
Escher--A Ge(ometricaI Layout System
For Recursively Defined Circuits

Edmund Clarke ‘, Yulin Fcng l *

* Dcpartmcnt ofcomputcr Scicncc, Camcgic-Mellon University, Pittsburgh

** Ikpamncnt oFComputcr Scicncc, University of Scicncc and ‘l’cchnology of China, Hcfci

AIISl’l~AC1’: An Fzhcr circuit description is a hierarchical structure
composed of cells, wires. connectors bctwecn wires. and pins that con-
nect wires to cells. Cells may correspond IO primitive circuit clcmcnts,

or they may bc dcfincd in terms of lower lcvcl subcells. Unlike other
gcomctrical layout systems, a subcell may be instance of the ccl1 being
dcfincd. When such a rccursivc cell definition is instantiated. the rccur-
sion is unwound in a manner reminiscent of the proccdurc call copy
rule in Algal-like programming languages. Ccl1 specifications may have
paramctcrs that arc used to control the unwinding of rccursivc cells and
to provide for cell families with varying numbers of pins and other
internal components. WC illustrate how tic Es&r layout systlzm can
bc used with scvcral nontrivial cxamplcs, including a parallel sorting
network and a FK implementation. We also briefly dcscribc Ihc un-
winding algorithm.

1. Introduction
Many circuits such as sorting networks. hardware multipliers. and

FFT implementations can be dcscribcd by rccursivc gcomctrical pat-
terns. Some layout languages provide support for recursion ([3], [G],
[7] and [lo]); however, in all such systems familiar to us the circuit

description is textual rather than gcomctrical. WC believe that it is
more natural to describe complicated circuits gcomctrically. rather than
by giving a textual description and requiring that a program figure out
the details of the layout Some circuit editors have powerful iteration
operators that can be viewed as implcmendng a form of tail recursion
[4], but none allow full recursion. WC have imptcmcntcd a gcomctrical

layout system (called the Escher System) in which recursive patterns
can be specified directly and then instantiated to obtain layouts for
complex circuits automatically. Figures 2-3 and 3-4 were gcncrated by
our system from recursive pattcms.

An Escher circuit description is a hierarchical structure in which
the basic building blocks are cells, wires, connectors bctwccn wires, and
pins that connect wires to cells. Cells may correspond to primitive cir-
cuit clcmcnts such as NAND gates and latches, or they may bc dcfincd
in terms of lower level subcells, which arc dcfincd in terms of cvcn
lower level subcells. etc. By using the Escher system. a number of
primitive cells can bc conncctcd togcthcr it1 complex gecmctrical pat-
tern to dcerihc the layout lilr :I large and intricate circuit. Iksigncrs do
not nozd to worry ahout the ahsolutc sizes and positions of various
circuit components; only the topotctgic;rl rclationsbips arc important.
Morcovcr, the system is complctcly intccstivc. Circuit diagrams arc
constructed using a pointing dcvicc (“mouse”) and tablet.

Although many circuit cditurs provide :I set of fcaturcs sinlilar to
Ihc ones that WC have just listed. our systc~n is unique in th;~t a subcell
may, in fact, bc instimcc of the cell being drlinctl. When a rccursivc ccl1
definition is instantintcd. the rccunion is ~rnwound in a nunncr

rcminisccnt of the prcrcdurc call copy rule in Algal-like programming

languages. Cell specifications may have non-negative intcgcr
paramctcrs that arc used to control the unwinding of rccursivc cells and
to provide for ccli families with varying ntrmbcrs of pins and other
intcmal components. While the notion of paramctcrixcd cell spcciticr
tions is quite common in textual hardware description languages. WC
bclicvc that it has not been previously used with graphical circuit
editors and. thcrcfore. may bc of indepcndcnt interest.

2. Conventions for Specifying Recursive Circuit
Diagrams
As an cxamplc of bow the Fxhhr system might be used, we con-

sider the problem of laying out the Tally circuit dcscribcd in [S] and
also in [9]. This circuit has n inputs and n+l outputs. The k-th output
will bc high and all other outputs low, if exactly k of the inputs arc high..
Figure 2-l gives the Escher version of a rccu&ivc dclinition for the
Tally circuit. The circuit for the base case, Tally(l), is shown in Figure
2-2. Both of these diagrams must be supplied by the user.

co-and: dafC#11 tal ly(il) -n(

Figure 2.1: I&cursive Pattern for Tally(n)

In thcs~ diagcmls lhcrc arc two kinds tif cells: llrrsic cells that
cannot bc rcfincd lilrlhcr (like Ihc two input mul~iplcxcrs), and
Corr~posile cells that contain other cells. wires. and connectors (like the
rccursivc occurrcncc of ‘I’ally(n-I)). ‘I’hc cells that WC directly con-
Gncd within a compos81tc cell ilrc its S&JCP~/.S. Somctimcs scvcral sub-
cells s,. s,, . . ., S,, arc mstimccs of’thc si~n~c cell C. III this cast WC say

that C is the source ofcach of the Si’s.
Since the specification is panmctcri;r.cd by n, some abbreviations

arc nccdcd to rcprcscnt groups of lines and subcells that tlcpcnd on n.
When a dcfinitc value is provided for n. each such abbreviation in the
specification may bc cvaluatcd.

