEA(D).
5. s=FK(g) = there exists a path # starting with s
such that w k=g,
6. ak=f = sisthe firststate of v and sk= £,
1. k=g = akg.
B ak=gve = gFporwkFg,
9.7k Vg(i) = thercexistsan ¢/ such that
' =g (i),
10. =g, Ug, = there exists a k> 0 such that

w¥i=g,and forall 0 €< k. w/k= g,

We have omitted the nexttime operator, since it can be used to count
the number of processes. For example, consider a ring of processes that
pass around a token. Using the nexttime operator X,

/l\A(t,-: (XXX
says that any process that has the token will receive it again in exactly
three steps. This is only true if the ring has exactly three processes.

Figure 31: Example to Ilustrate Restrictions on ICTL"

Even with this restriction on the nexttime operator, the logic is too
powerful; by nesting the operators /\ and V it might still be possible
to count the number of processes inl a conc{ment system. Suppose we
take as our Kripke structure the global state graph for the concurrent
program in figure 3-1. The following formula sets a lower bound on
the number of processes:

V(AAERBAV (4AERBAN (...)

Once B;becomes true, it remains true, Therefore, if \{At is true, we
know that this k& is different from all of the preceding indices
mentioned in the formula. For this reason, We will use a restricted form
of ICTL', The additional restrictions are:

. Y [is a permissible state formula only if f'does not contain
any \}/ operators. -

e V gis not a permissible path formula.
. g: U g, is a permissible path formula only if neither g, nor g,
contains any V operators.
In practice, many (j)f the most interesting properties of networks of
identical processes can be expressed in the restricted logic. In the
remainder of the paper, we will refer to the restricted logic as icT.’
unless otherwise stated. '

297

We want to be able to define a correspondence (or bisimulation)
between two structures, K, and K, such that if the structures
correspond, then one structure satisfies an ICTL" formula if and only if
the other satisfies it as well. Since the restrictions to ICTL" do not
permit the use of two different indices within an until operator, it is
impossible to refer to the behavior of two different processes along a
specific path, Thus, the notion of correspondence between structures
only needs to refer to one index from each structure at a time. Because
of this, we define a set of finite correspondence relations, C;» &8, XS,
that relate the behavior of an index iin 7, to the behavior of an index i
in 1. Inwitively, (ss”) is in C/ if index / in the state s behaves like
index i in the state s’.

‘We may have portion of a path along which the behavior of / does not
change, i.e. several consecutive states are all labelled by the same set of
propositions indexed by i This type of behavior is called swutering ((5],
{8]. [14]). We will call such a sequence of states an i-block. Since
ICTL® has no nexttime operator, it is impossible to differentiate
between a single state and an #block with the same labelling as the
state. However, when we correspond a state with an ~block, we must
ensure that the i-block is finite, This is similar to the notion of stuttering
eguivalence considered in [S].

Cyr = NCYs , where C is inductively define as follows:
n

o Chr = ()| Lfs)= Ly(s)}
L) c;'j’s, iff

o For every path =, starting in s,, there exists a path #/,
starting in 5, and partitions of both paths B,,8,...,
BB, ...
finite and nonempty. Moreover, B, Clhe B}.

o For every path o /, starting in s,, there exists a path =,

such that for every j, B; and Bj are both

starting in s, that satisfies the same conditions as
above.

Let X, and K, be two structures with initial states s} and s and index
sets /, and J,. Then K, C;r K, iff sy Cys si. Moreover, X, C X, iff
there exists an index relation IN CC I;x I, total in both arguments, such
that for every (ii’)e IN, K, Cy K, . The following theorem is proved
in[8].

