
Efficient SAT Solving for Non-Clausal Formulas Using
DPLL, Graphs, and Watched Cuts∗

Himanshu Jain
†

Verification Group
Synopsys, Inc.

Edmund M. Clarke
School of Computer Science
Carnegie Mellon University

ABSTRACT
Boolean satisfiability (SAT) solvers are used heavily in hardware
and software verification tools for checking satisfiability of Boolean
formulas. Most state-of-the-art SAT solvers are based on the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm and require the in-
put formula to be in conjunctive normal form (CNF). We present a
new SAT solver that operates on the negation normal form (NNF)
of the given Boolean formulas/circuits. The NNF of a formula is
usually more succinct than the CNF of the formula in terms of
the number of variables. Our algorithm applies the DPLL algo-
rithm to the graph-based representations of NNF formulas. We
adapt the idea of the two-watched-literal scheme from CNF SAT
solvers in order to efficiently carry out Boolean Constraint Propa-
gation (BCP), a key task in the DPLL algorithm. We evaluate the
new solver on a large collection of Boolean circuit benchmarks ob-
tained from formal verification problems. The new solver outper-
forms the top solvers of the SAT 2007 competition and SAT-Race
2008 in terms of run time on a large majority of the benchmarks.

Categories and Subject Descriptors: J.6 [Computer Aided Engi-
neering]: [Computer-Aided Design]

General Terms: Algorithms, Design, Verification

Keywords: Boolean Satisfiability, Verification, DPLL, NNF

1. INTRODUCTION
The problem of propositional (Boolean) satisfiability (SAT) is

to decide whether a given propositional formula is satisfiable. This
problem is of central importance in hardware and software verifica-
tion, logic synthesis, automatic test generation, and artificial intel-
ligence. Most state-of-the-art SAT procedures [3, 4, 5, 17, 18, 13,
11, 19, 8] are variations of the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm and require the input formula to be in conjunc-

∗This research was sponsored by the Semiconductor Research Cor-
poration (SRC), the Gigascale Systems Research Center (GSRC),
the Office of Naval Research (ONR), the Naval Research Labora-
tory (NRL), the Army Research Office (ARO) and General Motors
Lab at CMU.
†The author did this research as a graduate student at CMU.

tive normal form (CNF). Typical formulas arising in practice are
not necessarily in CNF. We refer to propositional formulas not in
CNF form as non-clausal formulas (Boolean circuits). As argued
by Thiffault et al. [20] converting a non-clausal formula to CNF in-
troduces overhead in form of a large number of new variables and
may destroy the initial structure of the formula, which can be cru-
cial in efficient satisfiability checking.

Suppose we are given a non-clausal formula φ. In order to check
the satisfiability of φ using a CNF based SAT solver, φ needs to
be converted to CNF. Let us assume for now that φ is in negation
normal form (NNF). This means that φ contains only “∧” (“AND”),
“∨” (“OR”), “¬” (“NOT”) operators and the scope of each “¬” is
a propositional variable. There are two ways of converting φ to a
CNF formula. The first way of converting φ to a CNF formula is by
introduction of new variables [21]. This produces a CNF formula
φ′ that is equi-satisfiable to φ and is linear in the size of φ. This is
most common and practical way of converting φ to a CNF formula.

The second method is to expand φ using the distributive proper-
ties of ∧,∨ in order to obtain a CNF formula. Let us denote the
CNF formula obtained by expansion of φ as CNF(φ). For exam-
ple let φ be (a∧¬b)∨ (c∧ (d ∨¬ f)). Then CNF(φ) is (a∨ c)∧
(a∨ d ∨¬ f)∧ (¬b∨ c)∧ (¬b∨ d ∨¬ f). Note that CNF(φ) and φ
contain the same set of variables and are logically equivalent. This
method of obtainingCNF(φ) from φ is impractical because the size
ofCNF(φ) can be exponential in the size of φ.

In this paper we present a new SAT solver that checks the satisfi-
ability of φ by applying the DPLL algorithm to the hpgraph [7, 15]
of φ. Each path in the hpgraph of φ, starting from a root node and
ending at a leaf node, corresponds to a clause in CNF(φ). That is,
the hpgraph of φ implicitly encodes CNF(φ). Fig. 1(a) shows the
hpgraph of the formula (a∧¬b)∨ (c∧ (d ∨¬ f)). The size of the
hpgraph of φ is linear in the size of φ. Thus, the hpgraph compactly
represents CNF(φ). By using the hpgraph we avoid explicitly list-
ing out the clauses in CNF(φ), which can require exponential time
and space in the size of φ.

Let us denote the disjunctive normal form (DNF) formula ob-
tained by converting φ to DNF by expanding out φ as DNF(φ). Let
φ be (a∧¬b)∨(c∧(d∨¬ f)). Then DNF(φ) is (a∧¬b)∨(c∧d)∨
(c∧¬ f). Once again explicitly listing out DNF(φ) can be expo-
nential in the size of φ. Our solver utilizes the vpgraph [7, 15] of
φ. The vpgraph of φ implicitly encodes DNF(φ) and is linear in the
size of φ. The vpgraph for our example is shown in Fig. 1(b).

