
Avoiding The State Explosion Problem In 
Temporal Logic Model Checking Algorithms 

E. M. Clarke and 0. Gti.imberg 
Carnegie Mellon Univctsity, Pittsbmgh 

1. Introduction 

Many distributed programs can be viewed at some level of abstraction 
as communicating finite state machines. The dream of somehow using 

this observation to automate the verification of such programs can be 

traced all the way back to the early papers on Petri nets in the 1960’s 

( 1131, [lS]>. The temporal logic model checking procedure of Clarke, 
Emerson, and Sistia ( 16). [7], [20]) also attempts to exploit this 

observation. Their algorithm determines whether the global state 
transition graph associated with some concurrent program satisfies a 

formula in the temporal logic CTL. The algorithm is linear in both the 

size of the global state graph and the length of the specification and has 

been used successfully to find errors in network protocols and 

asynchronous circuits designs ( [4]* 191, [17D. A number of other 
researchers have extended the basic model checking algorithm or 

proposed alternative a1gofid-m ( PI, 131, WI, WI, IW, WI 1. 
Although these algorithms differ significantly in the type oflogic that is 
used and in the way that issues like fairness are handled, they alI suffer 

from one apparently unavoidable problem: In analyzing a system of N 

processes, the number of states in the global state graph may grow 
exponentially with N. We call this problem the s!ule explosion problem. 

Our approach to this problem is based on another observation about 
distributed programs. Although a given program may involve a large 

number of processes, it is usually possible to partition the processes Into 

a small number of equivalence classes so that all of the processes in a 

given class are essentially identical. Thus, by devising techniques for 

This research was partially supponed by NSF Grant MCS-82-16706. The ad 
author. 0. Griimberg. is cuncntly on leave from Tcchnion. Haifa and is partially 
supported by a Weirmann postdoctoral Fellowship. 

automatically reasoning about systems with many identical processes, it 

may be possible to make significant progress on the general problem 

In [8]we addressed the problem of devising an appropriate logic for 

reasoning about networks with many idcntical processes. The logic that 

WC proposed is based on computation trees and is called Iudexed CTL*, 

or ICTL*. It includes all of CI’L* ( [7], (lo]. [ll]) with the cxccption of 

the nexttime operator and can, therefore handle both linear and 

branching time properties with equal facility. Typical operators include 

EFf; which will hold in a state provided that f eventually holds along 

some computation path starting from that state and AFf; which will 

hold in a state provided that feventually holds along all computation 

paths. In addition, our logic permits formulas of the form /? fTi) and 

YjI’) where fli) is a formula of our logic. All of the atomic 

propositions that appear within the subformula j(i) must be 

subscripted by i. A formula of our logic.is said to be closed if all 

indexed propositions are within the scope of either a A or V . A 
model for our logic is a labelled state tmnsition graph’ or Kvipke 

structure that represents the possible global state transitions of some 
network of finite-state processes. For a network of Nprocesses this state 
graph may be obtained as a product of the state graphs of the individual 

processes. Instances of the same atomic proposition in different 
processes are distinguished by using the number of the process as a 
subscript; thus, A, represents the instance of atomic proposition A 

associated with the fifth process. 

Since a closed formula of our logic cannot contain any atomic 

propositions with constant index values, it is impossible to refer to a 

specific process by writing such a formula. Hence, changing the number 

of processes in a family of identical processes should not effect the truth 
of a formula in our logic. In [S] we showed how to make this intuitive 

idea precise by introducing a new notion of bisimulation [Ia] between 
two Kripke structures with the same set of indexed propositions but 
different sets of index values. We proved that if two structures 

correspond in this manner, a closed formula of ICI’L* will be true in 
the initiat state of one if and only if it is true in the initial state of the 

other. We say that the two structures are ICTL’-equivalenl. In order 

to set up the bisimulation between the two Kripke structures, however, 

294 



it Is necessary to have an explicit representation of their state transition 
reIations. Thus, while the results in [8] are a necessary first step, they do 

not completely solve the state explosion problem. Sistla and German 

[21] have attempted to remedy this problem, but their algorithm runs 
in triple exponential time and would be quite difficult to implement 

The approach that we use in this paper avoids the problem of having 

to explicitly construct the bisimulation relation. Suppose that hfk has k 

identical copies of process P, i.e. M, = MoxP ‘. WC can think of 
M = {M,, Mrq . . . } as a distributed algorithm with each hfk 

representing an instance of the algorithm for a different number of 
processes. What we would like to do is to compute the first few Kripke 

structures in the sequence M,.M,, . . . until we reach a point where &f, 

and Mr+, are ICfL*-equivalent and than conclude by induction that 
for all &Z r, M, and Mr will be ICTL*-equivalent Unfortunately, this 

scheme doesn’t quite work. In Section 4 we show that it is possible to 

select MO and P in such a way that Ml is ICTL*-equivalent to MF but 

M2 is not ICJTL*-equivalent to M,. It is not enough to show that M,and 

Mr,, have the same behavior. In addition. we must somehow force 

M,xP”and hf,+ixP” to have the same behavior for every nLt3. 