Theorem L: If K, CK, thenK . sib=h = K,s2&=h for every
closed ICTL" formula k. ‘

4. Process Closures

In order to show that some distributed algorithm M is - reducible,
we must find an r such that for every k> r, M is ICTL -equivalent to
M, Unfortunately, it is not sufficient to show that M, is
ICTL -equivalent to M r41- If M, and P are as shown in Figure 4-1,
then M, is ICTL -equivalent to M,, but M, is not ICTL -equivalent to

M, It is not enough to show that M, and M, , have the same
behavior. In addition, we must require that M,XP" and M,“xP"
have the same behavior for every k. We can accomplish essentially the
same thing by showing that M ,xP' and M,ﬂxP' are equivalent,
where P’ is a special process called the closure of P. The closure serves
as an abstraction for P* for all &> 0 and must be supplied by the person
who is doing the verification. We will use MZ to denote M, xP'". Note
that each state o of S¥is a pair (s,) in which the first component sis a
state of M, and the second component p‘ isastate of P

The user must also supply two families of homomorphisms
b My—MP for k2r and gz My— ML, for k2r+Ll The
homomorphisms associate with every computation of M} a uniquely
determined computation of M7 (or M7,). The homomorphism &y will
have the following properties:

« it must map the initial state of M} to the initial state of ML

o it is the identity on the components 0 through r of the states,
ie. of; = h(o)|;for isr.

eIf ¢, is a reachable state of M; and o,% 0, is a
transition involving a completed action a in M,, then

is k(o) 2 hy(o) in ME.

Furthermore, if a is the syncronization action aZ and a is
th

there a transition
taken by the i processin o, % g, with i< r, thenthe i
process will also take a action in hy(e) % hi(o).
Otherwise, if i>r, then the a action in h(0,} S Iy (oy) is
taken by P". A similar restriction also applicsto & and A.

o

QO ~ D ~ o
DD =

Figure 41: M, = M, . but M, # M,

We wish to define an equivalence relation D between M? and
M?_ which will ensure that for every k, My C My), where C is the
relation defined in Section 3. In other words, we must ensure that there
is an index relation INC Iyx /i, such that M, C;v M, for every
(ii’ye IN. The definition of the equivalence relation D is somewhat

more complicated than the onc given in Section 3 because of the P

298

component. MFPDMPE, , iff there exists an index relation
IN,C 1,x1,,, such that for every (ii’)¢ IN,, M Dy ME,, andin
addition MY EMZ, . The relation Dy is used in constructing Cys

for (ii’)€IN,, while the relation E is used in constructing Cy¢ for
(ii')eIN=IN,. Dy and E are defined over STxS%,,. As before,
we say that two structures are D or E related to each other if their
initial states are. Note again that o = {52).

Dy = NDYs where DY is:
n

o DY = {(0,0)| Li(5,) = Ly(s) A P; = P;}
e g, D} a,iff
o For every path w, starting in o,, there exists a path
w’, starting in ¢, and partitions of both paths
BB, ..., B{.B.... such that for every j:

1. B;.B} are nonempty, finite, and defined along
actions in M, and M, ,, respectively.

2. B; D} B

3. Let 4 be the transition Iasl(Bj)—-» ﬁrst(Bj“).
Then either ¢ is a transition in M, and ¢ is a
transition in M, , or, if (; involves some action
in P', then I} involves exactly the same action in

P.

o For every path v/, starting in o, there exists a path
=, starting in o, that satisfies the same conditions as
above.

E = NE", where E" is defined exactly like D} except that the
o ". N L]
basis case is given by E° = {(0,,0,) | 7} = p; }-

5. The Collapsing Theorem
We now state the collapsing theorem for 7 - reducible algorithms.

Theorem 2: If MY D MY, | then for every k2r, M C M,.

Proof: We prove that for every k>r, M, C M, ,,. For each k we
must show that there exists a relation INC Iy X /;,, such that
(i.i") ¢ IN implies that M Cyy My ,. We consider first the case in
which k = r. We already know that (M,x P") D(M,,,x P"). This
means that there exists a relation /N,C /,x/,,, such that for
Gi")e IN,, (M,xP) Dy (M,,,xP"). Let p; be the start state of
P' . We prove the following statement by induction on n:

Let seM, s'eM,., 5=(sp)eMxP, and
5 =(s".p)) €M, XP", with 5D 5, then
sCl ¢,

The basis case is ecasy to prove: sD% s’ implics that

Li(s) = Ly(s’). This in wrn implies that sCJs s’ . Next, assume

- - +1
that s D;/Hs’ holds. We must prove that s C/'s’ also holds.

