FAST MAINTENANCE OF SEMANTIC INTEGRITY ASSERTIONS

Philip A.
Barbara T.

Fdmund M.

USING REDUNDANT AGGREGATE DATA*

Bernstein
Blaustein

Clarke

Aiken Computation Laboratory
Harvard University
Cambridge, MA 02138

Semantic integrity assertions are predicates
that define consistent database states. To enforce
such assertions, a database system must prevent any
update from mapping a consistent state to an incon-
sistent one. In this paper, we describe an enforce-
ment method that is efficient for a large class of
relational calculus assertions. The method auto-
matically selects minima and maxima of -certain sets
to maintain as redundant data in the database. This
redundant data is sufficient for enforcing all of
the assertions in the class, yet it can be easily
maintained. Correctness proofs are expressed in
Hoare's program logic.

1. Introduction

Accuracy is an important property of any data-
base. One way to prevent inaccurate data from being
stored in a database is to use semantic integrity
assertions. These assertions are predicates on da-
tabase states; a database state is consistent with
these assertions if all assertions hold in that
state. By defining a collection of semantic inte-
grity assertions, a user specifies .consistent states.
The database system is responsible for ensuring da-
tabase consistency by rejecting updates that pro-
duce inconsistent states.

The main components of an implementation of
semantic integrity assertions are a specification
language for defining assertions and enforcement
algorithms for guaranteeing database consistency
relative to those assertions. Expressive power
is an asset for such a language, since it allows
many types of constraints to be stated; but it is
also a liability, since complicated assertions are
often expensive to enforce. One language that is
richly expressive is relational calculus {Codd 72].
However, since many applications do not need the
full power of relational calculus to express seman-
tic integrity assertions, and since arbitrary re-
lational calculus assertions can be quite expen-—
sive to enforce, we focus on a restricted class of
assertions. Our restricted class is sufficiently
general to express many common assertions, yet
simple enough to be enforced efficiently.

*This work was supported by the National Science
Foundation under grants MCS-77-05314, MCS-79-07762,
and MCS-79-081365,

Efficient enforcement depends not only on the
complexity of the assertions, but also on the struc-
ture of the database. One method for improving the
efficiency of enforcement algorithms is to augment
the database, D, with stored redundant information,
D', that summarizes the contents of D. If D' is,
cleverly designed, it will contain sufficient in-
formation for testing the consistency of most asser-
tions during updates. However, D' itself must be
kept consistent relative to the ngabase, D, it is
intended to describe. So, there is a trade-off be-
tween the work saved during consistency testing by
exploiting D' and the extra effort requircd to keep
D' consistent with respect to D. For D' to be ef-
fective, its benefit for consistency testing must ex-
ceed the cost of maintaining it.

We have adopted the use of redundant data to
reduce the cost of testing consistency. The redun-
dant data that we typically add to the database is
aggregate information that characterizes a set of
values in the database, such as the greatest lower
bound of a set. We test consistency using the stored
aggregate data rather than all the individual values
in the set. The aggregate information is designed to
be quickly accessed and easily maintained.

The enforcement method that is the subject of
this paper includes: A formal definition of the class
of assertions it can enforce; a procedure that se-
lects the appropriate aggqregate information to store
for each assertion in the class; a procedure that de-
termines the proper run-time test for each type of
update and assertion; and a procedure that generates
an efficient program for maintaining the correctness
of the redundant aggregate information during data-
base updates. Each of these procedures requires
little more than a table look-up. The method re-
quires no mechanical theorem proving, and can exploit
the full capabilities of the database system's query
processor (as in [Stonebraker 75]).

This method represents a qualitatively differ-
ent approach to integrity enforcement than other
published methods. We do not simply incorporate heu-
ristics in a general purpsoe integrity enforcement
mechanism and apply the heuristics whenever they seem
cost effective. Rather, we define a class of asser-
tions for which the hcuristic--maintaining aggregate
data--is virtually guaranteed to be cost effective.
We can then conclude that any assertion in our class
will be enforced efficiently by out method.

Section 2 defines the database model and the terpretation of arithmetic function symbols), a re-

restricted class of assertions we consider in this lation to each predicate symbol (with the standard
paper. Section 3 presents algorithms to generate interpretation of arithmetic relations), and a set
fast consistency tests. We use Hoare's program lo- of relations to each relation symbol (the set of

gic [(Hoare 69; Hoare and Wirth 73] to prove that possible states of each relation schema). An tnter-
these tests are sufficient to gquarantee consistency. pretation of our language includes a structure and a
Implementation issues of accessing and maintaining database state. In what follows, we assume a fixed
aggregate data are discussed in Scction 4. Finally, structure; only the database state can change as a
in Section 5, we compare our approach with previous result of program exccution.

work and argue that our approach has low cost.
Example 1 - Assertions

(a) English assertion: No item may be sold at a loss.
2.1 Relational Data Model Assertion:* Vbuys€BUYS Vsclls€SELLS

(buys.ITEM=sells.ITEVN = buys.COST<sells.PRICE)

We use relations as our underlying data model.

A database is described by a database schema, which (b) English assertion:Items can only be bought by
consists of a set of relation schemas. Each rela- cases.

tion schema consists of a relation name, say R, and Assertion: Vbuys€BUYS Jpacks€PACKS

a set of attributes, say [Al.---.!\n}. and is denoted (buys.ﬁ'ﬁ.\«:packs.mr:mbuys.QUANTITY;packs.#PER-CASE)

bY,E(Al""'An)' An example database schema that where x + y = x is an integer multiple of ¥. '8

¥ = 2 " hFd "
we use throughout this paper appears in Fig. 1. (We will use = to abbreviate "is defined as")

A state of a relation schema E(Al...,AnTis a i Elgiie: 1
relation, R, which is a subset of dmm(Al)X...Xdom(Al), ; An Example Database Schema

'where dom(Ai) is the domain of values for Al A)

database state D of database schema D={R reevR) is DATABASE SCHEMA: D = {BUYS,SELLS,PACKS }

. = L e RELATION SCHEMAS:

a set of relations {Rl""'Rn} where Ri is a state of BUYS (INVOICE#,DEPT, ITEM, QUANTITY , COST)

R.t= 1,...n. . An invoice entry records a department buying a
i quantity of an item at a certain cost per item.