Paper 38.1
650

23rd Design Automation Conference

0738-100X/86/0000/0650$01.00 01986 IEEE

Figure 2-2: TALLY(l), base cast for the TALLY circuit

Groups in Escher arc somewhat like one dimensional arrays in
programming languages.. A group is a horizontal or vertical array of
identical cells with the appropriate intcrconnccting wires. The subcells
of a group may bc either basic cells or composite cells. They are distin-
guished fromone another by an integer index, which increases from left
to right in the cast of a horizontal array or from top to bottom in the
case of an vertical array. The initial and final values of the index may
depend on a parameter of the cell containing the group; however, the
increment must be a fixed positive integer. A group whose length
depends on an undetermined parameter is represcntcd by three sub-
cells, one for the first subcell, one for the last subcell. and one in the
middle with index “*” to represent all of the remaining subcells. Thus,
the -I**- serves exactly the same function in our formal specification that
the ellipsis ‘I...” serves in an informal specification. A number appear-
ing after the “*‘I represents an index incrcmcnt; when the “*” appears
alone, the default value for the increment is 1. In the Tally example
(Figure 2-1) there are a total of (n+ 1) multiplexcrs, the MUX[n] and
MUX’s with indices from 0 to n-l in agroup. When a group of subcells
is spccificd, it is only necessary to give the the position of the first and
the last subcells of the group with respect to some other part af the
circuit. When the containing cell is instantiated and all of the
parameters of t.hc group are fixed, this inftirmation is suffcicnt to detcr-
mine the position of each of the subcells of the group.

Finally, &her uses a short diagonal mark on a wire to represent a
group of wires. An expression associated with the mark indicates how
many lines arc in the group. WC call such groups of wires. brtscs. and
tbc associated cxprcssion; tic Brrs wi&lr. In Figure 2-l thcrc arc two
busts, and cach rcprcscnts n-l wires. WC atso use the convention that a
wire conncctcd to a subcell with index I’*” actually rcprcscnts the same
number of wires as the number of omitted subcells.

Examination of the recursive specification for the 1’AI.L.Y circuit
immcdiatcly shows how it works. Iich multiplcxcr has three inputs
lab&d u, 6. c and 011c output lab&d d. If b is high, the output dsclccts
lhc value c; othcrwisc, it sclccts the value n. It is easy to see that the
base case is correct. WC assume that ‘l’AI.I,Y(n-1) is correct and’that k
of the first n-l inputs arc high. By the induction hypothesis. the k-th
output of TAl.LY(n-1) is high. If the nth input is also high, then all of
the sclcctor inputs of the multipicxcrs will 6c high, so each OF the
MUX’s with index in the range from 0 to n-l will sclcct as its output the
value of its c input while the output of MUX[n] will bc low. Thus, the.
(k+l)” output (counting from bottom to top) of TALLY(n) will be
high and the other outputs wilt bc low. A similar discussion can bc used
for the case in which the n* input ofTALLY is low.

hftcr we instantiate the TALLY circuit with’ a given value, for
example, n=6. the &her system will automatically unwind the rccur-
sive specification into the circuit diagram -shown in Figure 2-3. A final
phas& (that has not been complctcd)’ will compact t.hc circuit diagram
produced by the Fschcr system in ,accordancc with a set of design rules
appropriate to the transistor technology used to fabricate the chip.

Figure 2-3: Tally(6) Instantiation

3. Divide and Conquer Circuits
The simplest rccursivc circuits have only a single rccunivc sub-

circuit, This case is somewhat like tail-recursion in programming lan-
guages and is relatively easy to implement. The Tally circuit in Figure
2-1 is an example of such a recursion. Unfortunately, not all recursive
circuits have such a simple structure. Many interesting circuits are
based on a divide end conquer strategy in which a complicated task is
rcalizcd by a number of subcircuits each of wilich is a recursive instance
of the circuit being defined. Adders, multipliers, sorters, FIT circuits,
CIC., can all be structured in this manner. Figuring out by hand an
appropriate layout for an instance of such a circuit can be quite tricky.
Once the recursive structure of the circuit has been dctermincd, rhc
Escher system may bc used to unwind a particular instance of the cir-
cuit.