Thus, let 7 be a path that starts at sin M,. Let 7 be the sequence
obtained from = by replacing cach state s,, on w by (s,, py). All
transitions along 7 are M, transitions. = is a path starting at 5, so
there exists a path #/ starting at 5/ and partitions of both paths
BB,B.B, ..

v By - such that the conditions in the definition of
D7 " hold. Because of the third condition we know that each state of

n+1
7’ has the form (s}, p;) and all transitions along 7/ are M,,,
transitions.

Let @/ be the path obtained by deleting the p; component of each
statein 7/ . Let B.B,....B{.B],... bethe partitionsof # and n’
determined by the partitions of # and #’. Itis easy to see that w
and =’ satisfy the conditions in the definition of the C;f ’ relation.
For example, B; Clr B; follows immediately from the inductive
hypothesis and the fact that B/ D B; . Essentially the same
argument can be used to obtain a path # starting at 5, given a path »’
starting at s”. We see that M, C;» M,,, by applying the inductive
hypothesis to the case in which s is the start state of M, and s’ is the
start state of M, .

Next, we show that (M,x P") D(M,, x P))implies MyC M;.,,
for k> r, We must show that there exists a relation INC I %/,
such that (i i’) € IN implies M C,r M,‘H'. We already know that
there exists a relation INC I Xl that
(MXPYDyr (M, xPY for (ii’)eIN,. Choose
IN = INU{(r+1r+2),(k k+1)}. There are two major cases:

such

Case L. (i, i’y e {(r+1,r+2), ... (k k+1)}. Note that with each
state (S, 5. ...+ 5. Sp4p ---. 5 of M, we can associate a uniquely
determined state (s, 5, ..., s, p) of M,x P" obtained by applying
the homomorphism A 10 the first state. Likewise, g;,, appliedtoa
The
homomorphisms extend in the obvious way to sequences of states in

state in M;,, cives the analogous state in M, xP".

Mk orin Mk-l-l'

‘The following inductive hypothesis will enable us to construct a path

in My, givenapathin M, using hy:

Let § be a state of M,xP" and § be a state of
M, x P" with 5 E"5" . Let sbeastate of M, such that
hi(s) = 5, and let s’ be a state that agrees with s on its
last k—r components and agrees with §/ on components
0 through r+1. Then sCjs s’ .

Figure 5-1 illustrates the notational conventions, A similar argument
will enable us to construct a path in M given a path in M, ,, using
8k+,- Notethatif sE™5' then their P -components are equal. The
basis casc of the inductive hypothesis fo)lo;vs immcdiately from the
requirement that sand s’ agree on their last k~r components. For
the induction step we show that if 5 5, s. s/ are as above with

SE™! 5 then s Cj7's’. Let w be a path starting at s and let

299

M, x P*: My
T2y o5 p) m—Lk s=»(so,....s,.s,“.'...,sk)
lilg |
1
. ']
M, %P Myt
- ['
s =(sp - Sty D) A UYL A
—
Figure 5-1: The Construction of #/ starting at &, given
o starting at s. :
7 = hy{a). Since h is a homomorphism 7 isa path in M,x P°.
7 starts at § so there is a path 7/ starting at 5/ that satisfies the

definition of E”"*' including the existence of partitions

B.B,....Bl.B], ... of w and #'. Thepartition B, B, ... of
7 determines a partition B, B,, .
state of « is the first (last) state of B; if and only if the m™ state of 7
is the first (last) state of B].

. of 7 in the obvious way. The m®

For the construction of «/ it is necessary to know that for each j all
of the states in block Bj agree on the last k—r components. To see
that this is true, let 5, and s,,,, be two adjacent states on « that do
not agree on the last k—r components. This can happen only if the
transition from 5, = #(s,,) 0 Spy, = A(S,,,)in 7 involves P°.
Transitions involving P* can only occur at block boundaries by the
first condition in the definition of Dy . It follows that s, and Sme1

can’t both be in the same block Bj of w.