1.1 Our Contributions
• We present a new SAT solver that checks the satisfiability of a

NNF formula φ by applying the DPLL algorithm to the hpgraph
of φ. Our solver also utilizes the vpgraph of φ in certain steps
of SAT solving. If the input formula/circuit is not in NNF it is

34.2

563

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

a

−b

c

d −f

1 2

3 4
5

a

−b

c

d −f

1 2

3 4
5

(b)(a)

C1 C2

Figure 1: Let φ be (a∧¬b)∨ (c∧ (d ∨¬ f)). (a) The hpgraph of φ.
Two node cuts C1,C2 are shown. (b) The vpgraph of φ. We show the
negation of a variable by using a minus sign.

first converted to an equi-satisfiable NNF formula as explained
in Section 2.

• The most crucial component of our DPLL SAT solver is an ef-
ficient Boolean Constraint Propagation (BCP) algorithm on the
hpgraph. We describe an algorithm for performing BCP on hp-
graph that adapts the two-watched-literal scheme [18] found in
CNF SAT solvers. In particular, a “watch” in an hpgraph corre-
sponds to a node cut in the hpgraph. By maintaining two node
cuts for each connected component in the hpgraph we achieve
the same effect as the two watched-literal scheme found in the
CNF SAT solvers. Fig. 1(a) shows two node cutsC1,C2 (possi-
ble watches) for a hpgraph. Two node cuts allow watching two
nodes (literals) on each path (clause) in a hpgraph component.
The two-watched-literal scheme used in CNF SAT solvers is
a special case of our algorithm (when the hpgraph represents
a CNF formula). As in CNF SAT solvers non-chronological
backtracking is cheap as the node cuts are not updated when
backtracking. (Section 3)

• We show how to update the node cuts (watches) in the hpgraph
efficiently by using the vpgraph of the given formula. We show
that a minimal cut in a hpgraph corresponds to a path in the
corresponding vpgraph. Thus, finding a small node cut in an
hpgraph corresponds to finding a path in the corresponding vp-
graph. For example, notice that paths 〈1,3〉,〈2,5〉 in the vp-
graph shown in Fig 1(b) correspond to cutsC1,C2, respectively,
in the hpgraph shown in Fig 1(a). (Section 4)

• We have carefully implemented these ideas in a non-clausal
SAT solver. We evaluate the solver on 2541 non-clausal bench-
marks obtained from publicly available sources. Our solver out-
performs the top SAT solvers of the SAT 2007 competition and
SAT-Race 2008 in terms of runtime. (Section 5)

Related Work: Most state-of-the-art SAT procedures are based on
DPLL search and require the input formula to be in CNF [3, 4, 5,
17, 18, 13, 11, 19, 8]. There has been work on applying DPLL
directly to circuit [12, 16, 20] representations. In [12] a hybrid
SAT solver is described where the original formula is processed in
circuit form, and learned clauses are processed separately in CNF.
The circuit-based BCP is implemented by means of a lookup table.
In [20] a watched literal scheme is proposed for efficient BCP on
a given circuit. Unlike existing circuit SAT solvers our SAT solver
does not operate on the circuit representation directly. In our ap-
proach a given formula/circuit is converted to an equi-satisfiable
NNF formula. The NNF formula is then represented in the form
of two graphs called the vpgraph and hpgraph. These graphs are
used in our SAT algorithms. Jain et al. [15] use a vpgraph/hpgraph
in a General Matings based SAT solver. This work uses the vp-
graph/hpgraph in a DPLL-based SAT solver. In our unreported ex-
periments we found the solver in [15] to have poor performance on
the benchmarks we consider in this paper.

A technical report version of this paper with proofs can be found
in the chapters 2 and 4 of [14].

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06 1e+07

y > x on 0 points

Y-axis: #Vars in NNF

y < x on 2252 points

X-axis: #Vars in CNF Before Pre-processing
 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000 1e+06

y > x on 440 points

Y-axis: #Vars in NNF

y < x on 1677 points

X-axis: #Vars in CNF After Pre-processing

Figure 2: Number of variables comparison.

2. PRELIMINARIES
A Boolean formula is in negation normal form (NNF) iff it con-

tains only the Boolean connectives “∧” (“AND”), “∨” (“OR”) and
“¬” (“NOT”), and the scope of each occurrence of “¬” is a Boolean
variable. We also require that there is no structure sharing in a NNF
formula, that is, output from a gate acts as input to at most one gate.
A NNF formula is tree-like, while a circuit can be DAG-like.
Conversion of Boolean Circuits to NNF:Most formulas obtained
in practice are Boolean circuits. In our work Boolean circuits are
converted to NNF formulas in two stages. The first stage re-writes
other operators (such as xor, iff, implies, if-then-else) in terms of
∧, ∨, ¬ operators. In order to avoid a blowup in the size of the
resulting formula we allow sharing of sub-formulas. Thus, the first
stage produces a formula containing ∧,∨,¬ gates, possibly with
structure sharing. The second stage gets rid of the structure sharing
in order to obtain a NNF formula. This is done by introduction
of new variables. We introduce a new variable for each gate that
has a fanout greater than one. Once the sharing is removed the
negations can be pushed to the variables using DeMorgans laws.
Observe that the conversion of a Boolean circuit to a NNF formula
can be done in linear time in the size of the Boolean circuit. We
compare the number of variables in the NNF and CNF representa-
tions of a collection of industrial Boolean circuits in Fig. 2. The
NNF forms have 5− 10 times fewer variables than CNF. Modern
CNF SAT solvers use pre-processing techniques in order to elimi-
nate variables and clauses from the input CNF formula [9]. Fewer
variables reduce overhead during BCP and can make the decision
heuristics more effective. Even after pre-processing of CNF for-
mulas the NNF forms have fewer variables than CNF on 80% of
our benchmarks. The fewer variables in the NNF form (without
any pre-processing) motivates the need for exploring SAT solving
techniques that operate on NNF directly. We provide experimental
evidence that shows the utility of the NNF forms in SAT solvers.

