Escher--A Geometrical Layout System
For Recursively Defined Circuits

Edmund Clarke °, Yulin Feng ™"

* Department of Computer Science, Carnegic-Mellon University, Pittsburgh

** Department of Computer Science, University of Science and Technology of China, Hefei

ABSTRACT: An Escher circuit description is a hicrarchical structure
composed of cells, wires, connectors between wires, and pins that con-
nect wires to cells. Cells may correspond to primitive circuit clements,
or they may be defined in terms of lower Ievel subceells, Unlike other
geometrical Jayout systems, a subcell may be instance of the cell being
defined. When such a recursive cell definition is instantiated, the recur-
sion is unwound in a manner reminiscent of the procedure call copy
rule in Algol-like programming languages. Cell specifications may have
paramecters that arc used to control the unwinding of recursive ce¢lls and
to provide for cell families with varying numbers of pins and other
internal components, We illustrate how the Escher layout system can
be used with several nontrivial examples, including a parallel sorting
nctwork and a FFT implementation. We also briefly describe the un-
winding algorithm.

1. Introduction

Many circuits such as sorting networks. hardware multipliers, and
FFT implementations can be described by rccursive geometrical pat-
terns. Some layout languages provide support for recursion ([3], [6],
(7] and [10]); however, in all such systems familiar to us the circuit
description is textual rather than geomctrical. We believe that it is
more natural to describe complicated circuits geometrically, rather than
by giving a textual description and requiring that a program figure out
the details of the layout. Some circuit editors have powerful iteration
operators that can be viewed as implementing a form of tail recursion
[4], but none allow full recursion. We have imptemented a gcometrical
layout system (called the Escher System) in which recursive patterns
can be specified directly and then instantiated to obtain layouts for
complex circuits automatically. Figures 2-3 and 3-4 were generated by
our system from recursive patterns.

An Escher circuit description is a hierarchical structure in which
the basic building blocks are cells, wires, connectors between wires, and
pins that connect wires to cells. Cclls may correspond to primitive cir-
cuit clements such as NAND gates and latches, or they may be defined
in terms of lower level subcclls, which arc defined in terms of cven
lower level subcells, ctc. By using the Escher system, a number of
primitive cells can be connected together in complex geometrical pat-
tern to deseribe the layout for a large and intricate circuit. Designers do
not need to worry about the absolute sizes and positions of various
circuit compaoncents; only the topolagical relationships are important,
Morcover, the system is completely interactive. Circuit diagrams are
constructed using a pointing device ("mouse™) and tablet.

Although many circuit editors provide a set of features similar to
the onces that we have just listed, our system is unique in that a subeel!
may, in fact, be instance of the cell being defined. When a recursive ccll
definition is instantiated, the recursion is unwound in a manncr
reminiscent of the procedure call copy tule in Algol-like programming

‘This research was supported by NSE Grant Number MCS-82-16706.

languages. Cecll specifications may have non-negative integer
parameters that are used to control the unwinding of recursive cells and
to provide for cell families with varying numbers of pins and other
internal components. While the notion of parameterized cell specifica-
tions is quite common in textual hardware description languages, we
believe that it has not been previously used with graphical circuit
cditors and, therefore, may be of independent interest.

2. Conventions for Specifying Recursive Circuit

Diagrams

As an cxample of how the Escher system might be used, we con-
sider the problem of laying out the Tally circuit described in [8] and
also in [9]. This circuit has n inputs and n+1 outputs. The k-th output
will be high and all other outputs low, if exactly k of the inputs arc high..
Figure 2-1 gives the Escher version of a recursive definition for the
Tally circuit. The circuit for the base case, Tally(1), is shown in Figure
2-2. Both of these diagrams must be supplied by the user.

0
b me{0)
uJ

L 19

tally(n-1) : ma(+]

L]
b muaa-1]
[d pout

mua(n)

y A~

ERCTER

command: defcell tally(n)

Figure 2-1: Recursive Pattern for Talty(n)

In these diagrams there are two kinds of cells: Basic cells that
cannot be refined further (like the two input multiplexers), and
Composite cells that contain other cells, wires, and connectors (like the
recursive occurrence of Tally(n-1)). ‘Ihe cells that are dircetly con-
tained within a composite ccll are its subcefls. Sometites several sub-
cells SI. Sz, -+ S, are nstances of the same cell C. [n this case we say
that'C is the source of cach of the S's.

Since the specification is parameterized by n, some abbreviations
are needed to represent groups of lines and subcclls that depend on n.
When a definite valuc is provided for n, cach such abbreviation in the
specification may be cvatuated.