We construct a sequence o/ starting at s” as follows: Let 5/, be

the m™ state on «’. s/, will agree with §/, on components 0
through r+1. If 5, is in block B/, then

states of B; in its last k~r components (sce Figure 5-1). We must

Sy, will agree with the

show that the sequence '’ is really a path in M, . Let s;, and
sh 4y be two consecutive states on w’. We show that there is a
transition in M, from s/, w s&,,. Let 5/ and 5/, be the
corresponding states on @/ . If 57, and §7,,, are both in the same
block B/ then s; and s, will agree on the last k=r
components. Since the transition from 3}, 0 §,, Wwithin
M,, % P" only involves processes 0 through 7+ 1, there must be a

transition from s/, to sh., in My,

Next, assume that 5}, is the last state of block B; and that §/,,, is
the first state in block B/, . Let 5, (s,) be the last state of block B,
(block B;).and let 5, (554,)be the first state of block By, (block

B;,,). There are a number of subcases this time.

1. The transition from 5%, to s/, only involves processes
0 through r+1. P* is not involved. In this case the
transition from 5, to 5,,, only involves processes 0
through r. Hence, 5, and s,., must agree on their last
k~r components. It follows that s, and s, ,, mustalso
agree on their last k—r components. Thus, this case
reduces to the one that we have just considered,

. The transition from s/, to 57, only involves the P°
component. Thus, s,, and s;,,, agree on components 0
through r-+1. It follows that 5, and 5,,, agree on

components 0 through r and that the transition from s,
10 $,,, only involves the last k—r processes. Since the
last k—r components of s;, (s},) arc identical to the
last k~r components of s, (s,,,) there must be a
transition from s}, 0 s}, .

(%]

. The transition from 5/, to 5,,,, involves P° and some
process numbered 0 to r+1. 5, and§’ (5, and
57+,) have the same P° component. The transition from
Sy 0 s,,, corresponds to a joint transition by two
processes i and j with i< r and j> r. Without loss of
generality assume that process i makes the transition
u, % u, and that process j makes transition v S v, . If p}
(P)isthe P° component of s, (of 5,,,), then by the
third property in the definition of a homomorphism there
must be a ¢ transition from p, to p,,, . It follows that
there must be some process i/ < r+1 that is enabled to
make a c transition from #{ to uJ in s/, and that the
state of this process is «] in 57,,,. Thus, s}, follows
from s/, by ajoint cc transition in which process j+1
moves from state v, to state v, and process i’ moves
from u{ o uj.

It is easy to see that #’/ satisfies the requirements in the definition of
a correspondence relation. B; C :;r B j’ follows immediately from the
inductive hypothesis and the fact that B; E" ‘B;- . The same argument
can be used to obtain a path # starting at s given a path #/ starting
This shows that s C#'s’ as required to establish the
inductive hypothesis. Note that by the inductive hypothesis with § the
initial state of M,x P, 5" the initial state of M,,, X P", s the initial
state of My, and s’ the inidal state of M, ., we getthat sCyr s’ .
It follows that M, Cyr My, ;.

at s’

Case 2: We must show that M C;y My, for (i i’)€ IN,. The
inductive hypothesis is similar to the one used in the first case:

Let 5 be a state of M,xP and 5 be a state of
M, xP* with 5 Dz 5 .Let s be astate of M; such
that hys) = 5, and let s’ be a state that agrees with s on

b

300

its last k—r components and agrees with 5’ on

components 0 through r+1. Then sCjr s’ .

Since 5 Dy 5, it follows that 5 D% §'. As a consequence, we
have that L{5)= Ly (5").
hypothesis follows immediatcly from this observation.

The basis case of the inductive
For the
induction step we show that if 5, ', s, s/ are as above with
§D7's then s Cif's’ . The proof follows exactly the same lines
asincasel. M, Cy» M, follows from the inductive hypothesis with
§ the initial state of M, X P", 5" the initial state of M,, X P°, 5 the
initial state of M, ,and s’ the initial state of M,,.

6. Algorithm For Equivalence Between Process
Closures
In this section we show how to compute the cquivalence relation for
closures. We will describe the algorithm for Dy for (i.¥)€ IN,. The
algorithm for E will follow the same lines, except that the base case
will be constructed according to £°.

