
Exploiting Symmetry
In Temporal Logic Model Checking *

E. M. Clarke 1 and T. Filkorn: and S. Jha 1

I Carnegie Mellon University, Pittsburgh, PA 15213
Siemens AG, Corporate Research and Development, Otto-Hahn-Ring 6, W-8000 Muenchen

83, Germany

Abstract. In practice, finite state concurrent systems often exhibit considerable
symmetry. We investigate techniques for reducing the complexity of temporal logic
model checking in the presence of symmetry. In particular, we show that symmetry
can frequently be used to reduce the size of the state space that must be explored
during model checking. In the past, symmetry has been exploited in computing
the set of reachable states of a system when the transition relation is represented
explicitly [13, 10, 17]. However, this research did not consider arbitrary temporal
properties or the complications that arise when BDDs are used in such procedures.
We have formalized what it means for a finite state system to be symmetric
and described techniques for reducing such systems when the transition relation
is given explicitly in terms of states or symbolically as a BDD. Moreover, we
have identified an important clas~ of tempora! logic formulas that are preserved
n~ier this reduction. Our paper aJso iavesfig~tm the complexity of various critical
steps, like the computation of the orbit relation, which arise when symmetry is
used in this type of verification. Finally, we have tested our ideas on a simple
cache-coherency protocol based on the IEEE Futurebus+ standard.

1 Introduction

Finite state concurrent systems frequently exhibit considerable symmetry, It is possible
to find symmetry in memories, caches, register files, bus protocols, network protocols -
anything that has a lot of replicated structure. Generally, verification techniques do not
take advantage of this fact. We are trying to exploit symmetry to reduce the size of the
state space that must be explored by temporal logic model checking algorithms.

In Temporal Logic Model Checking we determine whether a temporal logic formula
is valid in a finite state system M -" (S, /~ L)I where S is the state space, R is the
transition relation among the states, and L is a function that labels states with sets of

* This research was sponsored in part by the Avionics Laboratory, Wright Research and De-
velopment Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson
AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597 and in part
by the National Science Foundation under Grant no. CCR-8722633 and in part by the Semi-
conductor Research Corporation under Contract 92-DJ-294.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the U.S.
government.

451

atomic propositions. Such a structure is usually called a Kripke Model and may have an
enormous number of states. An efficient Model Checking procedure tries to reduce the
number of states that are actually searched. In most cases the state space is expressed
symbolically in terms of state variables, and the transition relation is represented by a
binary decision diagram or BDD [2, 3].

Let G be a group of permutations acting on the state space S of the Kripke structure
M. A permutation a E G is said to be a symmetry of M if and only if it preserves the
transition relation R. G is a symmetry group for the Kripke structure M if and only if
every permutation a E G is a symmetry for M. If s is an element of S, then the orbit
of s is the set of states O(s) obtained from s by applying permutations in G. From each
orbit 0(s) we pick a representative that we call rep(O(s)).

If M = (5, R, L) is a Kripke Structure and G is a symmetry group acting on M, we
can define a quotient model Ma = (5a, R~, La) in the following manner:

- The state set is S~ = {O(s)[s E S}, the set of orbits of the states in S;
- The transition relation Re has the property that (O(sl),O(s2)) E Re if an only if

there exists two states s3 and s4 such that s3 e 0(sl), s4E 0(s2), and (s3,s4) E R;
- The labeling function Lu is given by Le(O(s)) = L(rep(O(s))).

An atomic proposition is invariant under the action of a symmetry group G, if the set
of states labeled by the proposition is closed under the application of the permutations
in G. We prove that if h is a formula in the temporal logic CTL* and all of the atomic
propositions in h are in~arian. ~ under the symmetry group G, then h is true in M if
and only if it is true in the quotient model Me. This implies that we can determine the
correctness of properties in the original model M by checking them in the quotient model
MG.