We accomplish this by constructing a single process P* called the 
closure of P whose states are abstractions of states in P “. We prove that 
if M,xP* and M,+,xP* are equivalent under a. suitable notion of 
equivalence, then for all kk r, Mk and M, will be ICIL*-equivalent, 

We call this result the collapsing theorem for networks wilh many 

identical processes. When M has the property that for all k 1 r. Mk and 

M, are ICI’L’-equivalent, then we say that the algorithm M Is 
t-reducible. By using the collapsing theorem it is possible to reduce an 
infinite set of verification problems to a single problem1 Thus, we are 

able to prove that the algorithm M satisfies some ICTL* specification in 
general by considering only a finite number of instances of the 

algorithm. Another virtue of our approach Is its simplicity. Although 

some creativity will in general be required to obtain an effective closure 

for a given algorithm M. the check that M,xP* and M,+,xP* are 

equivalent is easily autornatible. 

Our paper is organized as follows: Section 2 describes the model for 

networks of finite state processes that we use in the paper. Section 3 

reviews the syntax and semantics of the logic CTL* and its extension 

ICIX* for reasoning about systems of identical processes. This section 

also gives the definition of ICTL’ equivalence. In Section 4 we state the 

basic properties that process closures should have and give an 
appropriate notion of equivalence for structures obtained from such 

processes. Section 5 contains the collapsing rheorem discussed above. 

In Section 6 we give a polynomial algorithm for detcnining 

equivalence between process closures and show that the ideas in 
Section 5 lead to an effective verification procedure. In Section 7 we 
show how the collapsing theorem can be used to verify two simple 

295 

concurrent algorithms. The paper concludes in Section 8 with a 

discussion of some possible extensions of this work. 

2. Finite State Processes. 

Our model of computation is similar to the CCS model used by 

Milner [16]. Let A be a set of primitive open aclionr such that n’E A 

whenever a E A and ii = a. The set ACT of pmcess aclions contains the 

open actions in A, a special action h used for transitions that do not 

require syncronization, and syncronizufion aclions of the form a a where 
u is in A. The X action and the synchronization actions are called 

compleled actions. 

AprocessPIsa5-tuple P = <AP,S,R.$Dwhere, 

0 AP is the set of atomic propositions. 

0 S is the set of states. 
l R cSxAC7W. We write s, 4 s, to indicate. that 

(%,a+) E R. 
l ~eSistheinitialstate. 

l L : S + 9(AP) is a function that labels each state with a set 

of atomic proposition. 

A park VI is a sequence of states s,,,+ . . . such that for each i there 
exists a completed action a with s, 4 s,+~ 

Let Pl = <API. S,. Rl, s& L,> and P2 = CAP,, S,, 4.4, Q be two 

processes. The produel pmcess PlxP2 = <AR S, R.s, W is defined as 

follows: 

l AP is the disjoint union of API and APT 

l s = SIX&. 

0 R will contain two types of transitions. 

o(s&~(S;,~) iITI~~< and s,=glor 
Is+-) ands,=4J, 

where a is either an open action or the h action. 

o(si,$)%($,s) iff [%%4 ands,L;]or 

[s,si ands,=$]or 
[.r,gi ands,=s;]. 

0% = C&s,> 
l L : S,XS,-+‘~P(AP) such that t((s,, 3)) is the disjoint 

union of h( s, ) and r?< 4). 

We define the product P” to be (. ..(P,xP,)x , . .)xP,,,,)xP& 

where each Pr is a copy of P with the atomic propositions that label the 
states indexed by i. The action names are uneffected by this indexing. 
In this case we say that P’i is a process wilh index set I = (1, . . . , n). A 

state u in P” can either be viewed as an n-tuple ( si, . . . ,s,,) or as a pair 

((% , . . . ,s,&,J where si is the component of process i. We wiII also 
use the convention that uIr is 9 the iA component of the ample 
representation of u. 



Let AI and P be as shown in Figure 2-1, then the product MxP is 
shown in Figure 2-2. 

Intuitively, a distributed olgotirhm consists of a finite set of 

component processes with some rules for connecting these processes 
together to form networks of diRerent sizes. In this paper we conaider a 

simple but important class of distributed algorithms such that in each 
instance of the algorithm all but a finite number of the processes am 

identical and each process can communicate with every other process. 

We represent an instance of such an algorithm by a product of the f&m 

M, = M,xP’ for I > 0, where it!, gives the combined behavior of the 

component processes that are not identical. We expect that our results 

also hold for distributed algorithms with more complicated rules for 

combining component prucese% 

3. Indexed CTL* 
There are two types of formulas in CTL*: state formulas (which are 

true in a specific state) and path formulas (which are true along a 

specific path). Since our logic is based on CT’L*. we will have the same 

two types of formulas. Let AP be a set of proposition names, which ate 

indexed by a finite set of indices I (a subset of N). A state fomuh is 

either: 

hk: 

A 
R 

c? 

t A 

W 

P: 

L 
F 

8 

x E 

B 

u x 
Figure 2-l: Two Finite State Processes: M and P. 

\r/ Figure 2-2: The roduct M x P. 

l A,.iF& APandirI. 

l Iffand g are state formulas, then 1 fandfv g are state 
formulas Moreover, if/has exactly one free index variable 

i. then y f is a state formula (We will write f(i) to 
iudicate that f has a free index variable i.) 

0 Ifjii a path formula then E(n is a state formula 

A path formula is eitlv r: 

l A state formula 

l IfJandgarepathFormulas,then -f. fvg, yf(i). and 

fU g are path formulas. 

We define the semantics of Indexed Cn’ with respect to a structure 

K=<AP.I.$tQ$,where 

l AP is the set ofatomic formulas. 

l I is the set of index values (a subset of NJ). 

l Sisasetofstates. 
l RC_SxS is the transition relation, which must lx total in 

both of its arguments We write s, + s, to indicate that 

b,.qNR. 
l rvistheinitialstnte. 

l L: S-+‘lf’(AP%l) is the proposition labeling. We will write 

Aiinstead of(A,i). 