2.2 The Assertion Language

SELLS(INVOICE#,DEPT,ITEM,QUANTITY,PRICE)
An invoice entry records a department selling a

We express assertions in a language much like ! J p -
quantity of an item at a certain Price per item.

relational calculus [Codd 72]. The symbols of our

language include
PACKS (ITEM, CASE-TYPE, #-PER-CASE)

A certain number of items are packed in each type

variables i
e ey of case (e.g., 'economy', 'jumbo', etc.)

-relation symbols (e.g., R,S);
~tuple variable symbols (e.g., r, which denotes

a tuple of a relation); ATTRIBUTES : .
~indexed tuple variable symbols {e.qg., r.B, which Attribute QE¥3 Domain . .
denotes the B attribute of tuple r); DEPT, ITEM, CASE-TYPE Alphanum?rlc‘strlngs
INVOICE#,QUANTITY, §-PER-CASE Nonnegative integers .
parameters COST,PRICE P?sitive rea} numbers
-constant symbols (including "true", “false", and with two decimal places
the rational numbers) ; S B T T S e
- function symbols, including arithmetic functions
le.g., +,x,-); 2.3 A New Class of Assertions
-predicate symbols, including arithmetic relations
(e.g., =,< , etc.); Our assertion language is very powerful, making
~-the quantifiers V and 3 H it potentially quite expensive to preserve the con-
-boolean operators (e.g.,7, A,V , =), sistency of an arbitrary assertion. The purpose of
this paper is to demonstrate methods for preserving
Assertions are well-formed formulas {abbr. the consistency of a restricted class of assertions,
wffs) as in relational calculus, where terms are called two-free assertions.
indexed tuple variables and constants and clauses
are formed in the usual way. (Unlike relational An assertion is two-free if it is of the form:
calculus, the range of a quantifier can only be a 1)VrERVsES (P (r,s) = r.n<s.B), or 2) Vr€RIs(P(r,s)
single relation.) Alx/y] denotes a wff A with x Ar.A<s.R), or 3) Jr€RVsES(P(r,s) A r.A<s.B), where
substituted for all occurrences of y, r.A and s.B have the same underlying domain, P is a

wff, r and s are the only free tuple variables in P,
A gtructure for our language interprets the
parameters and assigns a universe to the variables.
It assigns a value to each constant symbol, a func- * We usc Ybuys € BUYS(...) to abbreviate the more com-
tion to each function symbol (with the standard in- Plex but formally correct {¥buys) (BUYS(buys) =(...)).

and no boung tuple variable ip p has the same range
as r or g,* [a]

We will only considey updates tg relations
whase tuple vVariables are free in' p, In our exam-
bles, p ig 4 function of r and g only. If g and §
are the sape relation, we Perform testg for an up=-
date to and for ap update tgp S.

The assertions jp Ex. 1 are two-free, In
Ex. 1b,

Vbuys €BUYS dpacks EPACKS(buys.ITEM=packs.ITEM
A buys.QuanTITY = Packs, #-prr-casg) ;

integer division defines 4 partial ordey,
©ould denote the partial orderp by the Symbol <,
We use + g avoid confusiop with the Standard
arithmetjie ordering,

"assertion® refers only to

two~frea assertions, Asserticns of forms ; 2,

3 are calleqd VV-assertions, V3—assertions, and
SV-assertions, res;ectively. We fix the order of
the quantifjey,g and require that the T quantifijer.
Precede the g Quantifijer,

In this Paper,
and

2.4 Simple Updates

In thig baper we consider only simple Updates;
single—tuple insertiong and single~tuple deletions,
An in-place modification of an existing tuple ig
modelled Currently by 4 deletion followed by an in-
Sertion;
We mode) up=
Given 3 tuple ro

and a relation R, "R:=R U ro' denotes an insertion

of ro into R, and "gr.=pg- ro" denotes a deletion

of r, from R, (We haye dropped the usual set brac-

kC‘ﬁS, ﬂ{}n’

2.5 Hoare's Logic
Oare's Program logic [Hoare 69;

We use g
and Wirth 73} to @nalyze the effectg of updates op
assertiong, Formulas jp the i

In our case,
Formuly Plulg +g
where 5 jo 4 structyre and D jg 5 database State,
denoted FﬁlP(u}Q. i

;“Kggertions of the above form prefixeq by Jr€riseg
€an also be handleq by our method, However, extra
technica} machinery jg required to gg S0. Since ex-
amples of such assertions "are few and, for the most
Ppart, contrived, we choose not to discuss them in
this paper, &

where p and 9 are formulasg and u is 4 Program.

in I before the update then Posteonds tion Q is true

in AT
u exccutes,
enge ryles
Provable,
(sec Pig.2y.
formula

Figure 2

is the database State aftep

us to determlne,thnever

true in all database States
We usge F—P{u}Q to dengte
Plulo is Provable in the logic,

that the

Axioms of Hoarety Program Logic

E Ez._.E

Genera) form: “L*—T‘—Q

2 ife e

then E

Asslgnment Axiom,

}- p{ggl}k1
Composition Axiom:
———="1 _Axiom:

Conditional Axiom;
—————42 Axiom

1
= PABfSl.