We construct the relation 9, on SPxST, | that is identical to the
relation D+ defined in Section 4. Fyr = NI s where Ffs
n
defined as follows:

is

By = {(0,0) | Li(s) = Ly(s)Ap; =p; }

In order to define 927'1 we must first define the sets of extended
succesors of . We define these sets in terms of the set ST, o) of the
stuttering states of 6. ST, (o)) is the set of states that are Fjv
related to o, and are reachable from o, along path in which all the
transitions are in M, and all the states are 9% related to o,
ST, (o)) is defined similarily for transitions within M, . We can

now define the sets of the extended successors of o, in M7,

e For every action « in P, @ ~NEXT,, (o) is the set of
extended successors of o, which are reachable from states in
ST, (o)) along a transition that involves an action a in P.

o M—NEXT,, (o)) is the set of extended successors of a,,
not included in ST, (), which are reachable from states
in ST, (o)) along a transition that involves a completed
action in M, .

The sets of the extended successors of o, in MP, are defined
similarily. We will also use a predicate LOOP, (o) that is true iff
there is a cycle containing only states in ST, (o).

Let x denote either an action a of P', or M. Then we can define
24 ;,'-7 'as follows:

"'z {(a,.0,)| LOOP,,(0,) = LOOP,, (6;) A 6,37 0, A
AVe! e x~NEXT,, (0,) o} e x=NEXT,, (0,) | 6/ Fs al]A

/EVo; ¢ x~NEXT, , (0,) Jo! ex— NEXT, , (a,)[0] 9% o}]}

In the journal version of this paper we will show how a low-order
polynomial algorithm can be extracted from this construction.

7.Examples

To illustrate how the algorithm in Section 6 might be used we
consider two very simple examples. The first consists of a master
process M, and several slaves P; as shown in Figure 2-1. The master
process will determine that a job needs to be performed and then start
the job on a slave that is not busy. Thus, the master will remain in its
ready state { R,) until a job needs to be performed. It will then make a
transition to its waiting state W, and try to rendezvous with a slave
(P;) that is in its free state (F;). The joint transition will cause the
master to return to its ready state and the slave to enter its busy state
(B;). When the slave has completed the job it will return to its free

state.

We will show that the algorithm M = {M M, ... } with
My = Myx P! for k21 is I-reducible, ie. that M;C M, for all
k21. In order to demonstrate that this is true we rust find a suitable
closure P together with two sets of homomorphisms Ay:M; — M for
k21 and g:Mg— MP for k22 that satisfy the conditions given in
Section 4.

Intuitively, the states of P* are abstractions of the states of P* that
are reachable when PX is run in parallel with M,. In this case we

choose the states of 2° to be sets of states of P. The state { F} of P*

represents a state of P in which all & processes arc in state F. The
state { B} represents a state of P* in which all of the processes are in
the state B. The third and last state handles the case in which some
processes of P* are in state B and some are in state F. The transition
graph for process P° is shown in Figure 7-1. Note that there is a
transition from o1:> statc to anotherin P* iff the same transition occurs

between corresponding states of P* for some k>0.

Figure 7-1: The Closure of P for the Master-Slave Algorithm. ‘

The homomorphism #;, is also based on the intuition in the previous
paragragh is given by
PSS Sppp oo oSk = (8 oS0 {8y oSt 1)
Essentially the same definition can be used for g; with r+1 replacing r

and

301

and k+1 replacing k. It is easy to see that k; and g, satisfy the first
two conditions in the definition of a homomorphism. 1t is not difficult
to establish the third condition as well since any open or completed
action that can be made by one of the last k-7 processes in some state of
M, is also possible in the P* ~component of the corresponding state of
MxP".

The algorithm in Section 6 can be used to show that
(M,xP")D(M,xF"). Since M,x P’ has 12 states and M,x P’
has 24 states, the computation is tedious but straightforward. By
Theorem 2 it follows that M, and M, satisfy the same ICTL’
formulas for all k>1. In order to determine if some particular
formula holds for M) with k21, the temporal logic model checking
procedure described in [7] can be used to check the formula for M, .