Li(S) will be the restricton of L to the set of atomic formulas indexed 

by i. We only consider transition relations where every state is 

reachable from the initial state. We deflne a parh in K to be a sequence 

of states. * = sr,%.. . . such that for every itl. si+s,+i. w’ will 

&note the suflix of w starting at s, . 

Note that structures are different from processes. A structure may be 

obtained from a process with index set I by restricting the transition 
relation of the process so that only transitions on completed actions are 

allowed, Also, iF some state in the process has no transitions on 
completed actions, we add to the corresponding state in the structure a 
transition from that state back to itself. It will sometimes be convenient 
to refer to a process in a context which requires a snucture instead 

When thii happens, the required structure is the one obtained from the 

process by the above conventions. 

We use the standard notation to indicate that a state Formula j’holds 

in a structure: K,sl= f means that f holds at state s in structure K. 

Similarly, if f is a path formula, K,a Cjmeans that fholds dOfIg path 

1 in structure K. The relation C is defined inductively as follows 

(assuming that f; and f; are state formulas and g, and g, are path 

formulas): 

LsPA, - A,rL(s). 
2.sC$ - SW& 
3. +=xvl; w SC/; or sP&. 

296 



4. sb y&(i) es there exists an 4 E I such that 

s~#lJ. 
5. SC Fkl) - there exists a path u starting with s 

such that u Ct: g,. 

6.aCf; e s is the first state of u and s I=&. 
7. Ul=l& a w kg,. 

8. w tg,vg, d wCg,oraCgl 

9. R t Vg,(i) c) 
i 

tberc exists an 4 c I such that 

w != &(iJ. 
10. II I= g,ug, r) there exists a k 2 0 such that 

w’kt g, and for all 0 lj< k. dl= g,. 

We have omitted the nexttime operator, since it can be used to count 
the number of processes. For example. consider a ring of processes that 

pass around a token. Using the ncxttime operator X, 

+A($= (XXXf,)) 

says that any process that has the token will receive it again in exactly 

three steps. This is only true if the ring has er&Uy three processes 

Figure 31: Example to Illustrate Restrictions on IClL* 

Even with this restriction on the nexttime operator, the logic is too 
powerful; by nesting the operators /? and v it might still be possible 

to count the number of processes & a con&rent system. Suppose we 
take as our Kripke structure the global state graph for the concurrent 

program in figure 3-1. The following formula sets a lower bound on 

the number of processes: 

)‘(AiA EF(BiA ‘$(AjA EF(B,k’J(Ak + . , ))))) 

Once Bj becomes true, it remains true. Therefore, if y Ak is true, we 

know that this k is different from all of the preceding indices 
mentioned in the formula. For this reason, we will use a restricted form 

of KI’L’. The additional restrictions are: 

l V fi a permissible state formula only iffdoes not cc~nt&n 

a&y operalors- 

l \! g is not a pcrmissiblc path formula. 

l g: U g2 is a permissible path formula only if neither g, nor g, 
contains any V operators. 

In practice, many Af the most interesting properties of networks of 

identical processes can be cxpresscd in the restricted logic. In the 

rcmaindcr of the paper, we will refer to tbc restricted logic as IC-l7.* 
unless otherwise stated 

297 

We want to be able to define a correspondence (or bisimulation) 
between two structures, K, and Kz such that if the structures 
correspond, then one structure satisfies an lCTL* formula if and only if 

the other satisfies it as well. Since the restrictions to W’L’ do not 
permit the use of two different indices within an until operator, it is 
impossible to refer to the behavior of two different processes along a 
specific path. Thus. the notion of correspondence between structures 
only needs to refer to one index from each structure at a time. Because 
of this, we define a set of finite correspondence relations, C,,, sS,xS,, 

that relate the behavior of an index i in II to the behavior of an index i’ 
in I2 Intuitively, (s,s’) is in C,l if index i in the state s behaves like 

index i’ in the state s’. 

We may have portion of a path along which the behavior of i does not 

change. i.e. several consecutive states are all labelled by the same set of 

propositions indexed by i. This type of behavior is called sumring ( (51. 

[S]. [14J). We will call such a sequence of states an i-block. Since 

KTL* has no nexttime operator, it is impossible to differentiate 
between a single state and an i-block with the same hbelling as the 
state. However, when we correspond a state with an i-block, we must 

ensure that the i-block is &site. This is similar to the notion of siurlering 

equivafence considered in [s]. 

o For every path II, starting in sr, there exists a path I ‘, 

starting in s, and partitions of both paths B,,B,, . . . , 

fl;,Ll;,... such that for every j, E, and Bj are both 

finite and noncmpiy. Moreover, Bj C$ f3;. 
o For every path ‘II ‘, starting in 4, there exists a path W, 

starting in s, that satisfies the same conditions as 

above. 

Let Ki and KL be two structures with initial states si and 4 and index 

sets fr and I? Then K, C,l K. iff S: Cdl 4. Moreover, K, C K2 iff 
there exists an index refhm [NC& I,xI,. total in both arguments, such 

that for every ($1 E IN, K,C,+ K2 . The following theorem is proved 

in [S]. 

Theorem 1: If K, C iK2 then K,, 4 C h Q K,,s2, P h for every 

closed m-L* folmula h. 