In the subsequent sections we assume that the input Boolean cir-
cuit has been converted to a NNF formula. Given a NNF formula φ
our SAT algorithms check the satisfiability of φ without introduc-
ing any more new variables. We use the work by Andrews [7] and
Jain et al. [15] in order to represent the NNF formula in form of
two graphs the hpgraph and vpgraph.

Hpgraph: Given a NNF formula φ, the hpgraphGh(φ) is defined as
a tuple (V,R,L,E,Lit), whereV is the set of nodes corresponding to
all occurrences of literals in φ, R⊆V is a set of root nodes, L⊆V is
a set of leaf nodes, E ⊆V×V is the set of edges, and Lit(n) denotes
the literal associated with node n ∈ V . A root node n ∈ R has no
incoming edges and a leaf node n ∈ L has no outgoing edges.

The hpgraph for a NNF formula φ := (a∧¬b)∨ (c∧ (d ∨¬ f))
is shown in Fig. 1(a). We have V = {1,2,3,4,5}, R = {1,3}, L =
{2,5}, E = {(1,2),(1,4),(3,2),(3,4),(4,5)} and for each n ∈ V ,
Lit(n) is shown inside the node labeled n.

Vpgraph: Given a NNF formula φ, the vpgraph Gv(φ) is also de-
fined as a tuple (V ′

,R′,L′,E ′,Lit ′). The vpgraph for the formula
φ is shown in Fig. 1(b). We have V ′ = {1,2,3,4,5}, R′ = {1,2},

564

L′ = {3,4,5}, E ′ = {(1,3),(2,4),(2,5)} and for each n∈V , Lit(n)
is shown inside the node labeled n.

Jain et al. [14, 15] present a recursive (linear time) procedure
for obtaining the hpgraph and vpgraph from a given NNF formula.
We briefly review the recursive steps involved in the creation of
an hpgraph: 1) the hpgraph for a literal l is a new node n with
Lit(n) = l, 2) the hpgraph for φ1∧φ2 is the union of the hpgraphs of
φ1 and φ2, and 3) the hpgraph for φ1 ∨φ2 is obtained by connecting
leaves in the hpgraph of φ1 to the roots in the hpgraph of φ2.

For this paper we only need to understand the key properties of
the hpgraph and vpgraph. A path π = 〈n0, . . . ,nk〉 inGh(φ) orGv(φ)
is said to be a rl-path iff it starts at a root node and ends at a leaf
node. In Fig. 1(a), 〈1,2〉, 〈1,4,5〉,〈3,2〉,〈3,4,5〉 are rl-paths.

Key Property of the Hpgraph and Vpgraph: Each rl-path π in
the hpgraph Gh(φ) corresponds to a clause obtained by collecting
the literals occurring on π. For example, the rl-path 〈1,4,5〉 in
Fig. 1(a) corresponds to the clause a∨d∨¬ f . The collection of all
clauses occurring in the hpgraph gives a CNF form for the given
formula. Each rl-path in the vpgraph Gv(φ) corresponds to a cube
(term). For example, the rl-path 〈2,4〉 in Fig. 1(b) corresponds to
the term c∧d. The collection of all terms occurring in the vpgraph
gives a DNF form of the given formula.

THEOREM 1. Let Gh(φ) be the hpgraph and Gv(φ) be the vp-
graph of φ. Let π denote a rl-path and n denote a node on π.
(a) φ is equivalent to the CNF formula

V
π∈Gh(φ)

W
n∈πLit(n).

(b) φ is equivalent to the DNF formula
W

π∈Gv(φ)
V
n∈πLit(n).

The clauses (terms) corresponding to rl-paths in hpgraph (vpgraph)
can be redundant (that is, contain a literal and its negation).
Using Hpgraph inside a SAT Solver: Given an assignment σ to
a subset of variables in φ, we say that there is a conflict iff σ fal-
sifies φ. A literal l is an implied (unit) literal iff l must be set to
true in order to obtain a satisfying assignment under σ. We say an
assignment falsifies a node n in Gh(φ) or Gv(φ) iff the assignment
falsifies Lit(n). We use the hpgraph of φ in order to detect conflicts
and implied literals. Recall that each rl-path in the hpgraph corre-
sponds to a clause. The following corollary states that if each node
of a rl-path is false then there is a conflict.

