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AIISl’l~AC1’: An Fzhcr circuit description is a hierarchical structure 
composed of cells, wires. connectors bctwecn wires. and pins that con- 
nect wires to cells. Cells may correspond IO primitive circuit clcmcnts, 

or they may bc dcfincd in terms of lower lcvcl subcells. Unlike other 
gcomctrical layout systems, a subcell may be instance of the ccl1 being 
dcfincd. When such a rccursivc cell definition is instantiated. the rccur- 
sion is unwound in a manner reminiscent of the proccdurc call copy 
rule in Algal-like programming languages. Ccl1 specifications may have 
paramctcrs that arc used to control the unwinding of rccursivc cells and 
to provide for cell families with varying numbers of pins and other 
internal components. WC illustrate how tic Es&r layout systlzm can 
bc used with scvcral nontrivial cxamplcs, including a parallel sorting 
network and a FK implementation. We also briefly dcscribc Ihc un- 
winding algorithm. 

1. Introduction 
Many circuits such as sorting networks. hardware multipliers. and 

FFT implementations can be dcscribcd by rccursivc gcomctrical pat- 
terns. Some layout languages provide support for recursion ([3], [G], 
[7] and [lo]); however, in all such systems familiar to us the circuit 

description is textual rather than gcomctrical. WC believe that it is 
more natural to describe complicated circuits gcomctrically. rather than 
by giving a textual description and requiring that a program figure out 
the details of the layout Some circuit editors have powerful iteration 
operators that can be viewed as implcmendng a form of tail recursion 
[4], but none allow full recursion. WC have imptcmcntcd a gcomctrical 

layout system (called the Escher System) in which recursive patterns 
can be specified directly and then instantiated to obtain layouts for 
complex circuits automatically. Figures 2-3 and 3-4 were gcncrated by 
our system from recursive pattcms. 

An Escher circuit description is a hierarchical structure in which 
the basic building blocks are cells, wires, connectors bctwccn wires, and 
pins that connect wires to cells. Cells may correspond to primitive cir- 
cuit clcmcnts such as NAND gates and latches, or they may bc dcfincd 
in terms of lower level subcells, which arc dcfincd in terms of cvcn 
lower level subcells. etc. By using the Escher system. a number of 
primitive cells can bc conncctcd togcthcr it1 complex gecmctrical pat- 
tern to dcerihc the layout lilr :I large and intricate circuit. Iksigncrs do 
not nozd to worry ahout the ahsolutc sizes and positions of various 
circuit components; only the topotctgic;rl rclationsbips arc important. 
Morcovcr, the system is complctcly intccstivc. Circuit diagrams arc 
constructed using a pointing dcvicc (“mouse”) and tablet. 

Although many circuit cditurs provide :I set of fcaturcs sinlilar to 
Ihc ones that WC have just listed. our systc~n is unique in th;~t a subcell 
may, in fact, bc instimcc of the cell being drlinctl. When a rccursivc ccl1 
definition is instantintcd. the rccunion is ~rnwound in a nunncr 

rcminisccnt of the prcrcdurc call copy rule in Algal-like programming 

languages. Cell specifications may have non-negative intcgcr 
paramctcrs that arc used to control the unwinding of rccursivc cells and 
to provide for ccli families with varying ntrmbcrs of pins and other 
intcmal components. While the notion of paramctcrixcd cell spcciticr 
tions is quite common in textual hardware description languages. WC 
bclicvc that it has not been previously used with graphical circuit 
editors and. thcrcfore. may bc of indepcndcnt interest. 

2. Conventions for Specifying Recursive Circuit 
Diagrams 
As an cxamplc of bow the Fxhhr system might be used, we con- 

sider the problem of laying out the Tally circuit dcscribcd in [S] and 
also in [9]. This circuit has n inputs and n+l outputs. The k-th output 
will bc high and all other outputs low, if exactly k of the inputs arc high.. 
Figure 2-l gives the Escher version of a rccu&ivc dclinition for the 
Tally circuit. The circuit for the base case, Tally(l), is shown in Figure 
2-2. Both of these diagrams must be supplied by the user. 

co-and: dafC#11 tal ly(il) -n( 

Figure 2.1: I&cursive Pattern for Tally(n) 