Since the quotient model Ma contains only one representative from each orbit, the
state space SG will, in general, be much smaller than the the original state space S.
We have developed techniques that build MG without actually building M. We believe
that our method will reduce the state space that must be searched considerably and
are currently testing our ideas on a simple cache coherency protocol based on the IEEE
Futurebus+ standard. Previous research on verification of cache coherence protocols has
made the simplifying assumption that there is only one cache line in the system [16, 6].
This assumption is necessary because the BDDs that occur in verifying these protocols
grow exponentially in the number of cache lines. By using symmetry, however, we are
able to avoid this assumption and reason about systems with multiple cache lines. Since
different cache lines behave almost independently, the ordering of the cache lines is rel-
atively unimportant and this results in a small quotient model. The initial results that
we have obtained are encouraging. The size of the BDDs that are needed to represent
the model is, in some cases, reduced by an order of magnitude or more.

We also discuss the complexity of exploiting symmetry in model checking algorithms.
The first problem that we consider is computing the orbit relation, i.e. determining
whether two states are in the same orbit or not. This is an important problem because
the straightforward method of computing the quotient model Mq uses this relation. We
prove that this problem is at least as hard as the graph isomorphism problem. In addition,
we show that a variant of this problem, called the bounded orbit problem is NP-complete.

452

We also give lower bounds on the size of the BDDs needed to encode the orbit relation.
Because these hounds are exponential for some important symmetry groups that occur
in practice, we develop a method of approximating the quotient structure that does not
require building the full orbit relation.

There has been relatively little research on exploiting symmetry in verifying finite
state systems. Most of the work on this problem has been performed by researchers in-
vestigating the teachability problem for Petri nets [10, 17]. However, this work does not
consider general temporal properties nor the complications that are caused by represent-
ing the state space using BDDs. The research that is closest to our own is that of Ip
and Dill [13] who propose a data type Jcalarset which facilitates detection of symmetry
in finite state systems. Their technique uses an explicit state representation rather than
BDDs. Our results were obtained independently of their work; in fact, they reference
some of our early results in their paper.

Our paper is organized as follows: The second section describes how symmetry groups
act on Kripke models. The third section gives the syntax and semantics of the logic CTL*
that we use for writing specifications. In the fourth section we show how to construct a
BDD representation for the quotient model from the generators of its symmetry group.
We also prove that a CTL* formula which is invariant under the symmetry group will
be true in the original model if and only if it is true in the quotient model. Section 5
describes how the orbit relation can he used to reduce the size of the state space that must
be searched in temporal logic model checking. In Section 6 we investigate the complexity
of computing this relation and give lower bounds on the size of the BDDs needed to
represent it. tn the next section we show how' to avoid constructing the full orbit relation
during model checking. In Section 8 we demons.'Tate how symmetry can be used to verify
a version of the Futurehus cache coherency protocol with multiple cache lines. The final
section contains a discussion of some directions for future research.

2 S y m m e t r y G r o u p s

Let AP be a set of atomic propositions. A Kripke structure over AP is a triple M =
(S, R, L), where

- S is a finite set of states,
- R C_ S x 5" is a transition relation, which must be total (i.e. for every state sl there

exists a state s2 such that (sl, s2) E R).
- L : 5' --~ 2 Ap is a labeling function which associates with each state a set of atomic

propositions that are true in the state.

Let G be a group of permutations, i.e. bijective mappings acting on the state space E
of the Kripke structure M. A permutation o" E G is said to be a symmetry of M if and
only if it preserves the transition relation R. More formally, ~ should satisfy the following
condition:

G is a symmetry group for the Kripke structure M if and only if every permutation c, E G
is a symmetry for M. Notice that our definition of a symmetry group does not refer to

453

the labeling function L. Furthermore, since every a E G has an inverse, which is also a
symmetry, it can be easily proved that a permutation er E G is a symmetry for a Kripke
structure if and only if a satisfies the following condition:

(Vsl e S)(u e S) ((~,,, s2) e R r (,vs,, r e R)

Let (g l , . . . , g~) be the smallest permutation group containing all of permutations
gl,. . . ,gt. If G = (gl, gk), then we say that the group G is generated by the set
{ g l , . . . , g~}. I t is easy to see that if every generator of the group G is a symmetry of M,
then the group G is a symmetry group for M.