COROLLARY 1. Given an assignment σ to variables in φ the
following are equivalent: 1) σ falsifies φ. 2) there exists a rl-path π
in Gh(φ) such that σ falsifies every node on π.

Consider the hpgraph in Fig. 1(a). The assignment σ := {a= 0,c=
0} falsifies every node on rl-path 〈1,2〉. Thus, σ falsifies φ.

COROLLARY 2. Let σ be an assignment to variables in φ. If
there is a rl-path π in Gh(φ) and a node m ∈ π such that σ falsifies
every node in π except m, and Lit(m) is not assigned in σ, then
Lit(m) is an implied literal.

The implied literal detected using the above corollary will be termed
as an h-implied literal. We will refer to the node m in the above
corollary as an h-implied node. Consider the hpgraph shown in
Fig. 1(a) and an assignment σ := {a = 0,d = 0}. σ falsifies all
but node 5 on the rl-path 〈1,4,5〉 in the hpgraph. It follows that
Lit(5) =¬ f is an implied literal (due to clause a∨d∨¬ f). That is,
f must be set to zero under the current assignment.

A main difference between the existing DPLL SAT solvers and
our solver is in the Boolean constraint propagation (BCP). In our
solver the BCP algorithm uses the hpgraph of a given formula.

3. BCP ON THE HPGRAPH
Let V denote the set of variables in a given formula φ. Given

an assignment σ of truth values to a set of variables W ⊆ V , the
Boolean constraint propagation (BCP) algorithm detects two cases.
(1) It reports if σ falsifies φ (conflict). (b) If there is no conflict,
the BCP algorithm provides a set of implied (unit) literals. Before
we describe the BCP algorithm on a hpgraph, we briefly review the
BCP algorithm used in modern CNF SAT solvers.

3.1 Review of BCP in CNF SAT solvers
Most modern CNF SAT solvers use the two-watched-literal scheme

[18] in order to obtain an efficient BCP algorithm. Suppose we are
given a CNF formula φ. LetD be a clause in φ. In the two-watched-
literal scheme two watches are associated with D. A watch is sim-
ply a literal l occurring in D. Before the search (DPLL algorithm)
starts any two literals in D can be designated as its watches. Let
l1, l2 be the watches corresponding to D. Four cases arise depend-
ing upon the status of l1, l2 given the current assignment σ.
Case A: Watches l1, l2 are either true or unassigned. In this case
there cannot be any conflict or an implied literal due to D. The
clause D is not even examined during BCP.

The clause D is examined only when one of its watches becomes
false. Without loss of generality assume that l2 becomes false in
the remaining three cases.
Case B: If l1 is already true, then D is already satisfied. In this case
nothing needs to be done even though l2 is false.

If l1 is not true, the solver tries to replace the falsified watch (l2)
by another watch that is not false. If there is a literal l3 in D that
is not false and l3
= l1, then l2 is replaced by l3. However, such a
literal (l3) may not exist in the remaining two cases.
Case C (conflict): All the literals in D are false. In this case D is
false under the current assignment.
Case D (implied literal): l1 is unassigned but all other literals in
D are false. In this case, l1 is reported as an implied literal.

The main benefit of the two-watched-literal scheme is that it re-
duces the number of times the solver examines the clauses in a
given CNF formula. This is crucial for obtaining efficient solvers
that can handle CNF formulas with millions of clauses. Another ad-
vantage is that the non-chronological backtracking is cheap. This is
because the watched literals do not need to be updated during back-
tracking. We now describe how the two-watched-literal scheme
found in CNF SAT solvers can be adapted to obtain an efficient
algorithm for BCP on a hpgraph.

3.2 Generalizing Two-Watched-Literal Scheme
to Two-Watched-Cut Scheme for Hpgraph

Let φ be a NNF formula. We are given an assignment σ to a
subset of variables occurring in φ. The BCP algorithm uses the
hpgraph Gh(φ) of φ to detect conflicts and implied literals. Given
G = (V,E,R,L,Lit) we say that C ⊆ V is a rl-cut in G iff removal
of all nodes inC from G disconnects all rl-paths in G. For example,
{1,3,4},{2,3,4},{5,6,8},{5,7,8} are some of the rl-cuts in the
hpgraph shown in Fig. 3. The node set {2,7,8} is not an rl-cut as it
does not disconnect the rl-paths 〈3,5〉,〈4,5〉. An rl-cut contains at
least one node from each rl-path. More precisely letC be a rl-cut in
Gh(φ). For every rl-path π in Gh(φ) there exists a node n such that
n ∈ π and n ∈C. Two rl-cuts C1,C2 are said to be node-disjoint if
C1 ∩C2 = /0. For example the rl-cuts {1,3,4},{5,7,8} in Fig. 3 are
node-disjoint.
Watches in a Hpgraph: Each rl-path in a hpgraph corresponds to
a clause. Let the clause corresponding to an rl-path π beD. In order
to apply the two-watched-literal scheme found in CNF SAT solvers
we want to watch two nodes n1,n2 on π. This in turn amounts

565

p q

−r

−q 4

1 2

3

−p

r

q

−s

8

5

6 7

C1
C2C3

Figure 3: An hpgraph. Three rl-cuts C1 := {1,3,4},C2 :=
{5,7,8},C3 := {2,3,4} are shown.

to watching two literals Lit(n1),Lit(n2) in D. However, there are
usually exponentially many paths (clauses) in a hpgraph. So it is
expensive to maintain watches for each rl-path (clause) explicitly.