4. Process Ciosu res 
In order to show that some distributed algorithm M is r - reducible, 

we must find an r such that for every k> r, M, is ICTL*-equivalent to 

M, Unfortunarely, it is not sufficient to show that M, is 

ICTL*-equivalent to M,+i. If ItfO and P are as shown in Figure 4-l. 
then Ml is ICTL*-equivalent to M2, but M2 is not ICI’L*-equivalent to 



M3. It is not enough to show that M, and M,+, have the same 

behavior. In addition, we must require that M,xP' and hf,+,X@ 

have the same behavior for every k. We can accompli essentially the 

same thing by showing that M,xP* and M,+,xP* are equivalent, 
where P’ is a special process c&cd rhe closure ofP. The closure sexves 

as an abstraction for pk for all k > 0 and must be supplied by the petxtm 

who is doing the verifllation. We will use MF to denote M,xP*. Note 
that each state u of Sr is a pair (s,JJ*) in which the first component t is a 

state of M,and the second component p* is a state of P'. 

The user must also supply two families of homomorphisms 

hk:hfk-+Mr for kzr and gk:Mk+Mf+r for &r+l.. The 

homomorphisms associate with every computation of hfk a U~Udy 

determined computation of Mf (or Mr+ J. The homomorphism /Q will 

have the following properties: 

l it must map the initial state of Mk to the initial state of M: 

l it is the identity on the components 0 through rof the states, 

i.e. 171, = h(u)(rfhr iSr. 

. If ur is a reachable state of Mk and er 3 ur is a 

transition involving a completed action u in Mk. then 

there is a transition hk(or) 4 h&or) In Mf. 
Furthermore, if Q is the syncronization action aZI and a is 
taken by the ith process in ur % u2 with is r, then the i* 

process will also take II action in h&r,) =+ !+a). 

ohm&. if i> r, then the 0 action in hk(er) S h&) & 

taken by P’. A similar restriction also applies to g and h. 

M,:: P:: 

C 

li 

!!I c 

Figure 4-1: Mr s M,, but M2 f M, 

We wish to defme an equivalence relation D between hf: and 

Mr+l which will ensure that for every k, Mk C Mk+,, where C is the 

relation defined in Section 3. In other words, we must ensure that there 
is an index relation WC IkxIk+i such that Mk C,J Mk+ r for every 

(i.i’) E IN. The definition of the equivalence relation D is somewhat 
more complicated than the one given in Section 3 because of the P’ 

component M:DM!i, iff there exists an index relation 

14 C frx Ir+ , such that for every (ii’) Q IN, , M!’ f&f Mr+ r and in 

addition Mr E Mf+ l. The relation D,t is used in constructing Cut 

for (i,i’)c iNr, while the relation E is used in constructing Cal for 

(i.i')~zN- INp D,t and Eare defined over SJk$+,. As before, 
we say that two swtrcttnes are Dii/ or E related to each other if their 

initial states are. Note again that u = (sp*). 

Dtil = nD;R,wtCRD$ is: 
n 

0 For every path 1, starting in ur, there exists a path 
w ‘, starting in u2 and partitions of both paths 

Bl,B2, . . . , B: ,B: , . . . such that for every $ 

1. f$Bj are nonempty, finite, and defined along 

actions in M, and M,, r, respectively. 
2. B, D$ Bj 

3.L.et + be the transition larr(Bj)+jrsr(B,+,). 
Then either $. is a transition in M, and fj is a 

transition in M,,, or, if 9 involves some action 
io P’, then rj involves exactly the same action in 
P’ . 

o For every path w’, starting in or, there: exists a path 
w. starting in or that satisfies the same conditions as 

above. 

E = nE”. where E” is defined exactly like D$ except that the 

basis&is given by Ea = {(a,,~,) 1 p: = p; }. 

5. The Collapsing Theorem 
We now state the collapsing theorem for r - reducible algorithms, 

Theorem T If MrD MF+, thenforevery krr, MkCM, 

Proc& We prove that for every k 2 r , Mk C Mk+, . For each k we 

must show that there exists a relation IiVCIkxIk,, such that 

(i i’) c IN implies that Mk Ci/ Mk+r . We consider first the case in 

which k= r. Wealreadyknowthat (M,xP*)D(M,+,xP*). This 

means that there exists a relation INIC I,x I,+! such that for 

(i i') E IN,, (M,x P') Dd (M,,, x Pp. Let p,’ be the start state of 

P’ . We prove the following statement by induction on n : 

Let SCM,. s1 E Mr.+,, 5 = (s. p,‘, E M,x p’, and 
s” = (s’,p;) E ~M,+,X P’, with SD2 ;I, then 

SqJ s’. 

me b&s case is easy to prove: rD$ ? imPlicS that 

Lo = Q(s’). This in turn implies that SC:/ S’ . Next, assume 
*at r Dzl+‘y# holds. We must prove bat s ci:'S' ah holds. 

298 



Thus. Iet n be a path that starts at s in M, Let n be the sequence 

obtained from n by replacing each state s, on n by (s,,,, p,‘). All 

transitions along i; are M, transitions. G is a path starting at S, so 
there exists a path i; ’ starting at ? and partitions of both paths 

B,,B*, . . . . l@:. ..* such that the conditions in the definition of 

Dfl?’ hold. because of the third condition we know that each state of 

n’ has the form (sk,pl) and all transitions along 5’ are M,,, 

transitions. 