3 T h e Tempora l Logic CTL*

There are two types of formulas in CTL*: stale formulas (which are true in a specific
state) and path forvnulas (which are true along a specific path). Let AP be the a set of
atomic propositions. A state formula is either:

- p , i f p E AP;
- i f f and g are state formulas, then -~f and f V g are state formulas;
- if f is a path formula, then E(f) is a state formula.

A path formula is either:

- a state formula;
- if f and g are path formulas, then - , f , f V g, X f, and fUg are path formulas;

CTL* is the set of state formulas generated by the above rules.
We define the semantics of CTL* with respect to a Kripke structure M = (S, R, L).

A path in M is an infinite sequence of states or = s0 , s l , . . , such that, for every i >
0,(si ,s~+l) E R. ~z denotes the suffix of or starting at st. We use the standard notation
to indicate that a state formula f holds in a structure. M, s ~ f means that f holds at
the state s in the structure M. Similarly, M, or ~ f means that the path formula f is
true along the path or. Assume that fx and f2 are state formulas and gl and ga are path
formulas, then the relation ~ is defined inductively as follows:

1. s ~ p e ~ p G L(s)
2. s ~ ' f x c ~ s ~ fl
3. s ~ A V f 2 ~ s ~ f l o r s ~ f2
4. s ~ E(01) ~ there exists a path or starting with s such that or ~ gl
5. or ~ f l ~ s is the first state of or and s ~ f l
6. ~r ~-~gl ~ or V= gl
7. o r ~ g l V g 2 ~ o r ~ g l or or ~ g 2
8. or ~ X gl ~ f l ~ gl
9. or ~ glUg2 r there exists k > 0 such that ork ~ g2 and for all 0 < j < h, 7rJ ~ gl

CTL is a subset of CTL* in which we restrict the path formulas to be:

- if f and g are state formulas, then X f and fUg are path formulas.

454

- if f is a path formula, then so is -~J.

Efficient procedures have been developed to determine if a CTL formula f is true in a
Kripke Model M. In [5] a model checking algorithm is given that is linear in the size of
the formula f and the model M. A symbolic model checking algorithm using BDDs that
can handle models with more that 10 2~ states is discussed in [3].

4 Q u o t i e n t M o d e l s

Let G be a group acting on the set S and let s be an element of S, then the orbit of s
is the set 0(s) = {t [(3~ E G)(r - t)}. From e ~h orbit 0(s) we pick a representative
which we call rep(0(s)).

Def ini t ion 1. Let M = (S, R, L) be a Kripke Structure and let G be a symmetry group
acting on M, we define the quolient structure Ma = (So,RG, La) in the following
manner:

- The state set is SG = {O(s)ls E S}, the set of orbits of the states in S;
- The transition relation R~ is given by

R~,= {(O(s~), oCs~))l(s~, s2) ~ R}; O)
- The labeling function LG is given by LG(e(s)) = L(rep(O(s))).

Next, we define what it means for a aymmetry group G of a Kripke Structure M to
be an invariance groep for an atomic proposition p. Intuitively, G is an invariance group
for an atomic proposition p if and 0nly if the set of states labeled by p is closed under
the application of all the permutations of G. More formally, a symmetry group G of a
Kripke Structure M = (S, R, L) is an invariance group for an atomic proposition p if and
only if the following condition holds:

(W e a)(Vs ~ S)(p ~ L(s) ~ p ~ L(~s))

L e m m a 2 . If G is an invariance group for an atomic proposition p and p 6 L(s), then
p E LG(O(s)) in the quotient Kripke structure MQ.

Defini t ion3. Given a Kripke structure M = (S,R,L) and a symmetry group G, let
MG = (So, Rv., Lc) be the quotient Kripke structure. Two paths 7r = s0, s l , . . , in M
and 7re = O(to)), O(tz),... correspond if and only if Vi(si C O(ti)),

L e m m a 4 . For every path starting from so in M there exists a corresponding path
starting from O(s0) in Mo, and for every path starting from O(So) in MG there exists a
corresponding path starting from so in M.

T h e o r e m 5 . Let M = (S, R,L) be a Kripke Structure, G be a symmetry group of M,
and h be a CTL "~ formula. If G is an invariance group for all the atomic propositions p
occurring in h, then

M, s ~= h r Ma, O(s)~ h (2)

where MG is the quotient structure corresponding to M.