This intuition leads us to define a watch in a hpgraph as a rl-cut
in the hpgraph. By taking a rl-cut as a watch we make sure that at
least one node on every rl-path is present in our watch. This in turn
corresponds to watching a literal on each clause in the hpgraph.
For example, the rl-cut C := {1,3,4} is a possible watch for the
hpgraph in Fig. 3. Note thatC contains at least one node from each
rl-path in Fig. 3. Watching node 3 on rl-paths 〈3,5〉,〈3,6,7〉,〈3,8〉,
amounts to watching literal Lit(3) = ¬r on clauses ¬r∨¬p,¬r∨
r∨¬s,¬r∨q, respectively.

In order to get the effect of the two-watched-literal scheme we
watch two rl-cuts in the hpgraph. By maintaining two rl-cuts for a
hpgraph we are able to watch two nodes (literals) on each rl-path
(clause) in the hpgraph. For example the rl-cuts C1 := {1,3,4}
and C2 := {5,7,8} are two possible watched cuts for the hpgraph
in Fig. 3. For the rl-path 〈1,2,6,7〉, the rl-cuts C1,C2 allow us to
watch nodes 1, 7 (literals p,¬s).

Suppose we are given G = (V,E,R,L,Lit), a partial assignment
σ, and a rl-cut W ⊆ V . We say that W is acceptable iff there is
no node m ∈W such that Lit(m) is false in σ. We say that W is
satisfied iff for allm∈W Lit(m) is true in σ. For example, given the
hpgraph in Fig. 3 and σ := {q= 1} the rl-cuts {5,6,8},{5,7,8} are
acceptable. The rl-cuts {2,3,4},{1,3,4} are not acceptable given
σ (due to node 4).

3.3 BCP onHpgraph Using TwoWatched Cuts
For a given hpgraph Gh(φ) = (V,E,R,L,Lit) we maintain two rl-

cutsC1,C2 (watches). Before the DPLL algorithm startsC1,C2 can
be initialized to any two rl-cuts in Gh(φ) that are node-disjoint. As
the search progresses the algorithm tries to maintain the invariant
that at least one of C1,C2 is acceptable. The algorithm also tries to
maintain C1,C2 as node-disjoint as possible. This is useful for de-
tecting implied literals. Recall, that implied literals detected using
the hpgraph (Corollary 2) are called h-implied literals. We describe
the various cases that may arise during the BCP on a hpgraph be-
low. Each of the cases below generalize the cases that occur in the
two-watched-literal scheme for CNF SAT solvers.
Case A: Both rl-cuts (watches) C1,C2 are node-disjoint and ac-
ceptable. Then there can be no conflict or h-implied literals due
to the current assignment. This is because each clause in the hp-
graph contains two literals that are not false. In this case there
is no need to look at any other part of the hpgraph. In Fig. 3 let
C1 := {1,3,4},C2 := {5,7,8} and σ := {r= 0}. Observe that both
C1,C2 are acceptable rl-cuts and are node-disjoint.

Suppose one of the rl-cuts say C2 is no longer acceptable. Then
we have the following cases.
Case B: For each node n ∈C1, Lit(n) is already true, that is, C1 is
satisfied. In this case there cannot be any conflict or an h-implied
literal in the hpgraph. Intuitively, every clause present in the hp-
graph is satisfied. The algorithm leaves C2 unchanged in this case.

p q

−r

−q 4

1 2

3

−p

r

q

−s

8

5

6 7

p q

−r

−q

1 2

3

4

−p

r

q

−s

5

6 7

8

(a) (b)

Figure 4: (a) Hpgraph for formula (((p∨ q)∧¬r ∧¬q)∨ (¬p∧ (r ∨
¬s)∧q)). (b) The corresponding vpgraph.

In Fig. 3 let C1 := {1,3,4},C2 := {5,7,8} and σ := {p = 1,r =
0,q = 0}. Observe that C2 is not acceptable as Lit(5),Lit(8) are
false under σ. However,C1 is satisfied. SoC2 is not updated.

If the previous cases do not apply, then the algorithm tries to find
a replacement rl-cut for C2. When searching for a replacement to
C2, the algorithm tries to find a rl-cut that is as different from C1
as possible. Intuitively, this is similar to why we keep two distinct
watched literals in a clause in the CNF two-watched-literal scheme.
If a replacement cut C3 is found such that C3 is acceptable and
C3 ∩C1 = /0, then C2 is replaced by C3. Otherwise, we have the
following two cases.
Case C (conflict): There is no acceptable rl-cut in the hpgraph. In
this case the current assignment σ falsifies the given formula. In
Fig. 3 let C1 := {1,3,4},C2 := {5,7,8} and σ := {p = 1,r = 1}.
In this case neitherC1 norC2 is acceptable and there is no possible
replacement for them. This is expected as the clause (¬r ∨¬p)
corresponding to the rl-path 〈3,5〉 is false.
Case D (implications): There is an acceptable rl-cut C3 but C3 is
not node-disjoint from C1. In this case, for every n ∈ C1 ∩C3 the
corresponding literal Lit(n) is an h-implied literal (assuming Lit(n)
is not already true). IfC3
=C1, thenC2 is replaced by rl-cutC3.