Alternative Axiom:
———==1¥€ Axiom:

A il AE
n

F P[y/x}fx:nyfp

“Rl{Q?}R

=R Ql.'Q;,fR

Fpasisyg - PA-B=g

Felis g then slg

2 Fpa -TB{’SZ}Q
——— 2%

- Pfi{ B then Sl else SZ}Q

F rigir FS=P | purp

Consecuence Rule-

[Clarke 79].
A database

A iff F* h?iD)A' An update U brege

of D with respect tg (abbx, wW.r.t.)

State D is Sonsistens with an assertign
res the eongistenc,,

A iff I.Q?D) Afula.

We say yu Preserveg p if, for al1 database states p,

Y preserves the consistency of D w,
if f_ A{ula, then y Preserves a.

We assume that the database gt
Prior to the update, BV—assertion
ones for which the empty database g
tent, 1p this case only, we assume
tests for each update are suppresse
consistent State ig reached

g;_ggsermlnln

3.1 General Strate
T—————- >lrategy

One way tq test thap an update,

the consiﬂtency of an assertion a,

Whether y dates pre
“MJE“_“____.

r.t. A. Note that

ate jg consistent
'S are the only
tate jig inconsis-
that consistency
d until an initia]

serve Consistene
————00Sistency

U, preserveg
in a Particular

T

~

state. If the new state is consistent, Lhen the up-
date is backed-out, thercby undoing its cffects.

In view of this potential back-out, it may be
preferable to test that u preserves A before u is
acutally executed. To accomplish this, we construct a
consigtency test, t, that, for each database state,
D, determines whether u preserves D w.r.t. A. We
can check that we correctly constructed t by proving
the theorem: F_ A{if t then v}a. This thecorem veri-
fies that t is a correct test for all database
states. (If t{(D) = false, then u is not executed
and the database state is unchanged.) We adopt
this strategy of testing consistency before permit-
ting the update. We note that this strategy is
essentially the one used in the query modification
method proposed by Stonebraker [75].

To enforce an assertion A, a database system
must provide a consistency test for each update.
Assuming the enforcement method is a compille-time
algorithm that cannot access the database state, then
enforcement amounts to an algorithms that maps each
assertion. A and update u into a test t, such that

A{if t then w}lA and }-A[if 7 t then u} - A,
For the tests in this paper, the proof of F—A{ig t
then u} = A should be clear from the proof of
Fa{if ¢ then ula.

To determine a test t for A and u, we could
begin by finding the weakest precondition sufficient
to ensure the truth of A after u executes, denoted
wp(A,u) [Dijkstra 76]; sg,}—wp(A,u){u}A. However,
wp{A,u) asaumes we know nothing about the database
state before u executes. 1In fact, we do know that
A holds in that state. So, we can substitute any
test t for wp(A,u) such that FwtnA £) = wp(A,u).

One methed for determining t is to substitute the
Boolean constant true in each clause of wp(A,u) that
A implies; the resulting formula is a correct test
(althcugh not necessarily a "minimal® one) .

3.2 Trivial Tests

For some combination of two-free assertions
and updates, the assertion implies the weakest
precondition. That is, F—A = wp(A,u). In this case,
the consistency test is trivial-- it is simply true,
because }vﬂ{iﬁ true then ulJA. A trivial consistency
test for a particular assertion and update means that
the update preserves the assertion. For such up-
dates, the database system does not need to do any
work to enforce the assertion.

Example 2 - A Trivial Test

ﬂfﬁfﬁﬁiﬂﬂi (as in Ex. la)

Update: SLLLS:=SELLS-sellso, where sellso 1s an ar-
bitrary tuple in SELLS

Claim: The update preserves A, so no consistency test
is required. Formally stated,
Fa{sers: =SELLS-sells }A

Proof.
1. Vbuys€BUYSVsells€SELLS P(buys,sells)
= VbuysEBUYSVsells€(SELLS—sellsO)P(buys,sells)

i by def. of two-free, there are no variables
other than buys and sells bound to BUYS and
SELLS in P.

2. = A{SELLS-sells /SELLS]

i 1 and def. of substitution
3. }—A[SELLs—seusO/ssLLs](SELL5==SELL5~seusO}A

; Assignment axion.
4. A{SELLS:=SELLS-se lls,}a

; 1,2, and Consequence Rule. o]

3.3 Using Stored Aggregates to Simplify
Consistency Tests

We can simplify all nontrivial consistency tests
further, provided certain aggregate values--minima
and maxima of certain domains--are maintained.

Let V be a set whose domain is partially ordered
by <. We define MIN(V,<) = {vEV{~(3v'€V) (v'<v)},
where (v'<v) abbreviates ((v'<v) A (vV'#v)). Similar-
ly, MAX(V,<) = (vEV| (3v'€v) (v<v')}. Note that MIN
and MAX are sets, not necessarily singletons. We
assume MIN and MAX are non-empty. When MIN(V;$)|=1,
we use MIN{V,EJ to abbreviate the unique element in
the set (similarly for MAX). When the relevant
partial order is clear in context, we drop < as a
Parameter to MIN and MAaX.

Example 3 - Using a Stored Aggregate to Simplify a
Consistency Test

Assertion: same as Ex.la.
Upda{g: BUYS:=BUYSUbuySO:

where buyso=(494,'toy','whistle',lOO,.ZO)

Claim: If A is true before the update then
TEST=(VmEMIN ({sc1ls.PRICE|sells€SELLS
Asells. ITEM=buys.ITEM}) (buys .COST<m})
is sufficient to ensure consistency. Formally
stated
F-A{if TEST then BUYS :=BUYSUbuys }A.
Proof.

