
Bayesian Statistical Model Checking
with Application to Stateflow/Simulink Verification∗

Paolo Zuliani
Computer Science

Department
Carnegie Mellon University,

Pittsburgh, PA, USA
pzuliani@cs.cmu.edu

André Platzer
Computer Science

Department
Carnegie Mellon University,

Pittsburgh, PA, USA
aplatzer@cs.cmu.edu

Edmund M. Clarke
Computer Science

Department
Carnegie Mellon University,

Pittsburgh, PA, USA
emc@cs.cmu.edu

ABSTRACT
We address the problem of model checking stochastic sys-
tems, i.e. checking whether a stochastic system satisfies a
certain temporal property with a probability greater (or
smaller) than a fixed threshold. In particular, we present
a novel Statistical Model Checking (SMC) approach based
on Bayesian statistics. We show that our approach is feasible
for hybrid systems with stochastic transitions, a generaliza-
tion of Simulink/Stateflow models. Standard approaches to
stochastic (discrete) systems require numerical solutions for
large optimization problems and quickly become infeasible
with larger state spaces. Generalizations of these techniques
to hybrid systems with stochastic effects are even more chal-
lenging. The SMC approach was pioneered by Younes and
Simmons in the discrete and non-Bayesian case. It solves the
verification problem by combining randomized sampling of
system traces (which is very efficient for Simulink/Stateflow)
with hypothesis testing or estimation. We believe SMC is
essential for scaling up to large Stateflow/Simulink mod-
els. While the answer to the verification problem is not
guaranteed to be correct, we prove that Bayesian SMC can
make the probability of giving a wrong answer arbitrarily
small. The advantage is that answers can usually be ob-
tained much faster than with standard, exhaustive model
checking techniques. We apply our Bayesian SMC approach
to a representative example of stochastic discrete-time hy-

∗This research was sponsored by the GSRC under con-
tracts no. SA423679952 (University of California) and no.
1041377 (Princeton University), National Science Founda-
tion under contracts no. CCF0429120, no. CNS0926181,
no. CCF0541245, and no. CNS0931985, Semiconductor Re-
search Corporation under contract no. 2005TJ1366, Gen-
eral Motors under contract no. GMCMUCRLNV301, Air
Force (Vanderbilt University) under contract no. 18727S3,
International Collaboration for Advanced Security Technol-
ogy of the National Science Council, Taiwan, under contract
no. 1010717, and the Office of Naval Research under award
no. N000141010188.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’10, April 12–15, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

brid system models in Stateflow/Simulink: a fuel control sys-
tem featuring hybrid behavior and fault tolerance. We show
that our technique enables faster verification than state-of-
the-art statistical techniques, while retaining the same error
bounds. We emphasize that Bayesian SMC is by no means
restricted to Stateflow/Simulink models: we have in fact
successfully applied it to very large stochastic models from
Systems Biology.

Categories and Subject Descriptors
C.3 [Special-purpose and application-base systems]:
Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program Verification—statistical meth-
ods, formal methods

General Terms
Verification

Keywords
Probabilistic model checking, hybrid systems, stochastic sys-
tems, Bayesian statistics, statistical model checking

1. INTRODUCTION
Stochastic effects arise naturally in hybrid control sys-

tems, for example, because of uncertainties present in the
system environment (e.g., the reliability of sensor readings
and actuator effects in control systems, the impact of tim-
ing inaccuracies, the reliability of communication links in
a wireless sensor network, or the rate of message arrivals
on an aircraft’s communication bus). Uncertainty can be
modeled via a probability distribution, thereby resulting in
a stochastic system, i.e., a system which exhibits probabilis-
tic behavior. This raises the question of how to verify that
a stochastic system satisfies a certain property. For exam-
ple, we want to know whether the probability of an engine
controller failing to provide optimal fuel/air ratio is smaller
than 0.001; or whether the ignition succeeds within 1ms with
probability at least 0.99. In fact, several temporal logics
have been developed in order to express these and other
types of probabilistic properties [3, 10, 1]. The Probabilis-
tic Model Checking (PMC) problem is to decide whether
a stochastic model satisfies a temporal logic property with
a probability greater than or equal to a certain threshold.
More formally, supposeM is a stochastic model over a set of
states S, s0 is the starting state, φ is a formula in temporal

243

logic, and θ ∈ (0, 1) is a probability threshold. The PMC
problem is: to decide algorithmically whetherM |= P≥θ(φ),
i.e., to decide whether the model M starting from s0 satis-
fies the property φ with probability at least θ. In this paper,
property φ is expressed in Bounded Linear Temporal Logic
(BLTL), a variant of LTL [19] in which the temporal oper-
ators are equipped with time bounds. Alternatively, BLTL
can be viewed as a sublogic of Koymans’ Metric Temporal
Logic [15]. As system modelsM, we use a stochastic version
of hybrid systems modeled in Stateflow/Simulink.

Existing algorithms for solving the PMC problem fall into
one of two categories. The first category comprises numeri-
cal methods that can compute the probability that the prop-
erty holds with high precision (e.g. [2, 3, 5, 6, 12]). Nu-
merical methods are generally only suitable for finite-state
systems of about 107 − 108 states [16]. In real control sys-
tems, the number of states easily exceeds this limit or is
infinite, which motivates the need for algorithms for solving
the PMC problem in a probabilistic fashion, such as Statis-
tical Model Checking (SMC). These techniques heavily rely
on simulation which, especially for large, complex systems,
is generally easier and faster than a full symbolic study of
the system. This can be an important factor for industrial
systems designed using efficient simulation tools like State-
flow/Simulink. Since all we need for SMC are simulations
of the system, we neither have to translate system models
into separate verification tool languages, nor have to build
symbolic models of the system (e.g., Markov chains) appro-
priate for numerical methods. This simplifies and speeds up
the overall verification process. The most important ques-
tion, however, is what information can be concluded from
the observed simulations about the overall probability that
φ holds for M. The key for this are statistical techniques
based on fair (iid = independent and identically distributed)
sampling of system behavior.

Statistical Model Checking treats the PMC problem as
a statistical inference problem, and solves it by random-
ized sampling of the traces (or simulations) from the model.
We model check each sample trace separately to determine
whether the BLTL property φ holds, and the number of
satisfying traces is used to decide whether M |= P≥θ(φ).
This decision is made by means of either estimation or hy-
pothesis testing. In the first case one seeks to estimate
probabilistically (i.e., compute with high probability a value
close to) the probability that the property holds and then
compare that estimate to θ [11, 21] (in statistics such es-
timates are known as confidence intervals). In the second
case, the PMC problem is directly treated as a hypothesis
testing problem (e.g., [25, 26]), i.e., deciding between the hy-
pothesis H0 : M |= P≥θ(φ) that the property holds versus
the hypothesis H1 :M |= P<θ(φ) that it does not.