In Fig. 3 let C1 := {1,3,4},C2 := {5,7,8} and σ := {p = 1}.
Observe that C2 is not acceptable as Lit(5) is false under σ. Also
note that case B does not hold as C1 is not satisfied. Thus, we seek
a replacement for C2. Note that any new acceptable rl-cut must
include nodes 3,4 since as they are the only possible nodes that can
be watched on the paths 〈3,5〉,〈4,5〉, respectively. Thus, a possible
rl-cut C3 is {2,3,4}. Both C1,C3 contain nodes 3,4. It can be seen
that Lit(3),Lit(4) are precisely the h-implied literals. Lit(3) =¬r is
h-implied due to the rl-path 〈3,5〉, which corresponds to the clause
¬r ∨¬p. Similarly, Lit(4) = ¬q is h-implied due to the rl-path
〈4,5〉, which corresponds to the clause ¬q∨¬p. Since h-implied
literals are also implied literals it follows that ¬r,¬q are implied
literals given the current assignment.

4. MINIMAL RL-CUTS IN HPGRAPH
In section 3.3 we adapted the CNF two-watched-literal scheme

to hpgraphs by using two rl-cuts in the hpgraphGh(φ). We now de-
scribe how rl-cuts are obtained and updated efficiently during BCP.
The key idea is to make use of the vpgraph Gv(φ). For example,
consider the hpgraph in Figure 4 (a) and the corresponding vpgraph
in Figure 4 (b). Observe that any rl-path in the vpgraph corresponds
to a rl-cut in the hpgraph. The rl-paths 〈1,3,4〉, 〈2,3,4〉, 〈5,6,8〉,
〈5,7,8〉 in the vpgraph corresponds to rl-cuts {1,3,4},{2,3,4},
{5,6,8}, {5,7,8}, respectively, in the hpgraph.

GivenG= (V,E,R,L,Lit) we say thatC⊆V is aminimal rl-cut
in G iff C is a rl-cut in G and no proper subset of C is a rl-cut in G.
Let nodes(π) denote the set of nodes occurring on a rl-path π. A
surprising fact is that the rl-paths in the vpgraph correspond to min-
imal rl-cuts in the hpgraph. One can also prove that every minimal
rl-cut in the hpgraph corresponds to a rl-path in the vpgraph.

566

THEOREM 2. Let Gh(φ) be a hpgraph and Gv(φ) be a vpgraph
for a NNF formula φ. (a) Let π be a rl-path in Gv(φ). Then
nodes(π) form a minimal rl-cut in Gh(φ). (b) Let C be a mini-
mal rl-cut in Gh(φ). Then there exists a rl-path π in Gv(φ) such
that C = nodes(π).

4.1 Updating Minimal RL-cuts in Hpgraph
Our algorithm always maintains two minimal rl-cuts in the hp-

graph as the watched cuts. These cuts are obtained and updated by
finding rl-paths in the corresponding vpgraph by using a depth-first
search like routine. The BCP algorithm relies on the ability to find
acceptable rl-cuts in the hpgraph. This is done by searching for ac-
ceptable rl-paths (rl-paths with no falsified nodes) in the vpgraph.
The BCP routine also requires that we find disjoint rl-cuts in the hp-
graph (if possible). This is done by searching for disjoint rl-paths
in the vpgraph. More precisely, suppose we are trying to replace rl-
cutC2 in the hpgraph. Let the other rl-cut in the hpgraph beC1 and
let π1 denote the rl-path corresponding to C1 in the vpgraph. Then
we search for a rl-path in the vpgraph that is completely disjoint
from π1. If we succeed in finding a path π3 in the vpgraph that is
completely disjoint from π1, then we obtain a replacement C3 for
C2 in the hpgraph such thatC1 ∩C3 = /0. If there is no rl-path in the
vpgraph that is completely disjoint from π1, we find the set of all
nodes N on π1 that must be shared by any acceptable rl-path in the
vpgraph (this can be done in linear time). Intuitively, the nodes in
N give us the precise set of h-implied literals.

THEOREM 3. Let Gh(φ) be a hpgraph and Gv(φ) be a vpgraph
for a NNF formula φ. Let π1 be an acceptable rl-path in Gv(φ).
Suppose there is no other acceptable rl-path in Gv(φ) that is com-
pletely node disjoint from π1. Let N denote the set of nodes that
must be shared in any acceptable rl-path in Gv(φ). (a) Then N
= /0.
For every m∈N either Lit(m) is true or Lit(m) is implied under the
current assignment. (b) If m is an h-implied node, then m ∈ N.