1. AAA[buySO/BUYS] - A{BUYSUbuysO/EUYS]

; defs. of A anda U
2. TEST = Albuysy/BUYs)

; defs. of A, TEST, and MIN

B |-AATES'I‘=°A[BUYSUbuySO/BUYS]
; 1. and 2

4. |-a(BuysUbuys /BUYS][BUYS:*BUYSUbuysO}A
; Assignment axiom

5. FMTBST(DUYS:=nuvsubuyso}n
i 3, 4, and Consequencé rule

6. |-A(if TEST then BUYS : =BUYSUbuys: A
i 5 and Conditional axiom

Since we design our tests to promote efficiency,
let us briefly discuss here the cost of this method
(a fuller discussion is in Section 5.2). If the
minimum PRICE of all 'whistle' tuples in SELLS is
available, we only need one comparison to evaluate

TEXT. By coﬁstrast, note that guery modification
[Stoncbraker 75) setg out to prove
fmA(BUYS:=HUYSUbuysU}A and uses the Assignment Axion

to produce the precondition Vsells€seLLs
_('whistle‘=sells.ITEM@.EOisells.PRICE). Assuming
o inverted files, this formula entails searching theo
eentirc SELLS relation, checking the ITEM values, and
comparing .20 to the PRICE value for every tuple

with I'Eii='whistle'., If spLug is inverted on ITEM,
then the test gust $till be made on all 'whistle®
tuples in SELLS.

1

for any two-free assertion A and any
there is an efficient test t such
that |-alif ¢ then wiA. Pigure 3 shows the test t
:for each type EE—JSSQItiOH and update. 1In all cases
where t is nontrivial, t relies on a MIN or MAX value
‘that must be maintained as redundant information in
the database. Efficient methods for locating and
maintaining these MIN and HMAX values are discussed

in Section 4.

In general,
:gimple update u,

‘The proof of }—A{ii L then ulA for each case
included in Fig. 3 is similar to those in Examples
2 and 3; proofs appear in [Bernstein and Blaustein
80].

Figure 3)
Consistency test t for assertion A and update u such
that f—A{i{ t then ula

Assertion:

Update:

R:=Rl:.’,‘o

VrERVsES(P(r,s)HT.Ais.B)

e — Ty
Vm€MIN({s.E[s€SAP(rO,s)})rO.AfM

-

S:=SUs _
0

R'=R-'rJ L;TRUE

'VmEMAX({r.AIrERAP(r,sO)})mfso.B

.=¢—SQ“J TRUE
k- & ———— 1
ﬁ§§5£5i93= VrERBsGS(P(r,s)Ar.A<S.B)
Update: -
&:=RU:0 am€MAx({s.B[s€SAP(ro,s)})rO.Agm
b . =gi
Sjs0 TRUE
—
t:=R-
R ro TRUE
Bres-5 V:E{rERIP(r,sD)}(BmGMAX({s.BIsES—BO
Aptr,s)})r.hfm) AﬁJ
ﬂffﬁEFiQE’ 3r€RVs€S(P(r,s)Ar.A§;.B)
Update:
:=RUr TRUE

Sregig am€MIN([r.A]rERAP(r,SO)

AVSGS(P(r,s)Ar.AES.B)})
IIISSO.B

ImEMIN({z.A r€R—r0AVs(P(r,s)
A r.A<s.B|})

VnEMIN ({s. 1 s€sh) m<n

TRUE

3.4 Special cases

The tests in Fig. 3 are sufficiently general
‘to handle MIN and MAX as sets. The cost of per-
forming a test, then, depends principally on the
size of the MIN or MAX set. However, in most com- ’
mon cases MIN and MAX each consist of a single
value, Consistency tests for these casesg require
at most on comparison per update, -

Lemma 1. If < defines q lattice and X 1s ¢
finite set, then thepe t8 a single value v which
18 the greatest lowep bound of MIN(X,<). Similar-
Ly, there is a single value o' which Ts the lege+
upper bound of MAX(X,<) . ‘o

Note that Lemma 1 is only useful for VV—assertions.

Lemma 2. IT < defines q total ordering, then
[MIvex, <) | = | MAX(X,<) | = 1. o

Examples 1-3 use a partial ordering that is
also a total ordering. The following example ap-
plies cur strategy to a different partial order,
integer division, and illustrates a case where the
MAX values are sets.

Example 4 - A Different Type of Partial Order

Assertion: same as Ex.1b.
Update: PACKS : =PACKS-packs i
where packsy = "whistle','economy‘,lOO)

Application of Figure 3:

For a Vi-assertion and a deletion from s, Fig. 3
gives TEST = VrE[rER]P(r,so)}(EmEMAx(]s.B,sES-sQ
AP(r,s)})r.A<m) where f—A{Lf TEST then S:=S~sU}A.

for R, 5, and

Substituting BUYS,PACKS and packso

S, respectively, we obtain:

TEST=Vbuys€{buys€BUYSfbuysTITEM='whistle'
(EmEMAX({packs.#-PER-CASEfpacksePACKS—packs

Apacks.ITEM='whistle'})buys.QUANTITYSm)

This simplifies to

HAXf{buyS.QUANTITY]buysEBUYSAbuys.ITEMﬂ'whistle 1)
< MAX({{packs. #~PER-CASE
TbacksEPA:KS—packsOApacks.ITEM='whistle’])

defines our partial order

(m < n means that n divides m), so MaX contains the
least common divisors in the sot. We take the MAX
(or least common divisors) of QUANTITY values of tup-
les in BUYS with ITEM="whistle' and try to find an
integer divisor for each such QUANTITY value from
the set of least common divisors of H-PER-CASE
values of PACKS tuples with ITEMa'whistle',

Integer division

4. Implementation

Having discussed our general strategy, we now
focus on implementinq a system based on this strate-—
9y- For any assertion and any update, Fig.3 gives
a consistency test. For trivial tests, the update
preserves the assertion, so there is nothing to im-
plement. For nontrivial tests, MIN and MAX values
are needed. So, to support nontrivial tests, the
system must create MIN and MAX values in the data-
base when an assertion is defined, and must main-
tain these values during updating,

When an assertion is defined and added to the
system, the following steps must be taken,

ALl. Augment the data description to include appro=
priate MIN or MAX sets needed for all nontri-
vidl tests.