Hypothesis-testing based methods are more efficient than
those based on estimation when θ (which is specified by the
user) is significantly different from the true probability that
the property holds (which is determined byM and s0) [24].
In this paper we show that estimation can be much faster
for probabilities close to 1. Also note that Statistical Model
Checking cannot guarantee a correct answer to the PMC
problem. The most crucial question needed to obtain mean-
ingful results is whether the probability that the algorithm
gives a wrong answer can be bounded. We prove that this
error probability can indeed be bounded arbitrarily by the
user.

Our SMC approach encompasses both hypothesis testing
and estimation, and it is based on Bayes’ theorem and se-
quential sampling. Bayes’ theorem enables us to incorporate
prior information about the model being verified. Sequen-
tial sampling means that the number of sampled traces is not
fixed a priori, but our algorithms instead determine the sam-
ple size at “run-time”, depending on the evidence gathered
by the samples seen so far. Because conclusive information
from the samples can be used to stop our SMC algorithms
as early as possible, this often leads to significantly smaller
number of sampled traces (simulations). While our sequen-
tial sampling has many practical advantages compared to
fixed-size sampling, its theoretical analysis is significantly
more challenging.

We apply our approach to a representative example of
discrete-time stochastic hybrid systems modeled in State-
flow/Simulink: a fault-tolerant fuel control system. We show
that our approach enables faster verification than state-of-
the-art techniques based on statistical methods.

The contributions of this paper are as follows:

• We show how Statistical Model Checking can be used for
Stateflow/Simulink-style hybrid systems with probabilis-
tic transitions.

• We give the first application of Bayesian sequential inter-
val estimation to Statistical Model Checking.

• We prove analytic error bounds for our Bayesian sequen-
tial hypothesis testing and estimation algorithms.

• In a series of experiments with different parametriza-
tion of a relevant Simulink/Stateflow model, we empir-
ically show that our sequential estimation method per-
forms better than other estimation-based Statistical Model
Checking approaches. In some cases our algorithm is
faster by several orders of magnitudes.

While the theoretical analysis of Statistical Model Checking
is very challenging, a beneficial property of our algorithms
is that they are easy to implement.

2. BACKGROUND
Our algorithm can be applied to any stochastic modelM

for which it is possible to define a probability space over its
traces. Several stochastic models like discrete/continuous
Markov chains satisfy this property [26]. Here we use discrete-
time hybrid systems a la Stateflow/Simulink with probabilis-
tic transitions.

Discrete Time Hybrid Systems.
As a system model, we consider discrete time hybrid sys-

tems with additional probabilistic transitions (our case study
uses Stateflow/Simulink). Such a model M gives rise to a
transition system that allows for discrete transitions (e.g.,
from one Stateflow node to another), continuous transitions
(when following differential equations underlying Simulink
models), and probabilistic transitions (following a known
probability distribution). For Stateflow/Simulink, a state
assigns real values to all the state variables and identifies
the current location for Stateflow machines.

Formally, we start with a definition of a deterministic au-
tomaton. Then we augment it with probabilistic transitions.

Definition 1. A discrete-time hybrid automaton (DTHA)
consists of:

• a continuous state space Rn;

244

• a directed graph with vertices Q (locations) and edges E
(control switches);

• one initial state (q0, x0) ∈ Q× Rn;

• flows ϕq(t;x) ∈ Rn, representing the (continuous) state
reached after staying in location q for time t ≥ 0, starting
from x ∈ Rn;

• jump functions jumpe : Rn → Rn for edges e ∈ E. We
assume jumpe to be measurable (preimages of measurable
sets under jumpe are measurable).

Definition 2. The transition function for a deterministic
DTHA is defined over Q× Rn as

(q, x)→∆(q,x) (q̃, x̃)

where

• For t ∈ R≥0, we have (q, x)→t (q, x̃) iff x̃ = ϕq(t;x);

• For e ∈ E, we have (q, x) →e (q̃, x̃) iff x̃ = jumpe(x) and
e is an edge from q to q̃;

• ∆ : Q× Rn → R≥0 ∪ E is the simulation function.

The simulation function ∆ makes system runs deterministic
by selecting which discrete or continuous transition to exe-
cute from the respective state (q, x). For Stateflow/Simulink,
∆ satisfies several properties, including that the first edge
e (in clockwise orientation in the graphical notation) that
is enabled (i.e., where a jump is possible) will be chosen.
Furthermore, if an edge is enabled, a discrete transition will
be taken rather than a continuous transition.

Each execution of a DTHA is obtained by following the
transition relation repeatedly from state to state. A se-
quence σ = (s0, t0), (s1, t1), . . . of si ∈ Q × Rn and ti ∈
R≥0 is called trace iff, s0 = (q0, x0) and for each i ∈ N,
si →∆(si) si+1 and:

1. ti = ∆(si) if ∆(si) ∈ R≥0 (continuous transition), or

2. ti = 0 if ∆(si) ∈ E (discrete transition).

Thus the system follows transitions from si to si+1. If this
transition is a continuous transition, then ti is its duration
∆(si), otherwise ti = 0 for discrete transitions. In particu-
lar, the global time at state si = (qi, xi) is

P
0≤l<i tl. We

require that the sum
P∞
i ti must diverge, that is, the sys-

tem cannot make infinitely many state switches in finite time
(non-zeno). We denote

P
0≤l<i tl by τ(xi), because we can

assume there is one state variable tracking global time.
For later use, we define the preimage of transition→α (for

α ∈ R≥0 ∪ E) at point (q̃, x̃) ∈ Q× Rn:

Pre(α, q̃, x̃) = {(q, x) ∈ Q× Rn | (q, x)→α (q̃, x̃)} .

Informally, Pre(α, q̃, x̃) is the set of states that can result in
state (q̃, x̃) through the (discrete or continuous) transition
α. The preimage is instrumental in the definition of the
one-step evolution of a probabilistic DTHA.

Discrete Time Hybrid Systems with Probabilistic
Transitions.

A probabilistic DTHA is obtained from a DTHA by means
of a probabilistic simulation function instead of (determin-
istic) simulation function ∆. Unlike ∆, it selects discrete
and continuous transitions according to a probability den-
sity. We denote by D(X) the set of probability density func-
tions defined over set X.

Definition 3. The probabilistic simulation function Π for
a DTHA is the (measurable) map

Π : Q× Rn → D(R≥0 ∪ E) .

For a given pair (q, x) ∈ Q×Rn, function Π enforces stochas-
tic evolution by choosing the next transition - either a con-
tinuous or a discrete transition - according to a probability
distribution (which in general depends on the current point
(q, x)). In contrast, function ∆ deterministically chooses the
next transition by imposing ∆(q, x) as either a continuous
or a discrete transition.