Optimizations: BCP based on only two-watched rl-cuts can be
inefficient when the hpgraph has millions of nodes. This is be-
cause even the minimal rl-cuts for the entire hpgraph can be large
and will be updated frequently during BCP. In practice, there are
usually many hpgraph components (due to top level conjunctions
and structure sharing). Each component is small as compared to
the entire hpgraph in terms of number of nodes. For efficiency we
maintain two watched rl-cuts for each hpgraph component. The
algorithms above apply to each individual hpgraph/vpgraph com-
ponent. See [14] for other important optimizations.

The hpgraph for a CNF formula is a disjoint union of various line
graphs (hpgraph components) where each line graph represents a
clause. A minimal rl-cut in a line graph is simply a cut of size one.
Thus, the two-watched rl-cuts for each hpgraph component reduces
to two-watched-literal scheme when the input is a CNF formula.

The other important components of our SAT solver such as de-
cision heuristics, conflict driven learning, non-chronological back-
tracking, and restarts are implemented in a similar manner as other
state-of-the-art SAT solvers. The conflict driven learning [17, 18]
generates new clauses, which are added to a CNF clause database.
The BCP routine takes into account both the hpgraph and the clause
database in order to detect conflicts and implied literals.

5. EXPERIMENTAL RESULTS
The experiments are performed on a 1.86 GHz Intel Xeon (R)

machine with 4 GB of memory running Linux. The techniques de-
scribed in the paper have been implemented in a SAT solver called
NFLSAT (Non-clausal FormuLas SATisfiability checker). The in-
put formula is given in AIG (And Inverter Graph) [1], or ISCAS

format. We evaluate the solver on a collection of 2541 Boolean cir-
cuits obtained from publicly available sources. These benchmarks
consist of 1) 839 bounded model checking problems and 857 k-
induction problems obtained from all sequential circuits used in the
2007 hardware model checking competition [2], 2) all 341 bench-
marks that were used in the AIG track in the SAT competition 2007
[6]. The remaining benchmarks are obtained from microproces-
sor verification and equivalence checking domains. Out of 2541
Boolean circuits, 2192 circuits are in the AIG format. We use a
timeout of 10 minutes per problem per solver.

We compare NFLSAT against three state-of-the-art CNF solvers
RSAT [5], PicoSAT [4], and MiniSAT [3]. In SAT 2007 compe-
tition the solvers RSAT, PicoSAT, and MiniSAT were ranked first,
second, third, respectively in the industrial category. We use the
SAT 2007 competition version of RSAT and PicoSAT. We use the
current public version of MiniSAT (minisat2-070721). The CNF
versions of the above circuits were obtained by means of the stan-
dard Tseitin transformation [21]. We use aigtocnf [1] to convert
the benchmarks in AIG format to CNF. Note that RSAT and Min-
iSAT use pre-processing [9] to simplify the input CNF formulas.
We include the time required to obtain hpgraph/vpgraph from a
Boolean circuit in NFLSAT’s runtime.

We also compare NFLSAT with MiniSAT++ 1.0 which was ranked
first in the AIG track of SAT-Race 2008. MiniSAT++ simplifies the
given AIG circuit using DAG-aware rewriting and then converts the
simplified circuit to CNF by using an improved Tseitin translation
[10]. The resulting CNF is then passed to MiniSAT 2.1, which was
ranked first in the CNF track in SAT-Race 2008. We also compare
NFLSAT with PicoaigerSAT which was ranked second in the AIG
track of SAT-Race 2008. MiniSAT++ and PicoaigerSAT directly
accept AIG inputs. We compare NFLSAT with MiniSAT++ and
PicoaigerSAT on 2192 AIG benchmarks.

Figure 5 gives scatter plots comparing NFLSAT with other solvers.
NFLSAT has better performance on points below the line y = x.
NFLSAT has better runtimes than RSAT, PicoSAT, MiniSAT, Min-
iSAT++, and PicoaigerSAT, on respectively 89%, 91%, 86%, 83%,
and 86% of the benchmarks.

The experimental results are shown in Table 1. The first four
rows summarize the results for all 2541 benchmarks, while the last
three rows summarize the results for 2192 AIG benchmarks. For
each solver we report: 1) Number of problems solved within time-
out in the "Solved" column. 2) Number of problems where a time-
out occurred in the "Timeout" column. 3) The total time spent in
seconds on the problems that were solved in the "STime" column.
4) Sum of "Solved Time" and timeouts in the "TTime" column.

NFLSAT solves more problems than RSAT, PicoSAT, MiniSAT,
PicoaigerSAT, and it is also faster in terms of run time. The main
competition to NFLSAT is given by MiniSAT++ which solves 14
more problems within timeout. These 14 benchmarks are from SAT
competition 2007 AIG benchmark suite and were obtained from
CNF formulas by reverse engineering. The extraction of circuit
structure from CNF is not perfect and many of the extracted circuits
are simply a conjunction of clauses. On such CNF-like benchmarks
NFLSAT is not able to match MiniSAT++ performance.