23rd Design Automation Conference

Paper 38.1
650

0738-100X/86/0000/0650$01.00 ©1986 IEEE

o C

aut

noe
2
-

a

Figure 2-2: TALLY(1), basc casc for the TALLY circuit

Groups in Escher are somewhat like one dimensional arrays in
programming languages. A group is a horizontal or vertical array of
identical cells with the appropriate intcrconnecting wires. The subcells
of a group may be either basic cells or composite cells. They are distin-
guished from on¢ another by an integer index, which increases from left
to right in the casc of a horizontal array or from top to bottom in the
case of an vertical array. The initial and final values of the index may
depend on a parameter of the cell containing the group; however, the
increment must be a fixed positive intcger. A group whose length
depends on an undetermined parameter is represented by three sub-
cells, one for the first subcell, one for the last subcell, and onc in the
middle with index "*" to represent all of the rcmaining subcells. Thus,
the "*" serves exactly the same function in our formal specification that
the cllipsis “..." serves in an informal spccification. A number appear-
ing after the "*" represents an index increment; when the "*" appears
alone, the default valuc for the increment is 1. In the Tally example
(Figure 2-1) there are a total of (n+1) multiplexcrs, the MUX{n] and
MUX'’s with indices from 0 to n-1 in a group. When a group of subcells
is specificd, it is only necessary te give the the position of the first and
the last subcells of the group with respect to some other part of the
circuit. When the containing cell is instantiated and all of the
parameters of the group are fixed, this information is sufficicnt to deter-
mine the position of cach of the subcclls of the group.

Finally, Escher uscs a short diagonal mark on a wire to represent a
group of wircs. An expression associated with the mark indicates how
many lines are in the group. We call such groups of wires, buses, and
the associated expression, the bus width. In Vigure 2-1 there are two
buses, and ‘cach represents n-1 wires. We also use the convention that a
wirc connected to a subcell with index “** actually represents the same
number of wircs as the numbecr of omitted subcells,

Fxamination of the recursive specification for the TALLY circuit
immediately shows how it works. lach multiplexer has three inputs
labeled g, b, ¢ and one output labeled d. I b is high, the output d sclects
the value ¢; otherwise, it sclects the value @, It is casy to sce that the
basc case is correct. We assume that TALLY(n-1) is correct and ‘that k
of the first n-1 inputs arc high. By the induction hypothesis. the k-th
output of TALLY(n-1) is high. If the n'™™ input is also high, then all of
the sclector inputs of the multiplexers will be high, so cach of the
MUX'’s with index in the range from 0 to n-1 will sclect as its output the
value of its ¢ input, while the output of MUX[n] will be low. Thus, the
(k+1)™ output (counting from bottom to top) of TALLY(n) will be
high and the other outputs will be low. A similar discussion can be used
for the case in which the n'P input of TALLY(n) is low.

After we instantiate the TALLY circuit with' a given value, for
example, n=6, the Escher system will automatically unwind the rccur-
sive specification into the circuit diagram shown in Figure 2-3. A final
phase (that has not been completed) will compact the circuit diagram
produced by the Escher system in -accordance with a set of design rules
appropriate to the traasistor technology used to fabricate the chip.

a 0
o towia
L4 H £ KL
a [
oy by x

il (4
0 .))
o o b s bz

g < 4 r ¢ dp=tout
: (] 3

Lt bl L1

5 T . faut.

]
=y Voua L)
ILB L pout

g df out

EHCDHER

command: eval tally n=6

Figure 2-3: Tally(6) Instantiation

3. Divide and Conquer Circuits

The simplest recursive circuits have only a single recursive sub-
circuit. This case is somewhat like tail-recursion in programming lan-
guages and is relatively easy to implement. The Tally circuit in Figure
2-1 is an example of such a recursion. Unfortunately, not all recursive
circuits have such a simple structure. Many interesting circuits are
based on a divide and conquer strategy in which a complicated task is
realized by a number of subcircuits each of which is a recursive instance
of the circuit being defined. Adders, multiplicrs, sorters, FFT circuits,
etc., can all be structured in this manner. Figuring out by hand an
appropriate layout for an instance of such a circuit can be quite tricky.
Once the recursive structure of the circuit has been determined, the
Escher system may be used to unwind a particular instance of the cir-
cuit.

To illustrate these ideas we show how the Escher system can be
uscd to obtain a layout for a simple parallel sorting network [5}: Ifnisa
power of 2, this network will sort a sequence of n k bit numbers into
increasing order. The standard divide and conquer approach is to sort
the first half and the second half in parallel and then merge the two
sorted sequences. The Escher specification for such a circuit is shown in
Figure 3-1. Note that every bus width number herc means the number
of k-bit wires.