We now define the transition function for a probabilistic
DTHA. In the probablistic case, a state is no longer a point
in Q × Rn but a probability density over Q × Rn. Con-
sequently, the probabilistic transition function maps state
p ∈ D(Q × Rn) to state p̃ ∈ D(Q × Rn). For defining
p̃ we follow a “sum over all transitions” approach. To de-
fine p̃ at any point (q̃, x̃) ∈ Q × Rn we consider the points
from which the system could evolve to (q̃, x̃). That is, we
take into account all the DTHA transitions starting from
any point (q, x) ∈ Q × Rn that can lead to (q̃, x̃) by the
effect of →α, for some α ∈ R≥0 ∪ E, which is equivalent to
(q, x) ∈ Pre(α, q̃, x̃). Specifically, we need to integrate the
transition probabilities captured by the probabilistic simula-
tion function Π (for the points (q, x)) and the probabilities of
the previous states via density p (for the points (q, x)). The
intuition is that the probability density of (q̃, x̃) depends on
the probabilities of all possible previous states and the prob-
ability that the probabilistic simulation function chooses the
appropriate α ∈ R≥0∪E. The probability density of a point
is obtained by integrating over all options of reaching it.

Definition 4. Let Π be a probabilistic simulation function.
The transition function for a probabilistic DTHA maps a
(probabilistic) state p ∈ D(Q × Rn) to the (probabilistic)
successor state p̃ ∈ D(Q × Rn), which is defined at each
point (q̃, x̃) ∈ Q× Rn as:

p̃(q̃, x̃) :=

Z
R≥0∪E

Z
Pre(α,q̃,x̃)

p(q, x)Π(q, x)(α) d(q, x) dα

Measurability of Pre(α, q̃, x̃) follows from our assumption
of measurable jump and flow functions, which define the
preimage. Well-definedness and finiteness of the integral in
Def. 4 follows directly from the measurability of Π and the
jump functions, plus the fact that integration over time can
be restricted to a bounded interval from the initial time 0
to the current time τ(x̃). The value p̃(q̃, x̃) is computed by
integrating over all the possible transitions that can lead to
(q̃, x̃) by a transition →α, for some α ∈ R≥0 ∪ E. This
corresponds to integrating over all actions α and all states
(q, x) that can lead to (q̃, x̃) with an α transition. Each
path is “weighted” by the simulation density Π and by the
respective density of its starting state (q, x), given by the
previous state density p.

245

Note that initial distributions on the initial state can be
obtained easily by prefixing the system with a probabilistic
transition from the single initial state x0. Sample traces of a
probabilistic DTHA can be obtained by sampling from the
traces generated by the probabilistic simulation function Π.

Specifying Properties in Temporal Logic.
Our algorithm verifies properties ofM expressed as Proba-

bilistic Bounded Linear Temporal Logic (PBLTL) formulas.
We first define the syntax and semantics of Bounded Lin-
ear Temporal Logic (BLTL), which we can check on a single
trace, and then extend that logic to PBLTL. Finkbeiner and
Sipma [8] have defined a variant of LTL on finite traces of
discrete-event systems (where time is thus not considered).

For a stochastic modelM, let the set of state variables SV
be a finite set of real-valued variables. A Boolean predicate
over SV is a constraint of the form y∼v, where y ∈ SV ,
∼ ∈ {≥,≤,=}, and v ∈ R. A BLTL property is built on
a finite set of Boolean predicates over SV using Boolean
connectives and temporal operators. The syntax of the logic
is given by the following grammar:

φ ::= y∼v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1U
tφ2),

where ∼ ∈ {≥,≤,=}, y ∈ SV , v ∈ Q, and t ∈ Q≥0. As
usual, we can define additional temporal operators such as
Ftψ = TrueUt ψ, or Gtψ = ¬Ft¬ψ by bounded untils Ut.

We define the semantics of BLTL with respect to execu-
tions of M. The fact that an execution σ satisfies property
φ is denoted by σ |= φ. We denote the trace suffix starting
at step i by σi (in particular, σ0 denotes the original execu-
tion σ). We denote the value of the state variable y in σ at
step i by V (σ, i, y).

Definition 5. The semantics of BLTL for a trace σk start-
ing at the kth state (k ∈ N) is defined as follows:

• σk |= y ∼ v if and only if V (σ, k, y) ∼ v;

• σk |= φ1 ∨ φ2 if and only if σk |= φ1 or σk |= φ2;

• σk |= φ1 ∧ φ2 if and only if σk |= φ1 and σk |= φ2;

• σk |= ¬φ1 if and only if σk |= φ1 does not hold (written
σk 6|= φ1);

• σk |= φ1U
tφ2 if and only if there exists i ∈ N such that

(a)
P

0≤l<i tk+l ≤ t, (b) σk+i |= φ2 and (c) for each

0 ≤ j < i, σk+j |= φ1.

Statistical Model Checking decides probabilistic Model Check-
ing by repeatedly checking whether σ |= φ holds on sample
simulations σ of the system. In practice, sample simulations
only have a finite duration. The question is how long these
simulations have to be for the formula φ to have a well-
defined semantics such that σ |= φ can be checked. If σ is
too short, say of duration 2, the semantics of φ1U

5.3φ2 may
be unclear. But at what duration of the simulation can we
stop because we know that the truth-value for σ |= φ will
never change by continuing the simulation? Is the number
of required simulation steps expected to be finite at all?

For a class of finite length continuous-time boolean sig-
nals, well-definedness of checking bounded MITL properties
has been conjectured in [18]. Here we generalize to infi-
nite, hybrid traces with real-valued signals. We prove well-
definedness and the fact that a finite prefix of the discrete
time hybrid signal is sufficient for BLTL model checking,
which is crucial for termination. It especially turns out that
divergence of time ensures termination of SMC.

Lemma 1 (Bounded sampling). The problem “σ |= φ”
is well-defined and can be checked for BLTL formulas φ and
traces σ based on only a finite prefix of σ of bounded dura-
tion.

For proving Lemma 1 we need to derive bounds on when to
stop simulation. Those bounds can be read off easily from
the BLTL formula:

Definition 6. We define the sampling bound #(φ) ∈ Q≥0

of a BLTL formula φ inductively as the maximum nested
sum of time bounds:

#(y ∼ v) := 0
#(¬φ1) := #(φ1)

#(φ1 ∨ φ2) := max(#(φ1),#(φ2))
#(φ1 ∧ φ2) := max(#(φ1),#(φ2))
#(φ1U

tφ2) := t+ max(#(φ1),#(φ2))

Unlike infinite traces, actual system simulations need to be
finite in length. The next lemma shows that the semantics
of BLTL formulas φ is well-defined on finite prefixes of traces
with a duration that is bounded by #(φ).

Lemma 2 (BLTL on bounded simulation traces).
Let φ be a BLTL formula, k ∈ N. Then for any two infinite
traces σ = (s0, t0), (s1, t1), . . . and σ̃ = (s̃0, t̃0), (s̃1, t̃1), . . .
with

sk+I = s̃k+I and tk+I = t̃k+I ∀I ∈ N with
X

0≤l<I

tk+l ≤ #(φ)

(1)
we have that

σk |= φ iff σ̃k |= φ .

(See [28] for a proof.)

Now we prove that Lemma 1 holds using prefixes of traces
according to the sampling bound #(φ), which guarantees
that finite simulations are sufficient for deciding φ.