Let R ’ be the path obtained by deleting the pi component of each 
state in G’ . Let 5,,5r, . . ,B{,B:, . . . be the partitions of n and q’ 

determined by the partitions of ; and n ’ . It is easy to see that IP 
and n ’ satisfy the conditions in the definition of the Czt’ relation. 
For example, Bj C’$ 5; follows immcdiatcly from the inductive 

hypothesis and the fact that Bj 02’ 5;. EZssentially the same 

argument can be used to obtain a path n starting at s, given a path x ’ 

starting at 5’ . We see that M, C’rjl M,,, by applying the inductive 
hypothesis to the case in which s is the start state of Mr and s’ is the 

start state of M,, 1 . 

Next, we show that (M,x PT D (M,, r x P> implies Mk C IU~,, 

for k > r . We must show that there exists a relation INC Ikx fk+, 

such that (i, i’) E IN implies Af, Ctif Mk+,‘. We already know that 

there exists a relation 4EPC+, StlCh that 
(M,X P’) D,r (M,+l x P> for (i.i’)cIN,. choose 
IN = fN,u{(r+l.r+2). . . . . (k, k C 1) 1. There are two major cases: 

Case 1: (i, i’) E {(r+l,r+2). . . . ,(k, kf 1) 1. Note that with each 

state ($* 3, . . . I s,, s,+L, . . . , sk) of Mk we can associate a uniquely 

determined state (r,,, ?, . . . , s,, p’) of M,x P’ obtained by applying 

the homomorphism h, to the first state. Likewise., gk+, applied to a 

state in Mktl ::ives the analogous state in M,,, xP* . The 

homomorphisms extend in the obvious way to sequences of states in 

MA orin Mk,,. 

‘IIlL: following inductive hyporhcsis will enable us to construct a path 

in ,\fk+l given a path in Mk, using kk : 

Let ; be a state of Mrx P’ and s” be a state of 
M,+l x P* with s’ E” ? Let s be a state of Mk such that 

hk( S) = r, and let s’ be a state that agrees with s on its 
last k- r components and agrees with ? an components 

0 through r+ I. Then SC,“/ s’ . 

Figure 5-l illustrates the notational conventions. A sin-&r argument 
will enable us to construct a path in Mk given a path in Mk+, , using 

gk+, . Note that if ?En ? then their P’ -components are equal. The 
basis cast of the inductive hypothesis follows immediately from the 

requirement that s and s’ agree on their last k-r components. For 
the induction step we show that if F s”, s, s’ are as above with 

ZE *+l s” hen s C!!l+‘s’ II . Let Q be a path starting at sand let 

IIIE 
I 
I 
I 

Figure S-1: The Construction of rr’ starting at S, given 
n starting at s. 

rr = hk( ?r ) . f.%nCe hk is a homomoahism ; is a path in M,x 5’. 

ii starts at ; so there is a path i; ’ starting at s” that satisfies the 

definition of En” including the existence of partitions 

&,2$, . . . . B;,$:, . . . of; and z’. Thepartition B,,&, .., of 

; determines a partition B,, B,, . . . of r in the obvious way. The mtn 

state of n is the first (last) state of Bj if and only if the mu’ state of ; 

is the first (last) state of 23,. 

For the construction of n ’ it is necessary to know that for each j all 

of the states in block Bj agree on the last k-r components. TO see 

that this is true, let q,, and s,,,+~ be two adjacent states on n that do 

not agree on the last k-r components. This can happen only if the 

transition From s’,= h(s,) to S-,,, = h(s,+r) in n involves P. 
Transitions involving P’ can only occur at block boundaries by the 

first condition in the definition of Dig . It follows that sm and r,,,il 

can’t both be in the same block 5j of n . 

We construct a sequence ?I ’ starting at s’ as follows: Let s & be 
the m* state on rr ’ . s& will agree with ?k on components 0 

through r+ 1. If r; is in block 5j, men s& will agree with the 

states of Bj in its last k-r components (see Figure S-1). We must 

show that the sequence R ’ is really a path in M,,, . Let s& and 
I smfl be two consecutive states on V’ . We show that there is a 

transition in Mk+, from s& to sA+r . Let s,$ and ;A+, be the 
corresponding states on n ’ . If s’:, and FL+, are both in the same 
block B,! then sh and S;+~ will agree on the last k-r 

components. Since the transition from 7; to S&+1 within 

M,+,x 5’ only involves processes 0 through r+ 1, there must be a 

transition from s& to $.+r in Mk+r. 

Next, assume that ?h is the last state of block bj and that T,!,,, r is 

the first state in block g/+tl . Let 1, ( sn ) be the last state of block 5, 

(block Bj), and let $+r ( sn+t ) be the first state of block Bj+ r (block 

Ej+ r ). There are a number of subcases this time. 

299 



1. The transition from F& to rk+, only involves processes 
0 through r+1. P’ is not involved In this case the 
transition from S;, to S,+l only involves processes 0 

through r . Hence, sn and s,,+~ must agree on their last 

k-r components. It follows that s, and s*+~ must also 
agree on their last k-r components. Thus, this case 

reduces to the one that we have just considered. 

2. The transition From Sk to Fk.+l only involves the P* 

component. Thus, sk and s&+1 agree on components 0 
through r-t-1. It follows that s, and <,, agree on 

components 0 through r and that the transition from s, 

to %+I only involves the last k-r processes. Since the 
last k-r components of s; ( sk+, ) arc identical to the 

last k-r components of s,, (s,,+,) there must be a 

transition from 5; to s&+~ . 