A2. Compute these MIN and MAX values.

A3. Test that the new assertion is true in the
current database state. When an update is
processed, the following steps must be taken
for each assertion:

Ul. Find the appriate test in Fig. 3.

U2. Locate the correct MIN or MAX value.

U3. Perform the test. If it fails, reject the
update. Otherwise perxform U4 and US.

U4. Do any necessary bound maintenance.
U5..Execute the update,

We now explain how to perform each of the above
steps.

4.1 Identifying Bounds

Step Al uses Fig.3 to determine which bounds
must be included in the data description for non-
trivial tests. Suprose Fig. 3 specifies that a
MAY of the set (sESIP(r,s)} is needed to test con-
sistency when some r€R is deleted, 50, the MAX
of this set must be incorporated in the database.
It appears that each r€R has its own set (s€s|p(r,s!}
and its own MAX. Fortunately, fewer sets and MAX's
are usually sufficient. The smaller nunber of sets
is obtained by grouping together R tuples that
satisfy P for precisely the same S values, since
each of these R turles has the same associated set,
For formalize this idea, we define the equivalence
set of rOGR w.r.t. P in state D to be Pr (D)

0

= {r€R[in state D, YsES(P(rO,s) * P(r,s))). wWe will

drop D as a parameter when it is clear in context,

Example 5 - Equivalence Sets.of Tuples
ion: same as Ex.lb.
(as in Example 4) PACKS:=PACKS—paCksO,

where pack50= ('whistle'.'economy',lOO)

In Ex. 4 we need the MAX of the sct {packs. #-PER-CASE
JpacksEPACKS—pdcksOApncks.ITEM='whistle'}.

This set is simply the projection of p

pdeSO(D) on

#-PER-CASE, where P=(buys. ITEM=packs.ITEM) and D is
the state after the deletion. 1In words, P

packso
is the set of remaining PACKS tuples with

ITEM="'whistle'. o

Equivalence sets can be indexecd by the attri-
butes referenced in P, called P-attributes., Let
Al.---,Am be all the P-attributes for R. Since P is

a formula on indexed tuple variables and constants,
each hl,...,hm value uniquely identifies an equiva-

lence set of R tuples. Therefore, each equivalence
set and its relevant bounds can be indexed by
P-attribute values.

Example 6 - Identifying Aggegate Values

Assertion: same as Ex.la.
20O

All BUYS tuples with the same ITEM value are equi-
valent with respect to this assertion, as are SELLS
tuples. We store bounds of COST values indexed by
ITEM values for BUYS tuples and bounds of PRICE
values indexed by ITEM values for SELLS tuples, o

Executing Al, then, involves identifying the
P-attributes of the relations in the assertion and
using these P-attribute values to identify stored
bound values. a2 computes the MIN or MAX of all
tuples in the relation having the same P-attributes,
A3 then compares bound values to test the current
state. We proceed in Section 4.2 to show how to
decide which values must be compared with each other.

4.2 Locating the Correct MIN and MAX Values

The tests in Fig. 3 show which aggregates to
store for assertions of each type. Steps A3 and U2
depend on accessing particular bound values. Once
the appropriate values are accessed, A3 and U3 simply
compare them. Using equivalence sets of tuples
reduces the number of bounds stored, and these bounds
are easy to locate because they are indexed by attri-
bute values. The only remaining difficulty is to find
pairs of equivalence sets from R and S that simulte-
neously satisfy P, That is, given an assertion and
P-attribute values for one relation (the one being
updated), we need to find the (set of) P-attribute
values in the other rclation that satisfy P. In this
Paper, we assume that each tuple has a unique associated
equivalence set in the other relation*, Essentially,
P is being interpreted as a query.

*Although our examples deal only with assertions
where P is a single equality formula, methods hand-
ling general expressions have been developed and
will appear in a later paper.

anQElﬂ*Z - P ag g Querx

ﬁssgrticn: Same as Ex,]a.
Update: BUYS:=Byys buyso, where

buyso=(324,‘toy‘,'whistle',loo..loj

Before we €an compare .]q With the minimum PRICE
value, ye Must evaluate P(BUYS.ITEMcsolls.ITEM),
with buysU substituted for buys, tq find the ITEM-

value in SELLS which indexes the correct €quivalence
Set. Thys, p acts as a query which finds an ITEM-
value jp SELLS given 4 tuple ip BUYS,

Even hag We not useqd €quivalence sets, it
would have been Necessary tgo Compare _j1p with PRICE
values fey all tuples satisfying VsellsESELLS('whist—
le'xsells.ITEﬁ=.lO<sells.PRICB}. P would have haqg
to be evaluated inkexsctly the same way, Consistency
checking methods mygt all evaluate the query p ang
c€an all yge the same mechanism tq do so, o

_.Interpreting P is basic to all consistency
testing methods, i
Zation Problem ang can be abstracteq from otheyr as-
i i We choose tgo

4.3 Main;E}ning Bounds

If an update Preservesg consistency (the test
in yU3 Succeeds), thep We may need to change the