455

This theorem is a direct consequence of the following lemma.

Ls~-mma 6. Let h be a either a state formula or a path formula such that G is an inwri-
ance group for all atomic propositions p occurring in h. Let ~r -- s, Sl be a path in M
and ~re = 0 (s) ,0 (t l) , . . . be a corresponding path in Me . Then

- M,s ~ h r Me,$(s) ~ h i f h is a s tate formula, and
- M,z" ~ h r M e , ~ e ~ h i f h is a path formula.

5 Model Checking in the Presence of Symmetry

In this section we describe how to do model checking in the presence symmetry. First,
we discuss how to find the set of states in a Kripke structure that are reachable from a
given set of initial states using an explicit state representation. In the explicit state case,
a breadth-first or depth-first search start ing from the set of initial states is performed.
Typically, two lists, a list of reached states and a list of unexplored states are maintained.
At the beginning of the algorithm, the initial states are put on both the lists. In the
exploration step, a state is removed from the list of unexplored states and all its successors
are processed. An algorithm for exploring the state space of a Kripke structure in the
presence of symmetry ,is discussed in [13]. The authors introduce a function ~(q), which
maps a state q to the unique state representing the orbit of that state. While exploring the
state space, only the unique representatives ~om the orbits are put on the list of reached
and unexpbo~ed states. To construct the function ~(q) it is important to compute the orbit
relation efficiently. In the next section we will discuss the computational complexity of
finding the orbit relation.

In the remainder of this section we focus on how to do symbolic model checking in the
presence of symmetries. The straightforward method of computing the quotient model
uses the B D D for the orbit relation O(z ,y) - (z E 0(y)). Given a Kripke structure
M = (S ,R ,L) and a symmetry group G on M with r generators 91,g2, ' " ,gr , it is
possible to prove that the orbit relation O is the least fixpoint of the equation given
below:

Y(=,y) -- (= = y) v (a =) (Y (= , z) A (= = g ~ y v = = g ~ y . . . v = = 9 , y)) (3)

If a suitable state encoding is available, this fixpoint equation can be computed using
BDDs [3]. Once we have the orbit relation O, we need to compute a function ~ : S ---* S,
which maps each state s t o t h e unique representative in its orbit. If we view states as
vectors of values associated with the state variables, it is possible to choose the lex-
icographically smallest state to be the unique representative of the orbit. Since O is
an equivalence relation, these unique representatives can be computed using BDDs by
the method of Lin [15]. Assuming that we have the BDD representation of the map-
ping function g, the transition relation Rc of the quotient structure can be expressed as
follows:

-~a(=, y) = i f (=) = =) A (3y~)(R(=, y~) A ~(y~) = y)

The formula ~(z) = x expresses the fact that z is the unique representative of its orbit.

456

6 Complexity of orbit calculations

The behavior of a sequential circuit or protocol is frequently determined by the values
of a set of boolean state variables z l , z2 , . . . , z , . For example, the behaviour of a bus
arbitration protocol may be determined by the state variables which encode the command
on the bus and the identity of the master. When we extract a Kripke structure from a
circuit or protocol, we treat these state variables as atomic propositions. The resulting
Kripke model M - (S , R , L) will have the following components:

- S C B n, where each state can be thought of as a truth assignment to the n state
variables.

- R C_ S x S, where R is determined by the behavior of the circuit or protocol.
- The labeling function L is defined so that zi E L(s) if and only if the i-th component

of 8 is 1.

It is often the case that the symmetry group is also given in terms of the state
variables. For example, in a two hit adder with inputs zl , z2 and zs, ~4, the permutation
(13)(24) is a symmetry because we can exchange the inputs without affecting the result.
If we have a permutation ~r, which acts on the set {1 ,2 , . . . , n}, then ~r acts on vectors
in B '~ in the following manner:

~(=1, x 2 , . . . , z .) = (z~(1), xo(2), �9 . - , =~(.))

Given two vectors z and y in B" and a permutation o', it is easy to see that z ~ y implies
~z ~ ~y. Therefore, a group G acting on the set { 1.2,.- -, n} induces a permutation group
G1 acting on the set B". In other words, a symmetry on the structure of a circuit induces
a symmetry on the state space of the circuit.