3. The transition from rh to sA+, involves P’ and some 

process numbered 0 to rfl . F, and ?& ( <+1 and 

Sk+ 1 ) have the same P’ component. The transition from 

sn to %+1 corresponds to a joint transition by two 

processes i and j with i 5 r and j > r. Without loss of 

generality assume that process i makes the transition 

u1 5 I+ and that process j makes transition v1 s v2. If p’, 

( pi+1 ) is the P’ component of G (of s;I+, ). then by the 

third property in the definition of a homomorphism there 

must be a C transition from p’, to pi+~ . It follows that 

there must be some process i’ < r+ 1 that is enabled to 
make a c transition from u{ to IC; in Tk and that the 

state of this process is u 5 in ;A+ 1 . Thus. sh+ 1 follows 
from $,, by a joint cc transition in which process j+l 

moves from stafe vI to state v7 and process i’ moves 
from U{ to u:. 

It is easy to see that n ’ satisfies the requirements in the definition of 

a correspondence relation. B’ C,“, Bi follows immediately from the 
inductive hypothesis and the fact that Bj E” .Bi . Tlie same argument 

can be used to obtain a path n starting at s given a path n ’ starting 

at s’. This shows that s C$f’s’ as required to establish the 

inductive hypothesis. Note that by the.inductive hypothesis with 5 the 

initial state of M,x 4, ? the initial state of M,,, x P’ , s the initial 

state of IU~, and s’ the initial state of Mk+l, we get that s C,l s’ . 
It follows that Mk C,B Mk+, . 

Case 2: We must show that IU~ Cd Mk,, for (i i’) c INI . The 

inductive hypothesis is similar to the one used in the first case: 

Let s’ be a state of M,x P’ and 5’ be a state of 

LI~~+~xP* with FD; ?.Let s beastateof IU~ such 
that hd s) = s. and let s’ bc a state that agrees with s on 

300 

6. Algorithm For Equivalence Between Process 
Closures 

In this section WC show how to compute the equivalence relation for 
closures. We will describe the algorithm for D,I for (i,i’)c IN, . The 

algorithm for E will follow the same lines, except that the base case 
will be constructed according to E” . 

We construct the relation El,/ on Sf~)xsI)+~ that is identical to the 

relation D,I defined in Section 4. 9,,/ = /%:I , where 
n 

S;;f is 

defined as follows: 

gs,/ = { h.uJ I us, I= &f(?) A Pf = Pf 1 

In order to detine Eli:’ we must first defme the sets of extended 

succesm of u. We define these sets in terms bf the set ST,, 1(u) of Ihe 

sluflering sfafes of u. ST,+,(u,) is the set of states that are %#;I 
related to (rl and are reachable from (Jo along path in which all the 

transitions are in M, and all the states are 5if related to ul. 

ST,,+,(o,) is’defined similarily for trahsitions within M,+,. We can 

now define the sets of the extended successors of u1 in Mf, 

l For every action a in P’, a - NEXT,,+,(u,) is the set of 

extended successors of uI which are reachable from states in 

ST,, ](uJ along a transition that involves an action a in P’. 

l M- NEXT,+,(o,) is the set of extended successors of IJ~, 

not included in ST,+,(u,), which are reachable from states 

in %“,+,(a,) along a transition that involves a completed 

action in M, . 

The sets of the extended successors of u2 in Mf+, arc defined 

similarily. We will also use a predicate LOOP,+,(u) that is true iff 

there is a cycle containing only states in ST,,+,(u). 

Let x denote either an action a of F’. or M. Then we can define 
9 ;t ’ as follows: 

!q’ = {(a,. (I:) 1 LooP,+l(u,) = LuoP”+,(u,) A u1 53 u2 A 

AVU~ E x- NK~,+,(a,) 3u; E x-NEXT,,+,(u,)[ u;EI$ ~2’ ]A 

$t/u; E~-A’/XT,,+,(~,)&~; EX-~VEXT,+&J,)[ u; 9;, u;]} 

its last k-r components and agrees with ? on 

components 0 through r+ I. Then s Gil s’ . 

Since 5 D%l ? , it follows that s o”,.t ? . AS a consequence, we 

have that Li( r) = ti/ (? ) . The basis case of the inductive 
hypothesis follows immediately from this observation. For the 

induction step we show that if 5, s” , s. s’ are as above with 
; Dif’? . then s C,T/+‘s ’ . The proof follows exactly the same lines 
as in case 1. M, C,f Mircl follows from the inductive hypothesis with 

s’ the initial state of M,x P* , ? the initial state of M,,, x P’ , s the 

initial state of Mk , and s’ the initial state of Mc+l, 



In the journal version of this paper we will show how a low-order 

polynomial algorithm can be extracted from this construction. 

7. Examples 

To illustrate how the algorithm in Section 6 might be used we 
consider two very simple examples. The first consists of a muster 
process MO and several slaves Pi as shown in Figure 2-1. The master 
process will determine that a job needs to be performed and then start 
the job on a slave that is not busy. Thus, the master will remain in its 
rea& state ( R, ) until a job needs to be performed. It will then make a 
transition to its wailing state W, and try to rendezvous with a slave 

( Pi) that is in its f;ee state ( Fi). The joint transition will cause the 

master to return to its ready state and the slave to enter its Ituw state 
( Si). When the slave has completed the job it will return to its free 

state. 