The main conclusion is that NFLSAT is competitive to the exist-
ing state-of-the-art SAT solvers on a majority of the Boolean cir-
cuit benchmarks in terms of runtime. The NNF form of Boolean
circuits has fewer variables than (pre-processed) CNF in the major-
ity of the cases. Fewer variables in turn reduce the overhead dur-
ing the BCP and can make the decision heuristics more effective.
The two-watched-cut scheme carries more overhead than the two-
watched-literal scheme. However, the two-watched-cut scheme can
potentially update the watches for a large number of clauses with-

567

Solver Solved Timeout STime TTime
NFLSAT 2364 177 29753 135953
RSAT 2310 231 45794 184394
PicoSAT 2281 260 43297 199297
MiniSAT 2270 271 39489 202089
NFLSAT 2060 132 26585 105785
MiniSAT++ 2074 118 32457 103257
PicoaigerSAT 2033 159 35892 131292

Table 1: Summary of each SAT solvers performance.

out having to look at each clause individually.

6. SUMMARY
We presented a DPLL-based SAT solver that operates on the

graph-based representations of non-clausal formulas (Boolean cir-
cuits). The input formula is converted to a NNF formula that is rep-
resented using two graphs. The hpgraph encodes the CNF form of
the given NNF formula, while the vpgraph encodes the DNF form
of the given NNF formula. The key step in the DPLL algorithm
is Boolean constraint propagation (BCP). We adapt the idea of the
two-watched-literal scheme from CNF SAT solvers in order to ef-
ficiently carry out BCP on hpgraph. In our algorithm two cuts are
watched for each hpgraph component. The watched cuts are used
to detect conflicts and implied literals. We use the duality between
the cuts in a hpgraph component and the paths in the corresponding
vpgraph component for efficiently updating the cuts. Experimental
results show that the new SAT solver is faster than the state-of-the-
art solvers on a majority of the benchmarks.
Acknowledgment. We thank Per Bjesse, Sicun Gao and Will Klieber
for their valuable comments. The first author is grateful to his thesis
committee members for their feedback on this work.

7. REFERENCES
[1] AIGER, http://fmv.jku.at/aiger.
[2] Hardware model checking competition, http://fmv.jku.at/hwmcc07/.
[3] Minisat sat solver. http://minisat.se/.
[4] Picosat sat solver. http://fmv.jku.at/picosat/.
[5] Rsat sat solver. http://reasoning.cs.ucla.edu/rsat/.
[6] SAT competition 2007, www.satcompetition.org/2007/.
[7] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: to
Truth through Proof. Kluwer Academic Publishers, second edition, 2002.

[8] A. Biere. Picosat essentials. Journal on Boolean Satisfiability, Boolean
Modeling and Computation (JSAT), 4:75–97, 2008.

[9] N. Eén and A. Biere. Effective Preprocessing in SAT Through Variable and
Clause Elimination. In SAT, pages 61–75, 2005.

[10] N. Eén, A. Mishchenko, and N. Sörensson. Applying Logic Synthesis for
Speeding Up SAT. In SAT, pages 272–286, 2007.

[11] N. Eén and N. Sörensson. An Extensible SAT-solver. In SAT, pages 502–518,
2003.

[12] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining Strengths
of Circuit-based and CNF-based Algorithms for a High-performance SAT
solver. In DAC, 2002.

[13] E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust Sat-Solver. In DATE,
2002.

[14] H. Jain. Verification using satisfiability checking, predicate abstraction, and
craig interpolation. Technical Report CMU-CS-08-146, SCS, CMU, 2008.

[15] H. Jain, C. Bartzis, and E. M. Clarke. Satisfiability checking of non-clausal
formulas using general matings. In SAT, pages 75–89, 2006.

[16] Feng Lu, Li-C. Wang, Kwang-Ting Cheng, and Ric C.-Y. Huang. A Circuit
SAT Solver With Signal Correlation Guided Learning. In DATE, 2003.

[17] J. P. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for
Satisfiability. In ICCAD, pages 220–227, November 1996.

[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In DAC, pages 530–535, June 2001.

[19] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme
for satisfiability solvers. In SAT, pages 294–299, 2007.

[20] C. Thiffault, F. Bacchus, and T. Walsh. Solving Non-clausal Formulas with
DPLL Search. In SAT, 2004.

[21] G.S. Tseitin. On the complexity of derivation in propositional calculus. In
Studies in Constructive Maths and Mathematical Logic, pages 115–125, 1968.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

N
FL

SA
T

 (
se

co
nd

s)

RSAT SAT 2007 (seconds)

y > x on 244 points

y < x on 2091 points

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

N
FL

SA
T

 (
se

co
nd

s)

PicoSAT SAT 2007 (seconds)

y > x on 201 points

y < x on 2104 points

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

N
FL

SA
T

 (
se

co
nd

s)

MiniSAT2 070721 (seconds)

y > x on 316 points

y < x on 1998 points

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

N
FL

SA
T

 (
se

co
nd

s)

MiniSAT++ (seconds)

y > x on 333 points

y < x on 1689 points

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

N
FL

SA
T

 (
se

co
nd

s)

PicoaigerSAT (seconds)

y > x on 272 points

y < x on 1722 points

Figure 5: Scatter plots comparing run times of NFLSAT and other
solvers.

568