TLI illustrate these ideas we show how the Escher system can be
used to obtain a layout for a simple parallel sorting network [S]; If n is a
power of 2, this nctwork’will sort a sequence of n k bit numbers into
increasing order. The standard divide ind conquer approach is to sort
the first half and the second half in parallel and then merge the two
sorted sequences. The Gcher specification for such a circuit is shown in
Figure 3-1. Note that every bus width number here means the number
of k-bit wires.

Ihc Merge ccl1 can also be dcfned recursively. ‘To merge two sc-
qucnccs “a” and “b”, we merge the even-indexed clcmcnts of “a” with
the odd-indcxcd clcmcnts of “b”, and the odd-indcxcd elements of “a”
with the even-indexed clcments of yb”. 111~ outputs 01 the two half-
size rncrging circuits arc sent through an arr,ly of compa&ors. I!~ch
comparator “CMI’” sorts lwo k-bit numhcn in or&r. Vigurc 3-2 gives
the rccunivc definition of Mcrgctn). Pass(n). shown in Figure 3-3, con-
tains only wires and is used to separate the cvcn-indexed inputs and the
odd-indcxcd inputs.

Paper 38.1
651

Figure 3-1: Recursive pattern for Sort(n)

cornand: dafcmll mrg.(n)

Figure 3-2: Recursive pattern for Mcrgc(n)

Figure 3-3: Recursive pattern for connections Pass(n)

If we instant&c the rccuzsivc specification shown in Figure 3-1
with n = 16, our system automatically gcncratcs the pattern shown in
Figure 3-4.

Figure 3-4: SOIi’1‘(16) Instantiation

In the full vclbion of this paper [I] WC also show how Escher can bc
ww~l to obtain layouts fi:,r ii rccursivc tliscrclc Vouricr Ir,insli~rm and for
the /jilri///i*/ pn$.r cbrrrit dcscrihcd by bischcr ;III~ Ltdncr in [2].

4. An Overview of the Unwinding Algorithm
A cell is rcprcscntcd in the I:schcr system by a record structure

consisting of three field:;, the httributcl At. the IbintNct. and the Sub-
Ccl11 At. ‘I’hc httribtrtcl .ist contains the llmc of lhc cell. its paramctcr
list, and its position (TonY. I~ottomY, RighlX, I&X) with rcspcct to a
lixcd cuordinatc system. ‘I‘hc PointNet is used to keep track of the
difl‘crcnt kinds of points (pins. bends, connectors. vias, transistors, etc.)
and their locations. Filch point is rcprcscntcd by a record structure that
specifics its type, its coordinates PosX and Posy. and how it is con-
ncctcd to the other components of the cell. All.of the points in a ccl1 are
linked togcthcr in an undirected graph structure called the PointNet.
From each point in the ccl1 it is possible to tind the next connected
point in a vertical or horizontal direction by following the appropriate
link in the PointNct. The SubCellList contains a descriptor for each
component subcell. A suhccll descriptor has a pointer to the source of
the subcell, an assignment of symbolic expressions for any parameters
of the source cell, and inFormation on the position and orientation of
the subcell (ie., whcthcr it has been flipped or rotated). Subcells in a
group arc linked togcthcr in a circular list. Some information in the
Attributcl .ist of the source cell, like the cell name. is also duplicated to
prcvcnt unncccssary searching.

A recursive circuit specification is unwound into 3 tree structure in
which nodes correspond to cells. and one node is a son of another if the
ccl1 corresponding to the first node is a subcell of the cell corresponding
to the second. Thus, a ccl1 will appear at level i in the tree if it is 0
subcell of a cell that appears at level i-l. A layout is gcncrated frqm the
tree in a bonom-up fashion in which layouts arc determined for all of
the sons of a node before laying out the node itself. To accomplish this
task it may bc necessary to move various circuit components in order to
make room for components generated at lower levels. The algorithms

Paper 38.1
652

that Escher uses for this purpose arc discussed in detail in the fi~ll
version of this paper [l].

When WC unwind a recursive Escher specification, we must be
careful not to duplicate steps if we encounter the same cell more than
once as we traverse the tree. For example, if we use the naive algorithm
to unwind SORT(4), WC have to uuwind SOR’l‘(2) twice and
MRRGFXZ) once; when we unwind MlXGFJ2), we must unwind
PASS(Z) twice, MERGE(I) twice, and CMP twice. In fact, with the
naive algorithm it is possible to create cxamplcs in which the number of
duplicated steps will be cxponcntial in the size of the original Eschhr
specification.

Instead, Escher uses a dircctcd acyclic graph structure to rcprescnt
the nesting of subcells. WC call this data structure the Suhce/l Nesting
Graph or SNG. Since each subcell corresponds to at most one node in
the SNG, it is only necessary to unwind a given subcell once. The
graph for SORT(4) is shown in Figure J-l. Note that each of the
subcells SORT(4), SGIC’T(2). CMP, M lXG1’(2), Ml-XGE(l), and
PASS(2) is reprcscntcil uniquely this time.