The construction that we used to obtain the closurc of the slave
process in the example can be generalized. Let P be a process. The
closure of P, P', is defined by: P = <4P, SR, S L where
s = P(S)-{B}. Intuitively, the states of P’ are abstractions of states
of P". The state {s,, ...
in each s; and that each of the processes is in one of the s; There are

S, } indicates that at least one process of P is

several cases in the definition of R’ Let g=1{s,....5}¢€ S". For
every transition s; % ¢, R will include two transitions of the form
g% g'. The first transition in which ¢’ = (g—{s5;})U{s}} assumes
that there is exactly one process in the state s;. The second transition in
which ¢’ = gU{s}} assumes that there are several processes in state s;.

If two transitions s; £ s} and 5 4, sj are p;)ssible_in state g for { = j,
then there will be two transitions of the form ¢ % g’. The first with
q’ = (g~ {s,})U{s}.sj’-} represents the case in which exactly two
processes are in s;. The second with ¢” = gU {s].s}} represents the case
in which more than two processes are in s;.
st
i 7% j, then there will be four transitions of the form ¢ & ¢’. The first
with g* = (g~{s;.5;})U{s].5]} represents the case in which exactly

If two transitions s; %+ ; and 5;% s/ are possible in state g for

one process is in s; and exactly one process is in 5j- The second with
q" = qU{s}.s} represents the case in which several processes are in s;
and also in s;. The two remaining cases with g’ = (q—{si})u{#,sj}
and ¢’ = (¢—{5;})U{s].sj} represent cases in which exactly one
process is in one of the two states but several are in the other. The
initial state of P’ is s;k= {5} The labelling function for propositions is
givenby L(g) = U L(s)). The size of P is at worst éxponential in
i=1

the size of P.

There are two obvious problems with this definition for the closure of
P, The closure of P may be quite large, even if P is very small.
Secondly, P’ may contain states that are not reachable in any
computation of P* and behave differently when composed with M,

and M, ,. These problems may be avoided in many cases by

considering in the construction of P* only states that are reachable in
M; for some k. The second example illustrates how a reachability

assumption can be used to obtain a smaller closure for a very simple

critical section problem. The transition graphs for M, and P in this
example are shown in Figure 7-2. W is a wait state, and C
corresponds to the critical section. This time we will show that the
algorithm M = {M, M,, ... } is 2-reducible or that M} C M, for all
k 2 2. We choose as the closure of P the process shown in Figure 7-3.
This is exactly what would be obtained by the construction described
above except that transitions, which would result in states with more
than one process in state ¢, have been ¢liminated. We use the same
definitions for A and g; asin the previous example. As before, it is
easy to see that s, and g; satisfy the first two conditions in the
definition of a homomorphism. It is also easy to establish the third
condition provided we already know that only states with exactly one ¢
component are reachable in M. This mutual exclusion property
would, of course, have to be established by other techniques for
proving safety properties or perhaps by the ICTL" decision procedure
of Sistla and German [21]. Even when it is necessary to supply a
reachability assumption of this sort, we believe our technique will still
be useful for proving more complicated safety and liveness propetties.

The reduction in the number of states of M, x P" obtained by using
the reachability assumption is quite significant. Without the invariant
M,x P* has 24 states and M, X P" has 48 states. With the reachability
assumption, we only need to examine 5 states of M, X P’ and 6 states
of M,xP'. Thus, with the reachability assumpiton it is relatively
simple to show that (M,xP)D(M,xP’). It follows that M is
2-reducible and that M, and M, satisfy the same ICTL® formulas for
every k22.

8. Conclusion

So far, we have 6n1y tried our procedure by hand on small examples.
However, we expect to have completed a computer implementation in
the near future. Obviously, our paper leaves open a number of
important questions. Some are experimental in nature and can only be
resolved by considering additional examples. For instance, how large is
P in practice? Others questions, like the possibility of finding logics
that are more expressive than ICTL", require more theoretical work. In
any case, it is clear that the claim in [2] regarding the infeasibility of
automatically checking the correctness of programs with many
processes was unduly pessimistic,

302

My ' d

3 6

Figure 7-2: Critical Section Algorithm.

Figure 7-3; The Closure of P for the Critical Section Algorithm.