In thcs~ diagcmls lhcrc arc two kinds tif cells: llrrsic cells that 
cannot bc rcfincd lilrlhcr (like Ihc two input mul~iplcxcrs), and 
Corr~posile cells that contain other cells. wires. and connectors (like the 
rccursivc occurrcncc of ‘I’ally(n-I) ). ‘I’hc cells that WC directly con- 
Gncd within a compos81tc cell ilrc its S&JCP~/.S. Somctimcs scvcral sub- 
cells s,. s,, . . ., S,, arc mstimccs of’thc si~n~c cell C. III this cast WC say 

that C is the source ofcach of the Si’s. 
Since the specification is panmctcri;r.cd by n, some abbreviations 

arc nccdcd to rcprcscnt groups of lines and subcells that tlcpcnd on n. 
When a dcfinitc value is provided for n. each such abbreviation in the 
specification may bc cvaluatcd. 
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Figure 2-2: TALLY(l), base cast for the TALLY circuit 

Groups in Escher arc somewhat like one dimensional arrays in 
programming languages.. A group is a horizontal or vertical array of 
identical cells with the appropriate intcrconnccting wires. The subcells 
of a group may bc either basic cells or composite cells. They are distin- 
guished fromone another by an integer index, which increases from left 
to right in the cast of a horizontal array or from top to bottom in the 
case of an vertical array. The initial and final values of the index may 
depend on a parameter of the cell containing the group; however, the 
increment must be a fixed positive integer. A group whose length 
depends on an undetermined parameter is represcntcd by three sub- 
cells, one for the first subcell, one for the last subcell. and one in the 
middle with index “*” to represent all of the remaining subcells. Thus, 
the -I**- serves exactly the same function in our formal specification that 
the ellipsis ‘I...” serves in an informal specification. A number appear- 
ing after the “*‘I represents an index incrcmcnt; when the “*” appears 
alone, the default value for the increment is 1. In the Tally example 
(Figure 2-1) there are a total of (n+ 1) multiplexcrs, the MUX[n] and 
MUX’s with indices from 0 to n-l in agroup. When a group of subcells 
is spccificd, it is only necessary to give the the position of the first and 
the last subcells of the group with respect to some other part af the 
circuit. When the containing cell is instantiated and all of the 
parameters of t.hc group are fixed, this inftirmation is suffcicnt to detcr- 
mine the position of each of the subcells of the group. 

Finally, &her uses a short diagonal mark on a wire to represent a 
group of wires. An expression associated with the mark indicates how 
many lines arc in the group. WC call such groups of wires. brtscs. and 
tbc associated cxprcssion; tic Brrs wi&lr. In Figure 2-l thcrc arc two 
busts, and cach rcprcscnts n-l wires. WC atso use the convention that a 
wire conncctcd to a subcell with index I’*” actually rcprcscnts the same 
number of wires as the number of omitted subcells. 

Examination of the recursive specification for the 1’AI.L.Y circuit 
immcdiatcly shows how it works. Iich multiplcxcr has three inputs 
lab&d u, 6. c and 011c output lab&d d. If b is high, the output dsclccts 
lhc value c; othcrwisc, it sclccts the value n. It is easy to see that the 
base case is correct. WC assume that ‘l’AI.I,Y(n-1) is correct and’that k 
of the first n-l inputs arc high. By the induction hypothesis. the k-th 
output of TAl.LY(n-1) is high. If the nth input is also high, then all of 
the sclcctor inputs of the multipicxcrs will 6c high, so each OF the 
MUX’s with index in the range from 0 to n-l will sclcct as its output the 
value of its c input while the output of MUX[n] will bc low. Thus, the. 
(k+l)” output (counting from bottom to top) of TALLY(n) will be 
high and the other outputs wilt bc low. A similar discussion can bc used 
for the case in which the n* input ofTALLY is low. 

hftcr we instantiate the TALLY circuit with’ a given value, for 
example, n=6. the &her system will automatically unwind the rccur- 
sive specification into the circuit diagram -shown in Figure 2-3. A final 
phas& (that has not been complctcd)’ will compact t.hc circuit diagram 
produced by the Fschcr system in ,accordancc with a set of design rules 
appropriate to the transistor technology used to fabricate the chip. 