Def in i t ion T. Let G be a group acting on the set {1 ,2 , . . - , n}. Assume that G is repre-
sented in terms of a finite set of generators. Given two vectors z E B n and y E B n, the
orbit problem asks whether there exists a permutation ~r E G such that y = ~,z.

Let G induce the permutation group G1 acting on B n. The orbit problem asks if z and
y are in the same orbit under the action of the group G1. First, we prove that the orbit
problem is as hard as the Graph Isomorphism problem.

De f in i t i on& Given two graphs G1 -- (VI,E1) and G~ - (V2,E2) such that IV1[= IV21,
the Graph Isomorphism problem asks whether there exists a bijection f : V1 --* V2 such
that the following condition holds

(i, j) E El r (f(i), f(j)) e E,2

T h e o r e m 9. The orbit problem is as hard as the Graph Isomorphism problem.

A modified version of the orbit problem called the bounded orbit problem is defined as
follows:

Def in i t ion 10. Given a group G generated by r permutations gl,g~, "" ", gr (the permu-
tations act on the set (1 ,2 , . . - , n}), two vectors z, y E B n, and an integer k does there
exist a permutation o" obtained by at most k app]ications of the generators such that
z = ~ry? Formally, cr is of the following form ~ = gi~gi~ ...gi~ ,m <_ k

457

Intuitively, in the bounded orbit p rob l em we bound how many times we can apply the
generators. Although the graph isomorphism problem is not known to be NP-hard, the
bounded orbit problem can he shown to be NP-complete. The reduction is from E X A C T
COVER B Y 3-SETS [9].

T h e o r e m 11. The bounded orbi t problem is NP-comphte.

Permutations g l , g2 gr acting on the set { 1 ,2 , . . . , n} are disjoint if and only if no
element is moved by more than one permutation 91,.-. ,gr. If we restrict the set of
generators of a group G to be disjoint, the orbit problem can be solved in polynomial
time.

T h e o r e m 12. Given a group G generated by disjoint generators gl, g2, ' - - ,gk and two
vectors z E B n and y E B", it can be decided in polynomial time whether there exists a
permutation o" E G such that y - ~z.

Circuits are typically built from components and the state bits are grouped according
to the hierarchical structure of the system. Because of this two types of symmetry groups
occur frequently in practice:

- Rotation 9roaps occur when equivalent components are ordered in a ring and can
be rotated any number of steps. For example, the token ring protocol used in the
solution to the distributed mutual exclusion problem exhibits rotational symmetry.

- Fall symmetric groups occur when equivalent components are unordered and can be
exchanged arbitrarily. Such groups occur, for example, in systems where components
communicate via a common bus (e.g. multiprocessor systems), or in systems with
broadcast and star-like communication structures.

For these two classes of symmetry groups we give results on the complexity of the B D D
representations for the orbit relation.

T h e o r e m 13. Let the state of a system be composed of N equivalent components each
with k state variables. For a full symmetric permutation group G acting on the set
{1 N} we have the following lower bound for the B D D representing the induced
orbit relation 8 .

181 > 2 K/s with K = min(N,2 k)

T h e o r e m 14. Let the state of a system be composed of N equivalent components each
with k state variables. For a rotation group G acting on the set { ! , . . . , N} we have the
following lower bound for the B D D representing the induced orbit relation {9.

[el > 2 K with K -- min(x/~,2 k-1 - 1)

The BDD of the orbit relation induced by a full symmetric or rotation group on
the components is exponential in the minimum of the number of components and the
number of states in one component. Consequently, exploiting these types of symmetries in
symbolic model checking is restricted to examples with a small number of components or
where each component has only a few states. An approach which avoids the computation
of the orbit relation is described in Section 7.

458

7 Approximating the Orbit Relation

In the approach described in Section 5, a function ~ was computed that mapped each
state in an orbit to its unique representative. There are interesting symmetries where
the BDD representation of the orbit relation is too big to compute. Although selecting
unique representatives reduces the number of states in the quotient model, this is not
the primary goal when using BDDs. Instead we want to choose the representatives so
that the BDDs will be small. For this reason we have developed a method which uses
an approximation of the quotient model.