Proof of Lemma 1. According to Lemma 2, the deci-
sion “σ |= φ” is uniquely determined (and well-defined) by
considering only a prefix of σ of duration #(φ) ∈ Q≥0. By
divergence of time, σ reaches or exceeds this duration #(φ)
in some finite number of steps n. Let σ′ denote a finite pre-
fix of σ of length n such that

P
0≤l<n tl ≥ #(φ). Again by

Lemma 2, the semantics of σ′ |= φ is well-defined because
any extension σ′′ of σ′ satisfies σ′′ |= φ if and only if σ′ |= φ.
Consequently the semantics of σ′ |= φ coincides with the
semantics of σ |= φ. On the finite trace σ′, it is easy to see
that BLTL is decidable by evaluating the atomic formulas
x ∼ v at each state si of the system simulation.

We now define Probabilistic Bounded Linear Temporal
Logic.

Definition 7. A Probabilistic Bounded LTL (PBLTL) for-
mula is a formula of the form P≥θ(φ), where φ is a BLTL
formula and θ ∈ (0, 1) is a probability.

We say that M satisfies PBLTL property P≥θ(φ), denoted
by M |= P≥θ(φ), if and only if the probability that an
execution trace of M satisfies BLTL property φ is greater
than or equal to θ. This problem is well-defined, because,
by Lemma 1, each σ |= φ is decidable on a finite prefix
of σ, finite iterations of the probabilistic transition func-
tion (Def. 4) gives a well-defined probability measure, and,

246

thus, a corresponding probability measure can be associated
to the set of all (non-zeno) executions of M that satisfy a
BLTL formula [26]. Note that counterexamples to the BLTL
property φ are not counterexamples to the PBLTL property
P≥θ(φ), because the truth of P≥θ(φ) depends on the likeli-
hood of all counterexamples to φ. This makes PMC more
difficult than standard Model Checking, because one coun-
terexample to φ is not enough to decide P≥θ(φ).

3. BAYESIAN INTERVAL ESTIMATION
We present our new Bayesian statistical estimation algo-

rithm. In this approach we are interested in estimating p,
the (unknown) probability that a random execution trace of
M satisfies a fixed BLTL property. The estimate will be in
the form of a confidence interval, i.e., an interval which will
contain p with arbitrarily high probability.

Recall that the PMC problem is to decide whether M |=
P≥θ(φ), where θ ∈ (0, 1) and φ is a BLTL formula. Let p be
the (unknown but fixed) probability of the model satisfying
φ: thus, the PMC problem can now be stated as deciding
between two hypotheses:

H0 : p > θ H1 : p < θ. (2)

For any trace σi of the system M, we can deterministically
decide whether σi satisfies BLTL formula φ. Therefore, we
can define a Bernoulli random variable Xi denoting the out-
come of σi |= φ. The probability mass function associated
with Xi is thus:

f(xi|u) = uxi(1− u)1−xi (3)

where xi = 1 iff σi |= φ, otherwise xi = 0. Note that the Xi
are (conditionally) independent and identically distributed
(iid), as each trace is given by an independent execution of
the model. Since p is unknown, we may assume that it is
given by a random variable, whose density g(·) is called the
prior density. The prior is usually based on our previous
experiences and beliefs about the system. A lack of infor-
mation about the probability of the system satisfying the
formula is usually summarized by a non-informative or ob-
jective prior (see [20, Section 3.5] for an in-depth treatment).

Since p lies in [0, 1], we need prior densities defined over
this interval. In this paper we focus on Beta priors which
are defined by the following probability density (for real pa-
rameters α, β > 0 that give various shapes):

∀u ∈ [0, 1] g(u, α, β) b= 1

B(α, β)
uα−1(1− u)β−1 (4)

where the Beta function B(α, β) is defined as:

B(α, β) b= Z 1

0

tα−1(1− t)β−1dt . (5)

By varying the parameters α and β, one can approximate
other smooth unimodal densities on (0, 1) by a Beta density
(e.g., the uniform density over (0, 1) is a Beta with α = β =
1). For all u ∈ [0, 1] the Beta distribution function F(α,β)(u)
is defined:

F(α,β)(u) b= Z u

0

g(t, α, β) dt =
1

B(α, β)

Z u

0

tα−1(1−t)β−1 dt

(6)
which is the distribution function for a Beta random variable
of parameters α, β (i.e., the probability that it takes values
less than or equal to u).

In addition to their flexible shapes for various choices of
α, β, the advantage of using Beta densities is that the Beta
distribution is the conjugate prior to the Bernoulli distri-
bution1. This relationship enables us to avoid numerical
integration in the implementation of both the Bayesian es-
timation and hypothesis testing algorithms, as we next ex-
plain.

3.1 Bayesian Intervals
Bayes’ theorem states that if we sample from a density

f(·|u), where u (the unknown probability) is given by a ran-
dom variable U over (0, 1) whose density is g(·), then the
posterior density of U given the data x1, . . . , xn is:

f(u|x1, . . . , xn) =
f(x1, . . . , xn|u)g(u)R 1

0
f(x1, . . . , xn|v)g(v) dv

(7)

and in our case f(x1, . . . , xn|u) factorizes as
Qn
i=1 f(xi|u),

where f(xi|u) is the Bernoulli mass function (3) associated
with the i-th sample (remember that we assume condition-
ally independent, identically distributed - iid - samples).
Since the posterior is an actual distribution (note the nor-
malization constant), we can estimate p by the mean of the
posterior. In fact, the posterior mean is a posterior Bayes
estimator of p, i.e., it minimizes the risk over the whole pa-
rameter space of p (under a quadratic loss function, see [7,
Chapter 8]).

For a coverage goal c ∈ (1
2
, 1), any interval (t0, t1) such

that Z t1

t0

f(u|x1, . . . , xn) du = c (8)

is called a 100c percent Bayesian interval estimate of p. Nat-
urally, one would choose t0 and t1 that minimize t1− t0 and
satisfy (8), thus determining an optimal interval. (Note that
t0 and t1 are in fact functions of the sample x1, . . . , xn.) Op-
timal interval estimates can be found, for example, for the
mean of a normal distribution with normal prior, where the
resulting posterior is normal. In general, however, it is diffi-
cult to find optimal interval estimates. For unimodal poste-
rior densities like Beta densities, we can use the posterior’s
mean as the “center” of an interval estimate.

Here, we do not pursue the computation of an optimal
interval, which may be numerically infeasible. Instead, we
fix a desired half-interval width δ and then sample until the
probability mass of an interval estimate of width 2δ con-
taining the posterior mean exceeds c. When sampling from
a Bernoulli distribution and with a Beta prior of parameters
α, β, it is known that the mean p̂ of the posterior is:

p̂ =
x+ α

n+ α+ β
(9)

where x =
Pn
i=1 xi is the number of successes in the sampled

data x1, . . . , xn. The integral in (8) can be computed easily
in terms of the Beta distribution function.

Proposition 1. Let (t0, t1) be an interval in [0, 1]. The
posterior probability of Bernoulli iid samples (x1, . . . , xn)

1A distribution P (θ) is said to be a conjugate prior for a
likelihood function, P (d|θ), if the posterior, P (θ|d) is in the
same family of distributions.