The Merge cell can also be defined recursively. ‘To merge two se-
quences "a” and "'b", we merge the even-indexed clements of "a" with
the odd-indexed clements of "b", and the odd-indexed elements of "a”
with the even-indexed clements of "b". The outputs of the two half-
si7ze merging circuits are sent through an array of comparators. Fach
comparator “CMP" sorts two k-bit numbers in order. Figure 3-2 gives
the recursive definition of Merge(n). Pass(n), shown in Figure 3-3, con-
tains only wires and is used to scparate the cven-indexed inputs and the
odd-indexed inputs.

Paper 38.1
651

marye(a/t)

1

command: defcell sort(n)

EHCHTR

Figure 3-1; Recursive pattern for Sort(n)

1 1.
pass(n) pass{n}
Awz valv} s
w2

[2]

marge(n/2) merge(n/2)

cop(0] con(*) cmp(n-1)
command: defcell merge(n) CHCHER

Figure 3-2: Recursive pattern for Merge(n)

4

/in-4

pass(n-4)

Anr2-2

y
Ans2-2

Figure 3-3: Recursive pattern for connections Pass(n)

If we instantiate the recursive specification shown in Figure 3-1
with n = 16, our system automatically gencrates the pattern shown in
Figure 3-4.

Paper 38.1
652

ot oy
hd <oy
<P cmp
=
cnp Cg
chy [t
cap cmp
[
L .
<y cmp g cmg e d <y R d e
b L d g L i i o g
ol
!
cp o mp < cmp i cg e
command: eval sort n=18 EHCHER

Figure 3-4: SOR'T(16) [nstantiation

In the full version of this paper [1] we also show how Escher can be
used Lo obtain layouts for a recursive discrete Fourier transform and for
the parallel prefix cireuit described by Fischer and Ladncer in [2].

4. An Overview of the Unwinding Aigorithm

A cell is represented in the lischer system by a record structure
consisting of three fields, the Attributel ist. the PointNet, and the Sub-
Ccelilist. The Atributcl.ist contains the name of the cell, its parameter
list, and its position (TonY, BottomY, RightX, LeftX) with respect to a
fixed coordinate system. The PointNet is used o keep track of the
different kinds of points (pins, bends, conncectors, vias, transistors, ctc.)
and their locations. Fach point is represented by a record structure that
specifics its type, its coordinates PosX and PosY, and how it is con-
nected t the other components of the cell, All of the points in a cclt are
linked together in an uedirected graph structure called the PointNet.
From cach point in the cell it is possible to find the next connected
point in a verticat or horizontal direction by following the appropriate
link in the PointNet. 'The SubCellList contains a descriptor for each
component subcell. A subcell descriptor has a pointer to the source of
the subeell, an assignment of symbolic expressions for any parameters
of the source cell, and information on the position and orientation of
the subcell (i.e., whether it has been flipped or rotated). Subcells in a
group arc linked together in a circular list. Some information in the
AttributcList of the source ccll, like the cell name, is also duplicated to
prevent unnecessary scarching.

A recursive circuit specification is unwound into a tree structure in
which nodcs correspond to cclls, and onc node is a son of another if the
cell corresponding to the first node is a subcecell of the cell corresponding
to the second. Thus, a ccll will appear at level i in the tree if it is @
subcell of a cell that appears at level i-1. A layout is generated from the
trec in a bottom-up fashion in which layouts are determined for all of
the sons of a node before laying out the node itself. To accomplish this
task it may be necessary to move various circuit components in order to
make room for components generated at lower levels. The algorithms

that Escher uses for this purpose are discussed in detail in the full
version of this paper [1].

When we unwind a recursive Escher specification, we must be
careful not to duplicate steps if we encounter the same cell more than
once as we traverse the tree. For example, if we use the naive algorithm
to unwind SORT(4), we have to uunwind SORT(2) twice and
MERGE(2) once; when we unwind MERGE(2), we must unwind
PASS(2) twice, MERGE(1) twice, and CMP twice. In fact, with the
naive algorithm it is possible to create examples in which the number of
duplicated steps will be exponential in the size of the original Escher
specification.

Instead, Escher uscs a directed acyclic graph structure to represent
the nesting of subcells. We call this data structure the Subcell Nesting
Graph or SNG. Since each subcell corresponds to at most one node in
the SNG, it is only necessary to unwind a given subcell once. The
graph for SOR'T(4) is shown in Figure 4-1. Notc that cach of the
subcells SORT(4), SCR'T(2), CMP, MERGE(2), MERGE(D), and
PASS(2) is represented uniquely this time.