Figure 2-3: Tally(6) Instantiation 

3. Divide and Conquer Circuits 
The simplest rccursivc circuits have only a single rccunivc sub- 

circuit, This case is somewhat like tail-recursion in programming lan- 
guages and is relatively easy to implement. The Tally circuit in Figure 
2-1 is an example of such a recursion. Unfortunately, not all recursive 
circuits have such a simple structure. Many interesting circuits are 
based on a divide end conquer strategy in which a complicated task is 
rcalizcd by a number of subcircuits each of wilich is a recursive instance 
of the circuit being defined. Adders, multipliers, sorters, FIT circuits, 
CIC., can all be structured in this manner. Figuring out by hand an 
appropriate layout for an instance of such a circuit can be quite tricky. 
Once the recursive structure of the circuit has been dctermincd, rhc 
Escher system may bc used to unwind a particular instance of the cir- 
cuit. 

TLI illustrate these ideas we show how the Escher system can be 
used to obtain a layout for a simple parallel sorting network [S]; If n is a 
power of 2, this nctwork’will sort a sequence of n k bit numbers into 
increasing order. The standard divide ind conquer approach is to sort 
the first half and the second half in parallel and then merge the two 
sorted sequences. The Gcher specification for such a circuit is shown in 
Figure 3-1. Note that every bus width number here means the number 
of k-bit wires. 

Ihc Merge ccl1 can also be dcfned recursively. ‘To merge two sc- 
qucnccs “a” and “b”, we merge the even-indexed clcmcnts of “a” with 
the odd-indcxcd clcmcnts of “b”, and the odd-indcxcd elements of “a” 
with the even-indexed clcments of yb”. 111~ outputs 01 the two half- 
size rncrging circuits arc sent through an arr,ly of compa&ors. I!~ch 
comparator “CMI’” sorts lwo k-bit numhcn in or&r. Vigurc 3-2 gives 
the rccunivc definition of Mcrgctn). Pass(n). shown in Figure 3-3, con- 
tains only wires and is used to separate the cvcn-indexed inputs and the 
odd-indcxcd inputs. 
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Figure 3-1: Recursive pattern for Sort(n) 

cornand: dafcmll mrg.(n) 

Figure 3-2: Recursive pattern for Mcrgc(n) 

Figure 3-3: Recursive pattern for connections Pass(n) 

If we instant&c the rccuzsivc specification shown in Figure 3-1 
with n = 16, our system automatically gcncratcs the pattern shown in 
Figure 3-4. 

Figure 3-4: SOIi’1‘(16) Instantiation 

In the full vclbion of this paper [I] WC also show how Escher can bc 
ww~l to obtain layouts fi:,r ii rccursivc tliscrclc Vouricr Ir,insli~rm and for 
the /jilri///i*/ pn$.r cbrrrit dcscrihcd by bischcr ;III~ Ltdncr in [2]. 

4. An Overview of the Unwinding Algorithm 
A cell is rcprcscntcd in the I:schcr system by a record structure 

consisting of three field:;, the httributcl At. the IbintNct. and the Sub- 
Ccl11 At. ‘I’hc httribtrtcl .ist contains the llmc of lhc cell. its paramctcr 
list, and its position (TonY. I~ottomY, RighlX, I&X) with rcspcct to a 
lixcd cuordinatc system. ‘I‘hc PointNet is used to keep track of the 
difl‘crcnt kinds of points (pins. bends, connectors. vias, transistors, etc.) 
and their locations. Filch point is rcprcscntcd by a record structure that 
specifics its type, its coordinates PosX and Posy. and how it is con- 
ncctcd to the other components of the cell. All.of the points in a ccl1 are 
linked togcthcr in an undirected graph structure called the PointNet. 
From each point in the ccl1 it is possible to tind the next connected 
point in a vertical or horizontal direction by following the appropriate 
link in the PointNct. The SubCellList contains a descriptor for each 
component subcell. A suhccll descriptor has a pointer to the source of 
the subcell, an assignment of symbolic expressions for any parameters 
of the source cell, and inFormation on the position and orientation of 
the subcell (ie., whcthcr it has been flipped or rotated). Subcells in a 
group arc linked togcthcr in a circular list. Some information in the 
Attributcl .ist of the source cell, like the cell name. is also duplicated to 
prcvcnt unncccssary searching. 

A recursive circuit specification is unwound into 3 tree structure in 
which nodes correspond to cells. and one node is a son of another if the 
ccl1 corresponding to the first node is a subcell of the cell corresponding 
to the second. Thus, a ccl1 will appear at level i in the tree if it is 0 
subcell of a cell that appears at level i-l. A layout is gcncrated frqm the 
tree in a bonom-up fashion in which layouts arc determined for all of 
the sons of a node before laying out the node itself. To accomplish this 
task it may bc necessary to move various circuit components in order to 
make room for components generated at lower levels. The algorithms 
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that Escher uses for this purpose arc discussed in detail in the fi~ll 
version of this paper [l]. 