(in Step ugq),
A to be true afteyp the update;
value myst also be dccurate relative to the new
database state Produceq by the update,

we nmust define a forrmula g that jg true in 4 data-
base state 1ff the Stored boung is accurate in that
State. ye then augnent the given update, y, by

anotheyr update, ub, that maintaing the consistency

of the bounds, That js,

F AMB{if t thep (W ;u)} ang,

For our method to be cost effective, the cost
©of boung maintenance MUSt not exceeq the savings
gained ip using thoge bounds tg test the consistency
of assertions. So, bound maintenance mMust be effj-
ciens, This efficiency is obtaineg by combining

This
combined activity helps when 2 tuple update does not
i Since cop-
Sistency only depends on bound values, jif the boung
is unchanged, then the database must he consistent
and no consistency test ig needed, 1p such cases,
bound maintenance Subsumes the consistency test,

Exampie 9 - Combinjin Bound Maintenance and Con-

1 1) z,-_
51stzncy Tests

ﬂsieipion: same as Ex,1a,
Update: BUY5:=BUYSUbuySG, where

buyso = (434,'toy',’whistle’,SOO,.OS).

C]aim: Let MX b the Buys a9gregate ygeq to tegy .

Let B =
(Mx=MAX({buys.COST jbuysEBUYSAbuys.ITEn='whiscle'})).
B is an assertion that describeg States jp which My
has the intendeq value . ye claim that if A Ap hold
before the update and the update does ot force a4 re-
calculatiop of MX, then no consistency test is re-
quired, Formally Stated

Fans(sie “05<MX then BUYS:zaUYSUbuyso

else if FO9ZMIN((se1) ppicg
fsollsCHELLSAsolls.ITEM='whistle'))
then begin MX:=. 05, BUYS:=BUYSUbuySO endlaag,

In the above Program, jif <05<MX, then the assertion
is satisfied, the existing bocnd (MX) is Still cor-
rect, and no SELLS tuples nced bpe dccessed, If not,
a consistency test ig Performeq and, if j¢ vields
true, then the storeq bound ig changed ang the update
is executed.

Sketch of Proof. ret T1 = (.GSEMAX({buys.COST
buysEBUYSAbuys.ITEMz'whistle'})) and

T2 = (.05<MIN({sells.PRICE
sellsESELLSAsells.ITEM='whistle'})).

The proof follows immediately from

t:AABATlfBUYS:=EUYSUbuysO}AAB and
AABATTlAT2{Mx:=.OS}A{BUYSUbuySO/BUYS]

AB[BUYSUbuysO/BUYSJ, using the axioms ip Fig, 2.a

Produced algorithmg that combine consistency testing
and bound maintenance for each type of assertion ang
The algorithnms are defineq by two Procedures.
CHECK to test consistency and maintajip bounds, ang
MAINT to maintain bounds only (used for trivia]l tests) ,
These Procedures yge two consistency testg, called
TEST1 and TEST2, and g recalculation of bounds.called
BOUND, which are defined jp Fig. 4,

CHECK{A,U,TESTI,TEST2,BOUND} =
begin

/*first Compare tuple with its own equivalence setw s
if TEsT) then u;

/*test against othey relations and maintajn boung+/
else if TEST? then (call BOUND; y;)
end

MAINT(A,U,TESTI,BOUND) =
bcgin

/*do maintenance iF necessary#/
if TEST) then caj) BOUND;

u;
end
MX is defineq MAXf{r.A[rGP 1) ; simiiarly for
Fro o
. :
MNpr, MxIIS and MNP ¢+ and wa . MNP 1s defineq
0 o

So
MIN((r.a] rEp_ AVSES (P (r,8)ar.a<l. 5) .
o]

Each combineg consistency check anqg bound majn-
tenance algorithpy given by Fig, 4 and the aboye pro-
cedure definitiong €nsures that is truye and the

Stored boung is correct after the algorithm is exe-

Figure 4
Comined Integricy Checking ang Bound Maintenance

ASsertion type: Vrvs
——— T e

UPDATE :

R: =RU1’O i PROCEDURE : CHECK

TEST] s (3 EMP) (ro.n <m)

¥
TEST2 & (vamN(?s.als €s AP(r ,s)})) {ryn<m)

BOUND = M.'\’p

1= [M.‘(Pr - {m GM.'{P m <rO.A}) U fz‘o.a}
A o]

o

“m.._.,‘q—-___,__-q._._-—_._ﬁ__._,ﬁ__,
UPDATE ; S:’=SUSO*' PROCEDURE CHECK

—

TEST1 & (3 EMNPS) (m fso.B)

TEST2 & (Vn EMax({r.aiy ERAP(r,sO)) (mfso.s}

BOUND '—"MN‘P e (H}Ip

-{m€i\1.-"fps 'SO'B <m}y U fso.B}

0 0 0
UPDATE: R: SRS

o PROCEDURE; MATNT
TEST] = r,.AE€ MxPr

0

BOUND = py =Max({r.alrep
p"o r,
i

S:=S-SO; PROCEDURE MAINT

—ro})

e

TEST] SO.B EMNPS
0
=MIN({s.B|s €p
0 (o]
—-—__..____—--——-—._.______..._._—-—-—..._._,____
Assertion type: V¥r3s
-—-—._..h_______u—‘—-_._,__%_h_._m_,_—--———.._..._m_____

R: =RUr0: PROCEDURE; CHECK

&= o
BOUND MNPS so})

«A <m)

TEST] = (3m € :—:xpro) (I,

TEST2 & (3m € Max ({s.Bs € AP(:O.S)}))(rO.A <m)
BOUND SHX, im M, = {m mep Im <ro.A}) 1] {ro.A}
t.'o I’o .l'o

UPDATE : SUs,; PROCEDURE; marne

TESTI & =~ (3m mep) (SO.B <m)