247

and Beta prior of parameters α, β can be calculated as:Z t1

t0

f(u|x1, . . . , xn) du = F(x+α,n−x+β)(t1)−F(x+α,n−x+β)(t0)

(10)
where x =

Pn
i=1 xi is the number of successes in (x1, . . . , xn)

and F (·) is the Beta distribution function.

Proof. Direct from definition of Beta distribution func-
tion (6) and the fact that the posterior density is a Beta of
parameters x+ α and n− x+ β.

The Beta distribution function can be computed with high
accuracy by standard mathematical libraries (e.g. the GNU
Scientific Library) or software (e.g. Matlab). Hence, the
Beta distribution is the appropriate choice for summarizing
the prior distribution in Statistical Model Checking.

3.2 Bayesian Estimation Algorithm
We want to compute an interval estimate of p = Prob(M |=

φ), where φ is a BLTL formula and M a stochastic hybrid
system model - remember from our discussion in Section 2
that p is well-defined. Fix the half-size δ ∈ (0, 1

2
) of the de-

sired interval estimate for p, the coefficient c ∈ (1
2
, 1) to be

used in (8), and the coefficients α, β of the Beta prior.
Our algorithm iteratively draws iid sample traces σ1, σ2, . . .,

and checks whether they satisfy φ. At stage n, the algorithm
computes p̂, the Bayes estimator for p (i.e., the posterior
mean) according to (9). Next, using t0 = p̂ − δ, t1 = p̂ + δ
it computes

γ =

Z t1

t0

f(u|x1, . . . , xn) du .

If γ > c it stops and returns t0, t1 and p̂; otherwise it samples
another trace and repeats. One should pay attention at the
extreme points of the (0, 1) interval, but those are easily
taken care of, as shown in Algorithm 1.

Algorithm 1 Statistical Model Checking by Bayesian In-
terval Estimates

Require: BLTL Property φ, half-interval size δ ∈ (0, 1
2
),

interval coefficient c ∈ (1
2
, 1), Prior Beta distribution with

parameters α, β

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying φ so far}
repeat
σ := draw a sample trace of the system (iid)
n := n+ 1
if σ |= φ then
x := x+ 1

end if
p̂ := (x+α)/(n+α+β) {compute posterior mean}
(t0, t1) := (p̂−δ, p̂+δ) {compute interval estimate}
if t1 > 1 then

(t0, t1) := (1− 2 · δ, 1)
else if t0 < 0 then

(t0, t1) := (0, 2 · δ)
end if
{compute posterior probability of p ∈ (t0, t1), by (10)}
γ := PosteriorProb(t0, t1)

until (γ > c)
return (t0, t1), p̂

4. BAYESIAN HYPOTHESIS TESTING
In this section we briefly present our sequential Bayesian

hypothesis test, which was introduced in [14]. LetX1, . . . , Xn
be a sequence of Bernoulli random variables defined as for
the PMC problem in Sect. 3, and let d = (x1, . . . , xn) de-
note a sample of those variables. Let H0 and H1 be mu-
tually exclusive hypotheses over the random variable’s pa-
rameter space according to (2). Suppose the prior proba-
bilities P (H0) and P (H1) are strictly positive and satisfy
P (H0) + P (H1) = 1. Bayes’ theorem states that the poste-
rior probabilities are:

P (Hi|d) =
P (d|Hi)P (Hi)

P (d)
(i = 0, 1) (11)

for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) >
0. In our case P (d) is always non-zero (there are no impos-
sible finite sequences of outcomes).

4.1 Bayes Factor
By Bayes’ theorem, the posterior odds for hypothesis H0

is

P (H0|d)

P (H1|d)
=
P (d|H0)

P (d|H1)
· P (H0)

P (H1)
. (12)

Definition 8. The Bayes factor B of sample d and hy-
potheses H0 and H1 is

B =
P (d|H0)

P (d|H1)
.

For fixed priors in a given example, the Bayes factor is di-
rectly proportional to the posterior odds by (12). Thus, it
may be used as a measure of relative confidence in H0 vs.
H1, as proposed by Jeffreys [13]. To test H0 vs. H1, we
compute the Bayes factor B of the available data d and then
compare it against a fixed threshold T > 1: we shall accept
H0 iff B > T . Jeffreys interprets the value of the Bayes fac-
tor as a measure of the evidence in favor of H0 (dually, 1

B is
the evidence in favor of H1). Classically, a fixed number of
samples was suggested for deciding H0 vs. H1. We develop
an algorithm that chooses the number of samples adaptively.

We now show how to compute the Bayes factor. Accord-
ing to Definition 8, we have to calculate the ratio of the
probabilities of the observed sample d = (x1, . . . , xn) given
H0 and H1. By (12), this ratio is proportional to the ra-
tio of the posterior probabilities, which can be computed
from Bayes’ theorem (7) by integrating the joint density
f(x1|·) · · · f(xn|·) with respect to the prior g(·):

P (H0|x1, . . . , xn)

P (H1|x1, . . . , xn)
=

R 1

θ
f(x1|u) · · · f(xn|u) · g(u) duR θ

0
f(x1|u) · · · f(xn|u) · g(u) du

.

Thus, the Bayes factor is:

B =
π1

π0
·
R 1

θ
f(x1|u) · · · f(xn|u) · g(u) duR θ

0
f(x1|u) · · · f(xn|u) · g(u) du

(13)

where π0 = P (H0) =
R 1

θ
g(u) du, and π1 = P (H1) = 1− π0.

We observe that the Bayes factor depends on the data d
and on the prior g, so it may be considered a measure of
confidence in H0 vs. H1 provided by the data x1, . . . , xn,
and “weighted” by the prior g. When using Beta priors, the
calculation of the Bayes factor can be much simplified.

248

Proposition 2. The Bayes factor of H0 : p > θ vs. H1 :
p < θ with Bernoulli samples (x1, . . . , xn) and Beta prior of
parameters α, β is:

Bn =
π1

π0
·
„

1

F(x+α,n−x+β)(θ)
− 1

«
.

where x =
Pn
i=1 xi is the number of successes in (x1, . . . , xn)

and F(s,t)(·) is the Beta distribution function of parameters
s, t.

4.2 Bayesian Hypothesis Testing Algorithm
Our algorithm generalizes Jeffreys’ test to a sequential

version. Remember we want to establish whether M |=
P>θ(φ), where θ ∈ (0, 1) and φ is a BLTL formula. The
algorithm iteratively draws independent and identically dis-
tributed sample traces σ1, σ2, ..., and checks whether they
satisfy φ. Again, we can model this procedure as indepen-
dent sampling from a Bernoulli distribution X of unknown
parameter p - the actual probability of the model satisfying
φ. At stage n the algorithm has drawn samples x1, . . . , xn
iid like X. It then computes the Bayes factor B according
to Proposition 2, to check if it has obtained conclusive evi-
dence. The algorithm accepts H0 iff B > T , and accepts H1

iff B < 1
T

. Otherwise (1
T

6 B 6 T) it continues drawing iid
samples. This algorithm is shown in Algorithm 2.

Algorithm 2 Statistical Model Checking by Bayesian Hy-
pothesis Testing

Require: PBLTL Property P>θ(φ), Threshold T > 1, Prior
density g for unknown parameter p

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying φ so far}
loop
σ := draw a sample trace of the system (iid)
n := n+ 1
if σ |= φ then
x := x+ 1

end if
B := BayesFactor(n, x) {compute as in Proposition 2}
if (B > T) then

return H0 accepted
else if (B < 1

T
) then

return H1 accepted
end if

end loop

5. ANALYSIS
Statistical Model Checking algorithms are easy to im-

plement and—because they are based on selective system
simulation—enjoy promising scalability properties. Yet, for
the same reason, their output would be useless outside the
sampled traces, unless the probability of making an error
during the PMC decision can be bounded.