When WC unwind a recursive Escher specification, we must be 
careful not to duplicate steps if we encounter the same cell more than 
once as we traverse the tree. For example, if we use the naive algorithm 
to unwind SORT(4), WC have to uuwind SOR’l‘(2) twice and 
MRRGFXZ) once; when we unwind MlXGFJ2), we must unwind 
PASS(Z) twice, MERGE(I) twice, and CMP twice. In fact, with the 
naive algorithm it is possible to create cxamplcs in which the number of 
duplicated steps will be cxponcntial in the size of the original Eschhr 
specification. 

Instead, Escher uses a dircctcd acyclic graph structure to rcprescnt 
the nesting of subcells. WC call this data structure the Suhce/l Nesting 
Graph or SNG. Since each subcell corresponds to at most one node in 
the SNG, it is only necessary to unwind a given subcell once. The 
graph for SORT(4) is shown in Figure J-l. Note that each of the 
subcells SORT(4), SGIC’T( 2). CMP, M lXG1’(2), Ml-XGE(l), and 
PASS(2) is reprcscntcil uniquely this time. 

The unwinding algorithm consists of two phases. In the first phase 
we cvaluatc all of those cxprcssions that dcpcnd on the paiamctcrs of 
the cell and crcatc the SNG. Expressions may appear in the spccifica- 
tions of groups and buses, and they may be used as parameters of lower 
level subcells. After WC have figured out the exact number of subcells 
in a subcell group, WC may have to cnlargc the ccl] to obtain enough 
space for the omitted subcells in the group. An algorithm for this pur- 
post is described in d&l in the full paper. Next, WC copy the subcells 
into the ccl]. After a cell ha% been evaluated it will bc linked to its 
source cell in the SNG. The SNG for cell CL(V) will not bc complete 
until all of its dcsccndant subcells have been proccsscd in this manner. 

The second phase in the unwinding process is a depth first traver- 
sal of the SNG. When all of the subcells of a cell in the SNG have been 
unwound, we replace each subcell with its source body and mark the 
cell as unwound. It may be necessary to cnlargc a ccl1 to obtain enough 
space for filling in the subcell bodies: An algorithm for this step is given 
in the full paper. The last step in this phase is to eliminate jogs in wires 
that result from these substitutions. A technique for doing this is also 
given in the full paper. Finally, some simple compaction algorithms arc 
used to shorten wires and move subcells closer together. 

Figure 4-l: Dircctcd Acyclic Graph for SORT(4) 

5. Conclusion and Directions for Future 
Research 
WC list below some of the problems with the current system that 

we hope to address in a future version: 

l Multiple parameters. As currently implcmcntcd, the &her 
system only permits ccl] spccilications with a single recur- 
sivc parameter. A number of intcrcsting cxamplcs can be 
specified most naturally by using multiple rccursivc 
pnramcters. It should be fairly easy to modify the current 
implcmcntatiou so that multiple panuncters arc permitted. 

l Compaction and oplimizllion. ‘l’hc layouts produced by our 
system ficqucncly contain long wires and have area that 
grows more rapidly with the rccunion depth than necessary. 
Although WC have implcmcntcd some simple compaction 
algorithms. WC bclicvc that this problem rcquircs much 
more thought. It may bc possible to design compaction al- 
gorithms that take advantage of the hicrar-chical structure of 
Fschcr specifications. Ilowcvcr. the simple algorithms that 
have already been implcmcntcd do not make USC of this 
information. 

l Combined textuat and geometric description. For certain 
applications like simulation a textual cir+t description may 
bc quite useful. WC envision a VISI design system with 
multiple wirrdows which would permit borh textual and 
gcomctric descriptions of circuit components. One window 
would contain a gcomctrical rcprcscntation of the circuit 
like the one described in this paper. Another window would 
contain a rcprcsefitation of the circuit in an appropriate 
(textual) hardware description langungc. The textual 
description could bc used directly for simulation, verifica- 
tion, CL. A change in the geometrical description would be 
automatically rcflccted by a corresponding change in the 
HDL rcprescntation. The dual reprcscntatlon would 
provide access to the best fcaturcs of both types of design 
systems. 
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