S

BOUND emxps =0, - {m €imx

m <50.B}) u st.B}
0 S0

ol

-‘_'—‘—_.‘_‘_h_ ———
UPDATE - R.'=R-'L'0; F‘ROCEDURE; MAINT
TESTL =y € My
1 %r A hpro
BOUND = pyy M ((r.aleep ., h
Pr . i o 0
o 0

s -——-—...._.-—1—._._~—‘—'—~—-.._____""'-"—-—.._

UPDATE ; S:=S—SU; PROCEDUR};‘; CHECK

TEST] = s, .B E:-I.'-.’P)
sg
TEST2 E (Vi €X({r.alr €A P{r

+sg) h)
In €rmax({s.p|s EPSO

—50})} (m<n)
BOUND =ux, =MAX({s.Bls €p

-z)
50 so 50,1

.

s
Assertion type: 3Irvs

— —————— e ——

UPDATE; R:=RUJ:0; PROCEDURE; MATNT

TEST1 & 4 (ImEry }m<r_.p)
-0

BOUND B MN! = (py ~{memn: (r a <Mb U {r..a}
P, Pry Pro[0 0

UPDATE ; s:nsUsOa PROCEDURE ; CHECK

TESTL ® (3m € un Jim<s .g)
Pso -0
TESTZI(HmEMIN({r.MrGRAVsES P(r,s)})
¥n€mn_) (m <n)
P-’*o <
BOUNDMNP 1= (MNP = {m ermP 'so.a <m}) U {so.a}

=) Sp o]
UPDATE ; R:=R~ro; PROCEDURE; CHEck
- &5 i
TESTI 1(r0.A EMNPr)
0

TEST2 = (3 EMIN({r.Alz (—:Pr T

AVs€s (P(r,s;)Ar.Af_s .%J h
VnEMIN{{s.HfSESAP(rO.si m

BOUND M =MIN({r.a|rep -,
ro ol

(m<n)

AVSEs (p (r,s)-or.l_gs.a) h

.

UPDATE, S:=S-SO: PROCEDURE; MaIyg
TESTL g B EMNP

)
=MIN({s.B|s Eps

BOUND = MNP
S 4]

-so}}

3. Comparison with Previous work

Few systematic approaches to the implementation
of semantic integrity assertions have beep published;
two well-known examples are the Query modification
method of Stonebraker [75) and the heuristic Proyram
analysis of Hammer and Sarin [78). rLet us compare
our method to each of these two,

“omparing our rethod to {Stonebraker 75], we
see three main differences: the types of assertions
studied, the role of aggregates in asscertopms and
the cost of consistency testing.

Cur class of assertions is a subset of those
studied by Stonebraker [75]1. we studied only two-
variable assertions with certain forms (two-free
assertions). Stoncbraker Studied assertjiong with
any number of variables and with any logical struc-
ture. He divideg assertions inte categories based
on the number of variables in the assertion and on
the role in the assertion of the relation being
updated. oyr class of two~free assertions is not
directly comparable to his categories, in that two-
free assertions include two-variable assertions from
each of these categories. We note that the categori-
zaticn of assertions by Hammer and McLeod [(75] is
similar to that of {Stonebraker 751, and the above
Comments apply to their categorization as well,

The impact of aggregates on consistency tests
is markedly different ip each method.
dification, assertions invelving aggregates are among
the most difficult to test, because testing the as-..

aggregates,

The cost of testing consistency also differs
from method to method. 1In query modification, the
modified update often requires significantly more
work for evaluation than does the original update.
For example, for multivariate assertions with more
than one tuple ranging over the relating being up-
dated, the number of clauses to be evaluated is ex-
Ponential in the number of variables ranging over
the relation being updated. This usually leads to
4 high cost of evaluating the assertion. Eyen when
the number of clauses is small, the modified update
may access many tuples of relations referenced in
the assertion.

. o] v e P
hxamglc 9 Update HDQ{!lCdtlon

gﬁggrtiq2= same as Ex.la.
Update: SELL‘:=SELLSU{432,'toy',‘whistle’,30,.75).
yodifiog_gggigg: Insert (432,'tny','whistle‘,30,.?5}

inte SELLS where
VbuysEBUYS(huys.ITEMu'whistle‘)ﬂbuys.CDST§.75).

All tuples in BUYS must be checked for ITEM# 'whistle!®
or COST<.75 before the inscrtion ig done. If Buys

is inverted on ITEM, then [HUYS{ITEM='whistle'J'
tuples must accessed, compared to only one tuple

in our method, o

Section 5.2 discusses cost comparisons more
fully.

Hammer and sarin lsarin 77; Hammer and Sarin
78] discuss faster methods of evaluating assertions
by using knowledge about the update transaction angd
the assertion to identify specific conditions which
may cause a semantic integrity viclation, Testing
these conditions is often lessg castly than evalua-
ting the complete assertion on the current database
state. This method depends on an analysis of the
Particular assertion and update transaction. And,
the analytic technique jig essentially mechanical
theorem Proving, which is typically slow. By contrast,
our algorithms apply to all simple updates and a -
given class of assertions. And, they do not require
any prior analysis of the actual update transaction;
all of the analysis ig done a prior: and can be sum-
marized in a table, At run-time, the analysis is no
more complex than a table look~up tg obtain the ap-
Propriate Procedures, = 13

5.2 Cost Estimates
=k EStlmates

It is difficult to quantify the cost of different
integrity enforcement methods, yet thig task is essen-
tial for Precisely comparing them. As with any cost
model, it jg difficult to capture all the factors which
affect the final cost and to assign relative costs to
each factor. Integrity enforcement costs cannot he
accurately determined independent of an actual machine
and database because they depend on such factors as
the structure of the assertion to be verified, the
type and frequency of updates, the storage structure
of the database, ang even on the actual values in the
database and in the update,

Although we cannot define a4 general and mathe-
matically Precise cost model, we can focus on several
of the major factors affecting cost, The role of each
of these factors in different verification methods
helps to determine the ¢ondition under which each
method works best, The cost of our method is chiefly
dependent on:

l. the type of assertion (WY, v3, etc.)