Instead of having only one representative for an orbit we allow a set of representatives.
Hence, we are using the set of representatives as an approximation to an orbit. For this
purpose any subset of the orbit can be used, instead of only a unique representative as
in ' Section 5 or the whole orbit as in the case of symbolic model checking without using
symmetry. As an example consider a system of N processors where a specific processor
is always the master. Suppose that the system is symmetric in the processors, i.e. we
can exchange any two processors. As representatives we choose states where the first
processor is the master. However, we might not be interested in further exchanging (i.e.
sorting) the other processors to get a unique minima] representative, because this might
introduce unnecessary dependencies which can result in larger BDDs.

We will still use ~(s) to denote the representative for s. However, now ~(sl) can be
different from ~(s2) even if sl and s2 are in the same orbit. We extend the functions
and O so that they map sets of states into sets of states in the usual manner. Thus if
M _CS, we have ~(M) = {~(s) I s E M} and O(M) = {O(s)ls E M}. Given a set of
orbits O, we say that a set of representatives M is an approzimation of O iff O(M) = 0.

The basic steps in model checking are the computation of the image (ImR(M) =
{ s ~ [3s E M : R(s,s~)}) and the preimage (I raqi (M) = {s I 3s~ E M: R(s, sl)}) of a set
of states (see [3]). If M is a set of representatives, an approximation M' of the image or
the preimage of O(M) can be computed as follows:

ImRc(O(M)) = O(M') with M ' = g(ImR(M))
I m ~ (O (M)) = O(M') with M ' = g (I m ~ (M))

From the definitions given above we see that M ' is an approximation of @(ImR(M)).
Instead of using the transition relation of the quotient model, the image and preimage

are computed in terms of representatives. This technique allows us to perform model
checking on the quotient model without explicitly building the quotient model. The
representatives at each step of the computation are used as an approximation for the set
of orbits. This methodology can be easily extended to an arbitrary fixpoint computation
by transforming the sets encountered to a set of representatives (using the ~ function).

The set Rcp of representatives is defined as the image of the set of states S under
(. If the set of initial states is a subset of Rep, then by induction it is clear that all
the sets computed by the equations given above are subsets of Reg. Therefore the image
or preimage computations are only performed on representatives, and one side of the
transition relation can be restricted to the set Rep (R' = R N (Rep x S) or R ~ = R f3
(S x Rep)). For our example this means that during a reachability analysis we need only
consider transitions from states where the first processor is the master. This restriction

459

can reduce the size of the transition relation considerably, but this entails having to apply
the mapping function ~ at each step.

8 Empirical Results

To test our ideas we have chosen a simple cache coherence protocol for a single-bus
multiprocessor system based on the Futurebus+ IEEE standard [12]. The verification of
a more detailed version of the protocol with multiple buses is described in [6]. The system
has a bus over which the processors and the global memory communicate. Each processor
contains a local cache which consists of a fixed number of cache lines (see Figure 1).

i...i

�9 ~

........ I

cl 1,1 cl 2,1
cl 1.2 cl 2,2

�9 . r ~

�9 . . o o ,

cl 1 .K cl 2,K

. I
Mere

I

i Bus

rr~m 2 ~

~

n'~m K

Fig. 1. System structure

In each bus cycle the bus arbiter chooses one processor to be the master. The master
processor selects a cache line address and a command it wants to put on the bus. The
other processors and the memory respond to the bus command and change their local
context. The reaction of the components is described in the protocol standard, which
enforces the coherence of the cache lines among the different processors, i.e. only valid
data values are read by the processors and no writes are lost. For the verification task
the protocol is formalized, and cache coherence and other important system properties
are expressed in temporal logic. -,

The behavior of the processors, the bus and the memory can be described by finite
state machines. The state of the processor Pi is a combination of the states of each cache
line in the processor cache and the state of the bus interface. The global bus is represented
by the command on the bus, the active cache line address and other bus control signals,
e.g. for bus snooping and arbitration.