References

L. B. Alpern and F. Schneider. Verifying Temporal Properties without
using Temporal Logic. Tech. Rept. 85-723, Cornell University
Computer Science Department, December, 1985.

2. K. Aptand D. Kozen. "Limits for Automatic Verification of Finite-
State Concurrent Systems". Inf Process. Lett. 22, 6 (1986), 307-309.

3. M. C. Browne. An Improved Algorithm for the Automatic
Verification of Finite State Systems using Temporal Logic.
Proceedings of the 1986 Conference on Logic in Computer Science,,
Cambridge, Massachusetts, June, 1986, pp. 260-267.

4. M. Browne, E. Clarke, D. Dill, B. Mishra, "Automatic Verification
of Sequential Circuits using Temporal Logic". IEEE Transactions on
Computers C-35, 12 (December 1986).

5. M. C. Brownc, E. M. Clarke, O. Grumberg. Characterizing Kripke
Structures in Temporal Logic. Unpublished manuscript, submitted for
publication.

6. E.M. Clarke, E.A, Emerson. Synthesis of Synchronization Skeletons
for Branching Time Temporal Logic. Proc. of the Workshop on Logic
of Programs, Yorktown Heights, NY, 1981.

7. EM. Clarke, EA. Emerson, A.P. Sistla. “Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic Specifications”.
ACM Transactions on Programming Languages and Systems 8, 2 (1936),
244-263.

8. E. M. Clarke, O. Grumberg, M. C. Browne. Reasoning about
Networks with many identical finite-state processcs. Proceedings of the
Fifth Annual ACM Symposium on Principles of Distributed
Computing., August, 1986, pp. 240-248.

9. David L.. Dill and Edmund M. Clarke. "Automatic Verification of
Asynchronous Circuits using Temporal Logic”. JEE Proceedings 133,
pL E, 5 (September 1986).

10. E.A. Emerson and E.M. Clarke. Characterizing Properties of
Parallel Programs as Fixpoints. Proc. of the Seventh International
Colloquium on Automata, Languages and Programming, 1981,

11. E.A. Emerson, 1.Y. Halpern. ""Sometimes™ and "Not Never”
Revisited: On Branching versus Linear Time". Proc. 10th ACM Symp.
on Principles of Programming Languages, 1983.

12, E.A. Emerson, Chin Laung Lei. "Modalities for Model Checking:
Branching Time Strikes Back”. Twelfth Symposium on Principles of
Programming Languages, New Orleans, La. (January 1985).

13. R. M. Karp and R. E. Miller. "Parallel Program Schemata"; JCSS
, 3 (1969), 147-195.

14, L. Lamport. What Good is Temporal Logic? Proceedings of the
International Federation for Information Processing, 1983, pp. 657-668.

15. O. Lichtenstein and A. Pnueli. Checking that Finite State
Concurrent Programs Satisfy Their Linear Specification. Conference
Record of the Tweith Annual ACM Symposium on Principles of
Programming Languages, New Orleans, La,, January, 198S.

16. R. Milner. Lecture Notes in Computer Science, Volume 92: 4
Calculus of Communicating Systems. Springer-Verlag, 1979.

17. B. Mishra, EM. Clarke. "Hierarchical Verification of
Asynchronous Circuits using Temporal L.ogic" Theoretical Computer
Science 38 (1985), 269-291.

18. C. A. Petri. Fundamentals of a theory of Asynchronous
Information Flow. Proceedings of the IFIP Congress 62, Munich, 1962,
pp. 386-390.

19. J.P. Quiclle, J. Sifakis. "Specification and Verification of
Concurrent Systems in CESAR". Proc. of the Fifth International
Symposium in Programming, 1981.

20. A.P. Sistla, EM. Clarke. "Complexity of Propositional Temporal
Logics”. Journal of the Association for Computing Machinery 32,3 (J
uly 1986), 733-749.

21. P. Sistla and S. German. Reasoning with Many Processes. GTE
Laboratories Inc., Waltham, Massachusetts.

22. M. Vardi and P. Wolper. An Automata-Theoretic Approach to
Automatic Program Verification. Proceedings of the Conference on
Logic in Computer Science, Boston, Mass., June, 1986,

303