We will show that the algorithm M = {Ma, Mr, . . . ) with 

Mk = M,,x 9 for k? 1 is l-reducible, i.e. that Mk C Mr for alI 

k > 1. In order to demonstrate that this is true we must find a suitable 

closure P’ together with two sets of homomorphisms h,:Mk+ @for 

k ~1 and giMk -+ Mr for kh 2 that satisfy the conditions given in 

section 4. 

Intuitively, the states of P’ are abstractions of the states of fl that 

are reachable when fi is run in parallel with M,, In this case. we 

choose the states of P’ to be sets of states of P. The state { 8’1 of P’ 
reprcscnts a state of pk in which all k processes arc in slate F. The 

state { B} represents a state of 3 in which all of the processes are in 

the state B. The third and last state handles the case in which some 

processes of pk are in state B and some are in state F. The transition 

graph for process P’ is shown in Figure 7-1. Note that there is a 
transition from or.:’ state to.another in f’ iff the same transition occurs 

between corresponding states of pk for some k>O . 

Figure 7-l: The CIosure of P for the Master-Slave Algorithm. 

The homomorphism 4 is also based on the intuition in the previous 

wagragh and is given by 

301 

hk( 6~ . . ..s.,s,+p . ..I Sk) = (6, . . . . sr,{sr+,, . . . . Sk)). 
Essentially the same defmition can be used for g, with r+ 1 replacing t 

and k+l replacing k. It is easy to see that h, and gk Satisfy the first 
two conditions in the definition of a homomorphism. It is not difficuh 
to establish me third condition as well since any open or completed 

action that can be made by one of the last kr processes in some State Of 
M, is also possible in the P’ -component of the corresponding state of 

M,x P’. 

The algorithm in Section 6 can be used to show that 
(M,xP’)D(M,xf*). Since M,xP* has 12 states and M,xP* 

has 24 states, the computation is tedious but straightforward. By 

Theorem 2 it fohows that Mk and Mr satisfy the same Ia* 

formulas for aII k 11. In order to determine if some particular 

formula holds for Mk with k L 1. the temporal logic model checking 

procedure described in [7] can be used to check the formula for Mi . 

The construction that WC used to obtain the closure of the slave 

process in the example can be gcncralizcd. Let P be a process. The 

closure of P. P’, is defined by: P* = <AP,S’,R*,s~, L*> where 

S’ = !P(S)- (0). Intuitively, the states of P* are abstractions of states 

0fP”. Thcstate{si,..., k s ) indicates that at least one process of P” is 

in each si and that each of the processes is in one of the s, There are 
several cases in the definit? of R*. Let 9 = (s,. . . . ,sk} E S*. For 

every transition si 4 s:, R will include two transitions of the form 

q % q’. The first transition in which q’ = (q- {si}) U {s$} assumes 

that there is exactly one process in the state si. The second transition in 

which q’ = 9U ($} assumes that there are several processes in state s,. 

If two transitions S, s .$ and Si 5 s,! arc possible in state q for i = j, 

then there will be two transitions of the form 9 d q’. The first with 

4 ’ = (9-{si})U{$.s/!} represents the case in which exactly two 
processes are in si The second with q1 = qu {$,.$> represents the case 

in which more than two processes are in s,. 

If two transitions si J% $ and 35 sj are possible in state q for 

i # j, then there will be four transitions of the form q 2 9’, The first 
with q’ = (9-{si~Si>)U{~,.$} represents the case in which exactly 
one process is in s,. and exactly one process is in 3. The second with 

q’ = qU {.$,.$} represents the case in which several processes are in si 
and also in 3. The two remaining cases with q’ = (9-{si})u{4,ti) 

and qt = (q- {+} )U {s!,$) represent cases in which exactly one 
process is in one of the two states but several are in the other. The 
initial state of P’ is S* Ok= 1%). The labelling function for propositions is 

given by L*(q) = u L( s,). The size of P’ is at worst exponential in 

the size of P. 

I=1 

There are two obvious problems with ‘this definition for the closure of 

P. The closure of P may be quite large, even if P is very small. 

Secondly, P’ may contain states that are not reachable in any 
computation of pk and behave differcndy when composed with M, 

and %+I. These problems may be avoided in many cases by 



considering in the construction of P’ only states that are reachable in 

Mk for some k. The second example illustrates how a reachability 

assumption can bc used to obtain a smaller closure for a very simple 

critical section problem. The transition graphs for M,, and P in this 

example are shown in Figure 7-2. W is a waif state, and C 

corresponds to the crilicul secli011. This time we will show that the 

algorithm M = {M,, &f,, . . . 1 is lreducibfe or that Mk C bl, for all 
k 1 2. We choose as the closure of P the process shown in Figure 7-3. 

This is exactly what would be obtained by the construction described 
above except that transitions, which would result in states with more 

than one process in state c , have been eliminated. We use the same, 

definitions for h, and gk as in the previous example. As before, it is 

easy to see that h, and gk satisfy the first two conditions in the 
definition of a homomorphism. It is also easy to establish the rhiid 

condition provided we already know that only states with exactly one c 

component are reachable in Mk. This mutual exclusion property 

would, of course, have to be established by other techniques for 
proving safety properties or perhaps by the ICTL’ decision procedure 

of Sistla and German [21]. Even when it is necessary to supply a 

reachability assumption of this sort, we believe our technique will still 

be useful for proving more complicated safety and liveness properties. 

The reduction in the number of states of M,x P’ obtained by using 
the reachability assumption is quite significant. Without the invariant 

MZ x P’ has 24 states and hf3 X P’ has 48 states. With the reachability 

assumption, we only need to examine 5 states of M2x P’ and 6 states 

of Max PO. Thus. with the reachability assumpiton it is relatively 

simple to show that (M2 x P’) D (M,x P’). It follows that M is 
lreducibfe and that Mk and MZ Satisfy the same ra’ formulas for 

every k L 2. 