The unwinding algorithm consists of two phases. In the first phase
we cvaluatc all of those cxprcssions that dcpcnd on the paiamctcrs of
the cell and crcatc the SNG. Expressions may appear in the spccifica-
tions of groups and buses, and they may be used as parameters of lower
level subcells. After WC have figured out the exact number of subcells
in a subcell group, WC may have to cnlargc the ccl] to obtain enough
space for the omitted subcells in the group. An algorithm for this pur-
post is described in d&l in the full paper. Next, WC copy the subcells
into the ccl]. After a cell ha% been evaluated it will bc linked to its
source cell in the SNG. The SNG for cell CL(V) will not bc complete
until all of its dcsccndant subcells have been proccsscd in this manner.

The second phase in the unwinding process is a depth first traver-
sal of the SNG. When all of the subcells of a cell in the SNG have been
unwound, we replace each subcell with its source body and mark the
cell as unwound. It may be necessary to cnlargc a ccl1 to obtain enough
space for filling in the subcell bodies: An algorithm for this step is given
in the full paper. The last step in this phase is to eliminate jogs in wires
that result from these substitutions. A technique for doing this is also
given in the full paper. Finally, some simple compaction algorithms arc
used to shorten wires and move subcells closer together.

Figure 4-l: Dircctcd Acyclic Graph for SORT(4)

5. Conclusion and Directions for Future
Research
WC list below some of the problems with the current system that

we hope to address in a future version:

l Multiple parameters. As currently implcmcntcd, the &her
system only permits ccl] spccilications with a single recur-
sivc parameter. A number of intcrcsting cxamplcs can be
specified most naturally by using multiple rccursivc
pnramcters. It should be fairly easy to modify the current
implcmcntatiou so that multiple panuncters arc permitted.

l Compaction and oplimizllion. ‘l’hc layouts produced by our
system ficqucncly contain long wires and have area that
grows more rapidly with the rccunion depth than necessary.
Although WC have implcmcntcd some simple compaction
algorithms. WC bclicvc that this problem rcquircs much
more thought. It may bc possible to design compaction al-
gorithms that take advantage of the hicrar-chical structure of
Fschcr specifications. Ilowcvcr. the simple algorithms that
have already been implcmcntcd do not make USC of this
information.

l Combined textuat and geometric description. For certain
applications like simulation a textual cir+t description may
bc quite useful. WC envision a VISI design system with
multiple wirrdows which would permit borh textual and
gcomctric descriptions of circuit components. One window
would contain a gcomctrical rcprcscntation of the circuit
like the one described in this paper. Another window would
contain a rcprcsefitation of the circuit in an appropriate
(textual) hardware description langungc. The textual
description could bc used directly for simulation, verifica-
tion, CL. A change in the geometrical description would be
automatically rcflccted by a corresponding change in the
HDL rcprescntation. The dual reprcscntatlon would
provide access to the best fcaturcs of both types of design
systems.

REFERENCES

1. E. Clarke and Y. Feng . Escher-- A Geometrical Layout System for
Rccursivcly Dcfincd Circuits. CMU-CS-SS-JSO, Department of Com-
putcr Science, Carnegie Mellon University, July, 1985.

2. M. Fischer and R. Ladner. “Paralllel prelix computation”. Journal
of the ACM 27,4 (1980).

3. S.M.German, K.J.Licberhcrr. “Zeus: a language for expressing al-
gorithms in hardware”. Cotnpufers (1985).

4. J.Ousterhout. “Caesar: An intcractivc layout editor for VLSI
design”. VLSI design (Fourth Quarter 1981). 34-38.

5. D.E.Knuth. The art of cotnpulerprogratnttrlittg. Volume : Sorling
and searching. Addison-Wesley. 1973.

6. R.J.Lipton, S.C.North, R.Scdgcwick et tal. ALI: a procedural lan-
guage to dcscribc VLSI layouts. 19th design automation confcrencc,
IEEE, 1982, pp. 467-474.
7. W.K.l.uk. J.l:.Vuillcmin. Rccursivc itnplcnlcntiltion ofoptimal time
VI SI intcgcr multipliers. VI .Sl design of digital systems, cd. ~~.AIWXIU

s(II.J.Aas. 1983, pp. 155-168.

8. C.A..Mcad, L.A.Conway. Itrfrudmiotr IO VIS’I sy.r/n~rs hddison-
Wcslcy, 1980.

9. Mary Shccran. muFP-- An algebraic VISI design Ianguagc.
PRG-39. Oxford University Computing I .ab., Novcmbcr. 1984.

10. P.ticrrdcrson. l’unctionnl gcomctry. Symposium on LISP and
functional programming, ACM. 1982, pp. 179-187.

Paper 38.1
653