As our main contribution, we prove error bounds for Sta-
tistical Model Checking by Bayesian sequential hypothesis
testing and by Bayesian interval estimation. In particular,
we show that the (Bayesian) Type I-II error probabilities for
the algorithms in Sect. 3–4 can be bounded arbitrarily. We
recall that a Type I (II) error occurs when we reject (accept)
the null hypothesis although it is true (false).

Theorem 1 (Error bound for hypothesis testing).
For any discrete random variable and prior, the probability
of a Type I-II error for the Bayesian hypothesis testing algo-
rithm 2 is bounded above by 1

T
, where T is the Bayes Factor

threshold given as input.

Proof. We present the proof for Type I error only - for
Type II it is very similar. A Type I error occurs when the
null hypothesis H0 is true, but we reject it. We then want to
bound P (reject H0 | H0). If the Bayesian algorithm 2 stops
at step n, then it will accept H0 if B(d) > T , and reject H0

if B(d) < 1
T

, where d = (x1, . . . , xn) is the data sample, and
the Bayes Factor is

B(d) =
P (d|H0)

P (d|H1)
.

The event {reject H0} is formally defined as

{reject H0} =
[
d∈Ω

{B(d) <
1

T
∧ D = d} (14)

where D is the random variable denoting a sequence of n
discrete random variables, and Ω is the sample space of D -
i.e., the (countable) set of all the possible realizations of D
(in our case D is clearly finite). We now reason:

P (reject H0 | H0)

= (14)

P (
S
d∈Ω{B(d) < 1

T
∧ D = d} | H0)

= additivityP
d∈Ω P ({B(d) < 1

T
∧ D = d} | H0)

= independent eventsP
d∈Ω P (B(d) < 1

T
) · P (D = d | H0)

< B(d) < 1
T

iff P (D = d | H0) < 1
T
P (D = d | H1)P

d∈Ω
1
T
· P (D = d | H1)

= additivity and independence

1
T
· P (

S
d∈Ω D = d | H1)

= universal event

1
T
· P (Ω | H1) = 1

T

Note that the bound 1
T

is independent from the prior used.
Next, we lift the error bounds found in Theorem 1 for

Algorithm 2 to Algorithm 1 by representing the output of
the Bayesian interval estimation algorithm1 as a hypothesis
testing problem. We use the output interval (t0, t1) of Algo-
rithm 1 to define the (null) hypothesis H0 : p ∈ (t0, t1). Now
H0 represents the hypothesis that the output of Algorithm 1
is correct. Then, we can test H0 and determine bounds on
Type I and II errors by Theorem 1.

Theorem 2 (Error bound for estimation). For any
discrete random variable and prior, the Type I and II errors
for the output interval (t0, t1) of the Bayesian estimation

algorithm 1 are bounded above by (1−c)π0
c(1−π0)

, where c is the

coverage coefficient given as input and π0 is the prior prob-
ability of the hypothesis H0 : p ∈ (t0, t1).

Proof. Let (t0, t1) be the interval estimate when the es-
timation algorithm 1 terminates (with coverage c). From
the hypothesis

H0 : p ∈ (t0, t1) (15)

249

we compute the Bayes factor for H0 vs. the alternate hy-
pothesis H1 : p /∈ (t0, t1). Then we use Theorem 1 to derive
the bounds on the Type I and II error. If the estimation
algorithm 1 terminates at step n with output t0, t1, we have
that:Z

H0

f(u|x1, . . . , xn) du =

Z t1

t0

f(u|x1, . . . , xn) du > c (16)

and therefore (since the posterior is a distribution):Z
H1

f(u|x1, . . . , xn) du 6 1− c. (17)

By (13) we get the Bayes factor of H0 vs H1, which can then
be bounded by (16) and (17) as follows

(1− π0)

π0
·
R
H0
f(u|x1, . . . , xn) duR

H1
f(u|x1, . . . , xn) du

>
(1− π0)

π0
· c

1− c .

Therefore, by Theorem 1 the error is bounded above by“
c(1−π0)
(1−c)π0

”−1

= (1−c)π0
c(1−π0)

.

6. APPLICATION
We study an example that is part of the Stateflow/Simulink

package. The model2 describes a fuel control system for
a gasoline engine. It detects sensor failures, and dynami-
cally changes the control law to provide seamless operation.
A key quantity in the model is the ratio between the air
mass flow rate (from the intake manifold) and the fuel mass
flow rate (as pumped by the injectors). The system aims at
keeping the air-fuel ratio close to the stoichiometric ratio of
14.6, which represents an acceptable compromise between
performance and fuel consumption. The system estimates
the “correct” fuel rate giving the target stoichiometric ra-
tio by taking into account sensor readings for the amount
of oxygen present in the exhaust gas (EGO), for the engine
speed, throttle command and manifold absolute pressure.
In the event of a single sensor fault, the system detects the
situation and operates the engine with a higher fuel rate to
compensate. If two or more sensors fail, the engine is shut
down, since the system cannot reliably control the air-fuel
ratio.

The Stateflow control logic of the system has a total of 24
locations, grouped in 6 parallel (i.e., simultaneously active)
states. The Simulink part of the system is described by sev-
eral nonlinear equations and a linear differential equation
with a switching condition. Overall, this model provides a
representative summary of the important features of hybrid
systems. Our stochastic system is obtained by introduc-
ing random faults in the EGO, speed and manifold pressure
sensors. We model the faults by three independent Poisson
processes with different arrival rates. When a fault hap-
pens, it is “repaired” with a fixed service time of one second
(i.e. the sensor remains in fault condition for one second,
then it resumes normal operation). Note that the system
has no free inputs, since the throttle command provides a
periodic triangular input, and the nominal speed is never
changed. This ensures that, once we set the three fault rates,
for any given temporal logic property φ the probability that

2More information on the model is available at
http://mathworks.com/products/simulink/demos.html?
file=/products/demos/shipping/simulink/
sldemo_fuelsys.html .

the model satisfies φ is well-defined. All our experiments
have been performed on a 2.4GHz Pentium 4, 1GB RAM
desktop computer running Matlab R2008b on Windows XP.