The unwinding algorithm consists of two phases. In the first phase
we cvaluate all of those expressions that depend on the paramcters of
the cell and create the SNG. Expressions may appear in the specifica-
dons of groups and buscs, and they may be used as parameters of lower
level subcells. After we have figured out the exact number of subcells
in a subcell group, we may have to cnlarge the ccll to obtain cnough
space for thc omitted subcells in the group. An algorithm for this pur-
posc is described in detail in the full paper. Next, we copy the subcclls
into the ccll. After a cell has been evaluated it will be linked (o its
source cell in the SNG. The SNG for cell CL(V) will not be complete
until all of its descendant subcells have been processed in this manner.,

The second phasc in the unwinding process is a depth first traver-
sal of the SNG. When all of the subcells of a cell in the SNG have been
unwound, we replace each subcell with its source body and mark the
cell as unwound. [t may be necessary to enlarge a cell to obtain enough
space for filling in the subcell bodics: An algorithm for this step is given
in the full paper. The last step in this phase is to eliminate jogs in wircs
that result from thege substitutions, A technique for doing this is also
given in the full paper. Finally, some simple compaction algorithms are
used to shorten wires and move subcells closer together.

SONT(4)

T~

SoRY(2) MERGE(2)

| >

l /‘”.“) s
o

Figure 4-1: Dirccted Acyclic Graph for SOR'T(4)

5. Conclusion and Directions for Future
Research
We list below some of the problems with the current system that
we hope to address in a future version:

o Multiple parameters. As currently implemented, the Escher
system only permits cell specifications with a single recur-
sive parameter. A number of intercsting examples can be
specified most naturally by using multiple recursive
paramcters. It should be fairly casy to modify the current
implementation so that multiple paramneters are permitted.

o Compaction and optimization. I’ layouts produced by our
system frequently contain tong wires and have area that
grows more rapidly with the recursion depth than necessary.
Although we have implemented some simple compaction
algorithms, we belicve that this problem requires much
morc thought. It may be possible to design compaction al-
gorithms that take advantage of the hicrarchical structure of
Escher specifications. However, the simple algorithms that
have alrcady been implemented do not make use of this
information,

e Combined textuat and geometric description. For certain
applications like simulation a textual circuit description may
be quitc uscful. We cnvision a VLSI dcsign system with
multiplc windows which would permit both textual and
geometric descriptions of circuit components. One window
would contain a gcometrical representation of the circuit
like the one described in this paper. Another window would
contain a represeptation of the circuit in an appropriate
(textual) hardwarc description language. The textual
description could be uscd dircctly for simulation, verifica-
tion, ctc. A change in the geometrical description would be
automatically reflected by a corresponding change in the
HDL representation. The dual * representation would
provide access to the best features of both types of design
systems.

REFERENCES

1. E.Clarkc and Y. Feng . Escher-- A Geometrical Layout System for
Recursively Defined Circuits. CMU-CS-85-150, Department of Com-
puter Science, Carncgie Mellon University, July, 1985.

2. M. Fischer and R. Ladner. "Paralllel prefix computation™. Journal
of the ACM 27, 4 (1980).

3. S.M.German, K.J.Licberherr. "Zeus: a language for expressing al-
gorithms in hardware". Computers (1985).

4. J.Ousterhout. "Caesar: An intcractive layout editor for VLSI
design”. VLS design (Fourth Quarter 19381), 34-38.

5. D.E.Knuth. The art of computer programming. Volume : Sorting
and searching. Addison-Wesley, 1973.

6. R.J.Lipton, S.C.North, R.Scdgewick et tal. ALI: a procedural lan-
guage to describe VLSI layouts. 19th design automation conference,
IEEE, 1982, pp. 467-474.

7. W.K.f.uk, J.EVuillemin. Recursive implementation of optimal time
VISl intcger multipliers. VI.S] design of digital systemns, cd. 1°.Anceau
& 1) Aas, 1983, pp. 155-168.

8. C.A.Mcad, LA.Conway. Introduction to VIST systems. Addison-
Wesley, 1980,

9. Mary Shecran. mukP-- An algcbraic VLSI design language.
PRG-39, Oxford University Computing F.ab., November, 1984,

10. P.Henderson. Functional geometry. Symposium on LISP and
functional programming, ACM, 1982, pp. 179-187.

Paper 38.1
653