8. Conclusion 

302 

So far, we have bnly tied our procedure by hand on small examples. 

However. we expect to have completed a computer implementation in 

the near future. Obviously, our paper leaves open a number of 

important questions. Some are experimental in nature and can only be 

resolved by considering additional examples. For instance, how large is 

P* in practice? Others questions, like the possibility of finding logics 

that are more expressive than IIXL*, require more theoretical work. In 

any case, it is clear thit the claim in [2] regarding the infeasibility of 

automatically checking the correctness of programs with many 
processes was unduly pessimistic. 

M,:: 

C 

t t’ 

b W 

P:: 
W 

0 i t 

C 

Figure 7.2: Critical Section Algorithm. 

Figure 7-3: The Closure of P for the Critical Section Akorithm. 

References 

I. B. Alpem and F. Schneider. Verifying Temporal Properties without 
using Temporal Logic. Tech. Rept 85-723, Cornell University 
Computer Science Department, December. 1985. 

2. K. Apt and D. Kozen. “Limits for Automatic Verification of Finite- 
State Concurrent Systems”. If: Process L.ei& 22.6 (1986), 307-309. 

3. M. C. Browne. An Jmproved Algorithm for the Automatic 
Verification of Finite State Systems using Temporal Logic. 
Proceedings of the 1986 Conference on Logic in Computer Science., 
Cambridge, Massachusetts, June, 1986, pp. 260-267. 

4. M. Browne, E. Clarke, D. Dill, B. Mishra. “Automatic Verification 
of Sequential Circuits using Temporal Logic”. IEEE Transactions on 

Compurers C-35.12 (December 1986). 

5. M. C. Brownc, F:. M. Clarke, 0. Grumberg. Characterizing Kripke 
Structures in Temporal Logic. Unpublished manuscript. submitted for 
publication. 

6. EM. Clarke, E.A. Emerson. Synthesis of Synchronization Skeletons 
for Branching Time Temporal Logic. Proc. of the Workshop on Logic 
of Programs, Yorktown Heights, NY, 1981. 

7. E.M. Clarke, E.A. Emerson, A.P. Sistla. “Automatic Verification of 
Finite-State Concurrent Systems using Temporal Logic Specifications”. 
ACM Transactions on Programming Languages and Systems 8.2 (1986). 
244-263. 

& E. M. Clarke, 0. Glumberg, M. C. Browne. Reasoning about 
Networks with many identical finitestate processes. Proceedings Of the 
Fifth Annual ACM Symposium on Principles of Distributed 
Computing., Auguq 1986. pp. 240-248. 



9. David I,. Dill and Edmund M. Clarke. “Automatic Verification of 
Asynchronous Circuits using Temporal Logic?. IEE Proceedings 133, 
PI. E, 5 (September 1986). 

10. E.A. Emerson and E.M. Clarke. Characterizing Properties of 
Parallel Programs as Fixpoints. Proc. of the Seventh International 
Colloquium on Automata, Languages and Programming, 1981. 

11. EA. Ememn. J.Y. Halpem. ““Sometimes” and “Not Never” 
Revisited: On Branching versus Linear Tie”. Proc. 10th ACM Symp. 
on Principles of Programming Languages 1983. 

12. EA. Emerson, Chin Laung Lei. “Modalities for Model Checking: 
Branching Tie Strikes Back”. Twe&lh Symposium on Principles of 
Programming Lungitages New Or7e~n.v. Lu (January 1985). 

13. R. M. Karp and R. E Miller. “Parallel Program Schemata”: K’SS 
,3 (1%9), 147-19s. 

14. L. Lamport. What Good is Temporal Logic? Proceedings of the 
International Federation for Information Processing, 1983, pp. 657668. 

15. 0. Lichtenstein and A. Pnueli. Checking that Finite State 
Concurrent Programs Satisfy Their Linear Specification. Conference 
Record of the Twelth Annual ACM Symposium on Principles of 
Programming Languages, New Orleans, La, January. 1985. 

16. R. Milner. Leciure Noms in Computer science Volume 92: A 
Calculus of Comnumicafing Systems Springer-Verlag, 1979. 

17. B. Mishra, EM. Clarke. “Hierarchical Verification of 
Asynchronous Circuits using Temporal I.&c”. Theoretical Cornpurer 
Science 38(1985), X9-291. 

18. C. A. Petri. Fundamentals of a theory of Asynchronous 
Information Flow. Proceed& of the IFIP Congress 62, Munich, 1962, 
pp. 386-390. 
19. J.P. Quicile, J. Sifakis. “Specification and Vcriflcation of 
Concurrent Systems in CESAR”. Proc. of tbc Fihb Intcmational 
Symposium in Programming. 1981. 

20. A.P. Sistla. EM. Clarke. “Complexity of Propositional Temporal 
Logics”. Joumal of rhe Assmia~ion for Computing Machinery 32.3 (J 
uly 1986). 733-749. 

21. P. Sistla and S. German. Reasoning with Many Processes. GTE 
Laboratories Inc., Wahham. Massachusetts. 

22. M. Vardi and P. Wolper. An Automata-Theoretic Approach to 
Automatic Program Verification. Proceedings of the Conference on 
Logic in Computer Science, Boston, Mass.. June, 1986. 

303 