6.1 Experimental Results in Application
For our experiments we model check the following formula

(null hypothesis)

H0 :M |= P≥θ(¬F100G1(FuelF lowRate = 0)) (18)

for different values of threshold θ and sensors fault rates.
We test whether with probability greater than θ it is not
the case that within 100 seconds the fuel flow rate stays
zero for one second. The fault rates are expressed in sec-
onds and represent the mean interarrival time between two
faults (in a given sensor). In experiment 1, we use uni-
form priors over (0, 1), with null and alternate hypotheses
equally likely a priori. In experiment 2, we use informative
priors highly concentrated around the true probability that
the model satisfies the BLTL formula. The Bayes Factor
threshold is T = 1000, so by Theorem 1 both Type I and II
errors are bounded by .001.

Probability threshold θ
.9 .99

Fault
(3 7 8) 7 (8/21s) 7 (2/5s)

rates
(10 8 9) 7 (710/1738s) 7 (8/21s)

(20 10 20) 3 (44/100s) 7 (1626/3995s)
(30 30 30) 3 (44/107s) 3 (239/589s)

Table 1: Number of samples / verification time when

testing (18) with uniform, equally likely priors and T =

1000: 7 = ‘H0 rejected’, 3 = ‘H0 accepted’.

Probability threshold θ
.9 .99

Fault
(3 7 8) 7 (8/21s) 7 (2/5s)

rates
(10 8 9) 7 (255/632s) 7 (8/21s)

(20 10 20) 3 (39/88s) 7 (1463/3613s)
(30 30 30) 3 (33/80s) 3 (201/502s)

Table 2: Number of samples / verification time when

testing (18) with informative priors and T = 1000: 7 =

‘H0 rejected’, 3 = ‘H0 accepted’.

In Tables 1 and 2 we report our results. Even in the
longest run (for θ = .99 and fault rates (20 10 20) in Table
1), Bayesian SMC terminates after 3995s already. This is
very good performance for a test with such a small (.001) er-
ror probability run on a desktop computer. We note that the
total time spent for this case on actually computing the sta-
tistical test, i.e., Bayes factor computation, was just about
1s. The dominant computation cost is system simulation.
Also, by comparing the numbers of Table 1 and 2 we note
that the use of an informative prior generally helps the al-
gorithm - i.e., fewer samples are required to decide.

Next, we estimate the probability that M satisfies the
following property, using our Bayesian estimation algorithm:

M |= (¬F100G1(FuelF lowRate = 0)) . (19)

In particular, we ran two sets of tests, one with half-interval
size δ = .05 and another with δ = .01. In each set we used

250

Interval coverage c
.99 .999

Fault
(3 7 8) .3569 / 606 .3429 / 972

rates
(10 8 9) .8785 / 286 .8429 / 590

(20 10 20) .9561 / 112 .9625 / 158
(30 30 30) .9778 / 43 .9851 / 65
C-H bound 8477 12161

Table 3: Posterior mean / number of samples for es-

timating probability of (19) with uniform prior and

δ = .05, and comparison with the samples needed by the

Chernoff-Hoeffding bound.

Interval coverage c
.99 .999

Fault
(3 7 8) .3558/15205 .3563/24830

rates
(10 8 9) .8528/8331 .8534/13569

(20 10 20) .9840/1121 .9779/2583
(30 30 30) .9956/227 .9971/341
C-H bound 211933 304036

Table 4: Posterior mean / number of samples when

estimating probability of (19) with uniform prior and

δ = .01, and comparison with the samples needed by the

Chernoff-Hoeffding bound.

different values for the interval coefficient c and different
sensor fault rates, as before. Experimental results are in
Tables 3 and 4. We used uniform priors in both cases.

6.2 Discussion
A general trend shown by our experimental results and ad-

ditional simulations is that our Bayesian estimation model
checking algorithm is generally faster at the extremes, i.e.,
when the unknown probability p is close to 0 or close to 1.
Performance is worse when p is closer to 0.5. In contrast,
the performance of our Bayesian hypothesis testing model
checking algorithm is faster when the unknown true proba-
bility p is far from the threshold probability θ.

We note the remarkable performance of our estimation
approach compared to the technique based on the Chernoff-
Hoeffding bound [11]. From Table 3 and 4 we see that when
the unknown probability is close to 1, our algorithm can be
between two and three orders of magnitude faster. (The
same argument holds when the true probability is close to
0.) Chernoff-Hoeffding bounds hold for any random variable
with bounded variance. Our Bayesian approach, instead,
explicitly constructs the posterior distribution on the basis
of the Bernoulli sampling distribution and the prior.

6.3 Performance Evaluation
We have conducted a series of Monte Carlo simulations to

analyze the performance (measured as number of samples)
of our sequential Bayesian estimation algorithm with respect
to the unknown probability p. In particular, we have run
simulations for values of p ranging from .01 to .99, with
coverage (c) of .9999 and .99999, interval half-size (δ) of
.001 and .005, and uniform prior. The detailed results are
available in [28].

Our experiments show that Bayesian estimation is very
fast when p is close to either 0 or 1, while a larger number

of samples is needed when p is close to 1
2
. In a sense, our

algorithm can decide easier PMC instances faster: if the
probability p of a formula being true is very small or very
large, we need fewer samples. This is another advantage
of our approach that it is not currently matched by other
SMC estimation techniques (e.g., [11]). Our findings are
consistent with those of Yu et al. [27] in the VLSI testing
domain.

Our simulations also indicate that the performance of the
algorithm depends more strongly on the half-size δ of the
estimated interval than on the coverage c of the interval
itself. It is much faster to estimate an interval of half-size
δ = .005 with coverage c = .99999 than it is to estimate
an interval of δ = .001 with c = .9999. More theoretical
work is needed, however, to fully understand the behavior
of the Bayesian sequential estimation algorithm. Our initial
findings suggest that the algorithm scales very well.

7. RELATED WORK
Younes, Musliner and Simmons introduced the first algo-

rithm for Statistical Model Checking [26, 25]. Their work
uses the SPRT [23], which is designed for simple hypothesis
testing3. Specifically, the SPRT decides between the sim-
ple null hypothesis H ′0 : M |= P=θ0(φ) against the simple
alternate hypothesis H ′1 : M |= P=θ1(φ), where θ0 < θ1.
The SPRT is optimal for simple hypothesis testing, since it
minimizes the expected number of samples among all the
tests satisfying the same Type I and II errors, when either
H ′0 or H ′1 is true [23]. The PMC problem is instead a choice
between two composite hypotheses H0 : M |= P≥θ(φ) ver-
sus H1 : M |= P< θ(φ). The SPRT is not defined unless
θ0 6= θ1, so Younes and Simmons overcome this problem
by separating the two hypotheses by an indifference region
(θ − δ, θ + δ), inside which any answer is tolerated. Here
0 < δ < 1 is a user-specified parameter. It can be shown
that the SPRT with indifference region can be used for test-
ing composite hypotheses, while respecting the same Type I
and II errors of a standard SPRT [23]. However, in this case
the test is no longer optimal, and the maximum expected
sample size may be much bigger than the optimal fixed-size
sample test [4]. Our approach solves instead the composite
hypothesis testing problem, with no indifference region.