There are two obvious symmetries in the system. First, processors are symmetric, i.e.
we can exchange the context of any two processors in the system. Second, cache lines
are symmetric, i.e. any two cache lines can be exchanged simultaneously in all processors
and the memory. To maintain consistency, along with applying the symmetries mentioned

460

above all the cache lines and processor addresses in the system must be renamed. Both
symmetries are indicated in Figure 1 by arrows.

The complete system is the synchronous composition of all the components and is
described by a Kripke structure M = (S, R, L). Since domains can be encoded in binary,
a state is just a binary vector, and the transition relation R can be represented by a
BDD. We experimented with two variable orderings, which we call "concatenation" and
"interleaving ~. The concatenation ordering is simply P1 -< Pz -< . . . "< PN. The variables
of processor i are ordered before the variables of p r o c e s s o r / + 1. In the interleaved
ordering the processor variables are interleaved, i.e. PI,1 "< /~ ,1 . - .PNj -< P1,2 -< p2,~
where P i j , . . . , Pl,X are the state variables for processors Pi. The variables of the bus and
the memory are ordered before all other variables in both orderings. In both orderings,
each next state variable is placed immediately after the corresponding s tate variable.

As representatives we want to choose states where processor I is the master (cache
line 1 is active on the bus). As generators we consider the permutations g l , . . . , gN, where
gl exchanges processor 1 and i (cache lines 1 and i). Such a permutation gi : S ~ S can
be represented easily as a vector of boolean functions. We checked that each generator is
a symmetry by comparing R(s, s I) and R(gi(s), gi(s')), which is obtained by functional
composition of R and g~. For defining the mapping function we construct functions g~
which exchange processor 1 and i only if processor i is the master and processor 1 is
not. An analogous definition can be made for exchanging the cache lines. The mapping
function, which is used as an approximation, is the composition of these functions g~, i.e.

I ! !
~(M) .~ gl ("" gN-1 (gN(M)) "" ")"

In the experiments we performed a reachability analysis using the approximation of
the orbit relation. With the set of reachable states all safety properties of the form AG p
where p is a propositional formula can be checked easily. We ran the experiments with
various system configurations. The results are listed in Table I. Each row jPkC in the ts-

system trazas, no symmetry
config, relation processors

BDD BDD timei BDD time
nodes nodes sec .] nodes sec.

2P4C c 1,911 32,655 28i 9,721i II
2P4C i 1,819 4,942 61 2,6601 4
4P4C c 7,675 586,479 665 133,9671 161
4P4C i 12,469 52,480 57 14,820 20
!2P8C C 6,699 > 995,027
12P8C i 6,043 35,3601 66 18,396 39
4P8C c 28,323 overflow - overflow
!4P8Ci 43,765 413,7411,151 II0,3051 277

symmetry
cache lines Icombination

BDDltime i BDDltime
n o d a I sec. I n o d ~ I s~ .
9,941 15 3,401 12
2,177 8 1,142 7

176,266 174 35,359 108
24,907 34 6,773 22

310,124 243i
8,558 62 4,373 61

103,028 434 26,934 288

Table 1. Empirical Results

ble gives the results for a configuration o f j processors and k cache lines. The labels i and

461

c indicate which variable ordering (interleaved or concatenation) was used in the exper-
iment. The first column gives the number of BDD nodes for representing the transition
relation. The columns after that give the results for the symbolic teachability analyses.
First, no symmetry was used. Next, we give the results for symmetry between processors
and symmetry between cache lines. In the last case, we used the combination of both
symmetries. In each case for the reachability analysis the size of the largest intermediate
BDD (number of BDD nodes) and the cpu time used are listed. All experiments where
run on a Sun Sparc2 workstation and the size of the largest BDD gives a tight bound
for the maximal memory usage.

Exploiting the symmetry between processors or cache lines reduces the BDD size
by a factor that is linear in the number of proCesses or cache lines. The combination
of these two symmetries reduces the size of the largest BDD by the product of the
number of processors and cache lines. This is due to the fact that the two symmetries
are independent. So by exploiting symmetry the memory usage is reduced considerably.
e.g. by a factor of 15 in the case of 4 processors and 8 cache lines. The cpu times are not
reduced by the same factor. For exploiting the symmetry we need additional time for the
mapping of states onto the representatives after each step in s reachability analysis. In
the future, we hope to improve the e~ciency of the mapping computation.