The method of [11] uses a fixed number of samples and es-
timates the probability that the property holds as the num-
ber of satisfying traces divided by the number of sampled
traces. Their algorithm guarantees the accuracy of the re-
sults using Chernoff-Hoeffding bounds. In particular, their
algorithm can guarantee that the difference in the estimated
and the true probability is less than ε, with probability
ρ, where ρ < 1 and ε > 0 are user-specified parameters.
Our experimental results show a significant advantage of our
Bayesian estimation algorithm in the sample size.

Grosu and Smolka use a standard acceptance sampling
technique for verifying formulas in LTL [9]. Their algorithm
randomly samples lassos (i.e., random walks ending in a cy-
cle) from a Büchi automaton in an on-the-fly fashion. The
algorithm terminates if it finds a counterexample. Other-

3A simple hypothesis completely specifies a distribution. For
example, a Bernoulli distribution of parameter p is fully
specified by the hypothesis p = 0.3 (or some other numeri-
cal value). A composite hypothesis, instead, still leaves the
free parameter p in the distribution. This results, e.g., in a
family of Bernoulli distributions with parameter p < 0.3.

251

wise, the algorithm guarantees that the probability of find-
ing a counterexample is less than δ, under the assumption
that the true probability that the LTL formula is true is
greater than ε (δ and ε are user-specified parameters).

Sen et al. [21] used the p-value for the null hypothesis as a
statistic for hypothesis testing. The p-value is defined as the
probability of obtaining observations at least as extreme as
the one that was actually seen, given that the null hypoth-
esis is true. It is important to realize that a p-value is not
the probability that the null hypothesis is true. Sen et al.’s
method does not have a way to control the Type I and II er-
rors. Sen et al. [22] have started investigating the extension
of SMC to unbounded (i.e., standard) LTL properties. Fi-
nally, Langmead [17] has applied Bayesian point estimation
and SMC for querying Dynamic Bayesian Networks.

8. CONCLUSIONS AND FUTURE WORK
Extending our Statistical Model Checking (SMC) algo-

rithm that uses Bayesian Sequential Hypothesis Testing, we
have introduced the first SMC algorithm based on Bayesian
Interval Estimation. For both algorithms, we have proven
analytic bounds on the probability of returning an incor-
rect answer, which are crucial for understanding the out-
come of Statistical Model Checking. We have used SMC for
Stateflow/Simulink models of a fuel control system featuring
fault-tolerance and hybrid behavior. Because verification is
fast in most cases, we expect SMC methods to enjoy good
scalability properties for larger Stateflow/Simulink models.
Our Bayesian estimation is orders of magnitudes faster than
previous estimation-based model checking algorithms.

9. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking

for probabilistic real-time systems. In ICALP, volume
510 of LNCS, pages 115–126, 1991.

[2] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen,
M. Z. Kwiatkowska, and M. Ryan. Symbolic model
checking for probabilistic processes. In ICALP, volume
1256 of LNCS, pages 430–440, 1997.

[3] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P.
Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Software
Eng., 29(6):524–541, 2003.

[4] R. Bechhofer. A note on the limiting relative efficiency
of the Wald sequential probability ratio test. J. Amer.
Statist. Assoc., 55:660–663, 1960.

[5] F. Ciesinski and M. Größer. On probabilistic
computation tree logic. In Validation of Stochastic
Systems, LNCS, 2925, pages 147–188. Springer, 2004.

[6] C. Courcoubetis and M. Yannakakis. The complexity
of probabilistic verification. Journal of the ACM,
42(4):857–907, 1995.

[7] M. H. DeGroot. Optimal Statistical Decisions. Wiley,
2004.

[8] B. Finkbeiner and H. Sipma. Checking finite traces
using alternating automata. In Runtime Verification
(RV ’01), volume 55(2) of ENTCS, pages 44–60, 2001.

[9] R. Grosu and S. Smolka. Monte Carlo Model
Checking. In TACAS, volume 3440 of LNCS, pages
271–286, 2005.

[10] H. Hansson and B. Jonsson. A logic for reasoning

about time and reliability. Formal Asp. Comput.,
6(5):512–535, 1994.

[11] T. Hérault, R. Lassaigne, F. Magniette, and
S. Peyronnet. Approximate probabilistic model
checking. In VMCAI, volume 2937 of LNCS, pages
73–84, 2004.

[12] A. Hinton, M. Kwiatkowska, G. Norman, and
D. Parker. PRISM: A tool for automatic verification of
probabilistic systems. In TACAS, volume 3920 of
LNCS, pages 441–444, 2006.

[13] H. Jeffreys. Theory of Probability. Clarendon, 1961.

[14] S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay,
A. Platzer, and P. Zuliani. A Bayesian approach to
Model Checking biological systems. In CMSB, volume
5688 of LNCS, pages 218–234, 2009.

[15] R. Koymans. Specifying real-time properties with
metric temporal logic. Real-time Systems,
2(4):255–299, 1990.

[16] M. Z. Kwiatkowska, G. Norman, and D. Parker.
Symmetry reduction for probabilistic model checking.
In CAV, volume 4144 of LNCS, pages 234–248, 2006.

[17] C. J. Langmead. Generalized queries and Bayesian
statistical model checking in dynamic Bayesian
networks: Application to personalized medicine. In
CSB, pages 201–212, 2009.

[18] O. Maler and D. Nickovic. Monitoring temporal
properties of continuous signals. In FORMATS,
volume 3253 of LNCS, pages 152–166, 2004.

[19] A. Pnueli. The temporal logic of programs. In FOCS,
pages 46–57. IEEE, 1977.

[20] C. P. Robert. The Bayesian Choice. Springer, 2001.

[21] K. Sen, M. Viswanathan, and G. Agha. Statistical
model checking of black-box probabilistic systems. In
CAV, volume 3114 of LNCS, pages 202–215, 2004.

[22] K. Sen, M. Viswanathan, and G. Agha. On statistical
model checking of stochastic systems. In CAV, volume
3576 of LNCS, pages 266–280, 2005.

[23] A. Wald. Sequential tests of statistical hypotheses.
Ann. Math. Statist., 16(2):117–186, 1945.

[24] H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and
D. Parker. Numerical vs. statistical probabilistic
model checking. STTT, 8(3):216–228, 2006.

[25] H. L. S. Younes and D. J. Musliner. Probabilistic plan
verification through acceptance sampling. In AIPS
Workshop on Planning via Model Checking, pages
81–88, 2002.

[26] H. L. S. Younes and R. G. Simmons. Statistical
probabilistic model checking with a focus on
time-bounded properties. Inf. Comput.,
204(9):1368–1409, 2006.

[27] P. S. Yu, C. M. Krishna, and Y.-H. Lee. Optimal
design and sequential analysis of VLSI testing
strategy. IEEE T. Comput., 37(3):339–347, 1988.

[28] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian
statistical model checking with application to
Stateflow/Simulink verification. Technical Report
CMU-CS-10-100, Computer Science Department,
Carnegie Mellon University, 2010.

252