9 D i r e c t i o n s f o r F u t u r e R e s e a r c h

There are a number of directions for future research. Perhaps the most interesting (and
difficult) problem is to determine the exact complexity of the orbit computation. This
problem seems fundamental with many applications other than verification. It may be
possible to show that the problem has exactly the same complexity as the graph isomor-
phism problem or even that it is NP-complete.

It would also be nice to have lower bounds on the size of the BDDs needed for
the orbit relation for groups other than full symmetric and rotation groups. This type of
information would be useful in determining if it is feasible to construct the quotient model
directly using the orbit relation or whether it is necessary to develop special techniques
(like the approzimation procedure in Section 8) for mapping states onto representatives.

An automatic procedure for identifying symmetries in circuits would definitely be
useful. Techniques based on the Walsh transform have been tried for this purpose in the
past [11]. However, we suspect that this will always be a hard problem and that some
information from the designer of the circuit will usually be required.

Finally, we plan to check a number of liveness properties for the Futurebus protocol
in Section 9 besides the safety properties that we have already tried. We also intend
to try other hardware examples with more complicated topologies in addition to cache
coherency protocols.

A c k n o w l e d g e m e n t s

We would like to thank David Long and Ken McMillan for their help in writing this
paper.

462

References

1. M. Browne, E. Claxke, and O. Grumberg. Characterizing finite kripke structures in propo-
sitional temporal logic. Theoretical Comput. Sci., 59:115-131, 1988.

2. R. E. Bryant. Graph-based algorithms for boolean function manipulation.]EEE Trans.
Comput., C-35(8), 1986.

3. J. R. Butch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwaag. Symbolic model
checking: 1020 states and beyond. In Proc. 5th Ann. Syrup. on Logic in Comput. Sci. IEEE
Camp. Sac. Press, June 1990.

4. L. Cla~en, editor. Prec. 11th Int. Svmp. on Comput. Hardware Description Lang. and their
Applications. North-Holland, Apr. 1993.

5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification offinlte-state concur-
rent systems using temporal logic specifications. ACM Trans. Prog. Lang. Svst. , 8(2):244-
263, 1986.

6. E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and L. A.
Ness. Veritlcation of the Futurebns-t- cache coherence protocol. To appear in Proc. l l th
Int. Syrup. on Comput. Hardware Description Lang. and their Applications, Apr. 1993.

7. R. Enders. Note on the complexity of boolean representations of permutation and rotation
functions. Technical report, Siemens, 1993. unpublished.

8. M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for permutations groups.
In Prec. ~lst Ann. Syrup. on Found. o] Comput. Sci., 1980.

9. M. Garey and D. Johnson. Computers and Intmctibility. W.H. Freeman and Company,
1979.

10. P. Huber, A. Jensen, L. Jepsen, and K. 3ensen. Towards reachalKlity trees for high-level
petri nets. In G. Rozenberg, editor, Advan~s on Pctri Nets, pages 215-233, 1984.

11. S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectral Techniques in Digital Logic. Academic
Press, Inc., 1985.

12. IEEE Computer Society.]EEE Standard for Futurebus./---Logical Protocol Specification,
Max. 1992. IEEE Standard 896.1-199I.

13. C. Ip and D. Dill. Better verification through symmetry. To appear in Proc. l l th Int.
Syrup. on Comput. Hardware Description Lang. and their Applications, Apr. 1993.

14. R. Kannan and R. Lipton. Polynomial*time algorithm for the orbit problem. J. ACM,
33(4):808-821, 1986.

15. B. Lin and A. R. Newton. Efficient symbolic manipulation of equvialence relations and
classes. In Prac. 1991 int. Workshop on Formal Methods in VLSI Design, Jan. 1991.

16. K. L. McMi]lan and J. Schwalbe. Formal verification of the Gigamax cache consistency
protocol. In N. Suzuki, editor, Shard Memory Muitiprocessing. MIT Press, 1992.

17. P. Starke. Rechability a~aJysis of petri nets using symmetries. S!lst. Anal. Model. SimuL,
8(4/5):293-303, 1991.