2. the ratio of deletions to insertions

3. the probability that the bound of an equivalent
set will not change with each update

4. the average size of equivalence sets, and

3. the cost of evaluating p.

With the caveat that our cost equations are only
rough estimates, we bProceed to characterize the im-
Pact of the above factors. wWe use the resulting for-
mulas only to help compare relative costs and do not
try to derive absolute costs from them,

I

Cost Congiﬂﬂggt

Qs = cost of evaluating p for an updated tuple Lo
i.e., of finding (sES]P(rO.s)}

QR = cost of avaluatinq P for an updated tuple so,
i.e., of finding {r€R[P(r.sO)J

M. = average size of p
r
0

M, = average size of p
%o

10

C = cost of
d = cost of
PR = probabiiity that

Comparing (<) two values
one databage acceagsg
an update changes an R bound

P_ = prohqbility that an update changes ap S boung,
2

Using the algorithms in Sectjion 4.2 and Fig.4,
We can derjye €ost formulas, We descripe the derj-

Vation for insurtions and deletiong of R tuples for

Tassertions, formulas for othop types
of assertions and updates later, We assume that
Lemma 1 or 2 holds, so that we have only bound value
for each equivalence set (this Usually seeps to hold
in Practice since underlying domain jg the set
of integers, reals, Thus, each MIN and Max
Set containg So, accessing g
boung costg d testing a tuple againge a bound
costs ¢, Also, assume that p Produces one equiva-
lence set Per relation (this jg only relevant for
V?—assertions.)

The algorithy for
tion ig CHECK (A, R:-g £, TEST]

inserting Ty for a YW-asser-
+TEST2, BOUND) . Filling

boung assignments e

1. ir EmEwaMAx({r.A[rEpr })rO.A<m then R:=RUr;

2. else if VmﬂMIN{{S.B!SGSAP(rO,S)}JrO.Aim

3. then begin HX: = (MX={mEMx | m rO.A})U{ro.A};
4. R:=RUr_;
end i

Line 2 ;g only &xecuted jf the boung must ha
changed (rO.A>MAX({r.a!r€P 1), so it only adds to
B
the total COSt with

probability Pp. Evaluating

Line 2 involvesg evaluating p to fing
€quivalence set,
Comparing jt with

pR(Qs+d+cJ.

changing the boung
Line 4 jg just the

accessing each
and Comparing jp to the

inserteq tuple, 1 our System, the S tuplesg Satig-

Cost formulas for othey types of assertions
univursally quantj-
d+C+p(Q+d+c), 2) Insert ¢q

relation with exlstentially quantifjeq tuple variable,

d+c, 3) Delete from relation with univerally quantj-
ficg tuple variable, d+u+p(Mdc}, and 4) Delete from
relation with existeutially quantifjeg tuple Variable

d+c+p(Qdec+CJ. By Frig,
“dssertionsg is trivial,
Cation jp this cage is 0,

Note that for VV~assertions,inscrtion and deletj¢
of g tuples are exactly analogous tg those of g tuples

In performing & comparison of the two methods, e
make the following simplifying assumptions,
Operation (inser¢ to R, insert to s, delete
delete

s (MR=NS; wWe will use M=MR=M):i3) the query Processor

is €qually efficient given
(QR=QS; we will yge ? to mean either QR

a unit cost,
base dccess,

Query modification: 2(gq+Ma)
Our methog. 2(d+l/m(Q+d)+d+(l/M)Md
e 2(Q/M+(3+1/M}d}

vious bound;
tuples ip the equivalence set,
bound changeg are more costly,
the €quivalence Set must pe accessed;

which oy method jg most usefy],
dggregateg of values in an €quivalence Set can be
avoid accessing tuples indiyji-

6. Conclusion

The approach to semantic integrity we have
described consists of designing a class of assep-
tions that can be efficiently enforced using suit-
able tactics, ang then fully analyzing the compile-
time and fun-time enforcement algorithms. 1p this
Paper, we worked through the analysis for two-free
assertions using redundant aggregate data as a
tactic. we have carrieg out thig analysis on other
classes of assertions with equal success,

lieve this apPproach osfers the best hope of deve-

Acknowl ed ementsg
—Zrlcdgements

We gratefully acknowledge Marco Casanova,
Nathan Goodman, John Smith and Umeshwar Dayal, s

careful reviews of early drafts led to many termino-

logical angd Organizational We also
wish to thank the referees for their helpful com-
ments and Suggestions.

References
—.=tences

[Berstein and Blaustein 80]
Bernstein, P. A.; ang Blaustein, g, .

taining Two Tuple
Aiken Computation
to appear.

Technical Report

[Clarke 79]
Clarke, E. M.,
for Which 1t Is
Axiom Systems",

"Programming Language Constructs
Impossible to Obtain Good Hoare
JACM 26, 1 (Jan. 1979) ,129-147,

[Coad 72}

Codd, E. F.,"Relaticnal Completeness of Data Base

Sublanguages”,
Computer Science Symposia Seris,
Hall, Englewood Cliffs, NgJ 1972, pp.65-90,

in Zata Base Systems, Courant

[Dijkstra 76
Dijkstra, . We, A Discipline of Progranming,
Prentice—ﬁall, Englewood Cliffs, ng, 1976.

[Hammer ang McLeod 75)
Hammer, M, M.:

in Proceedings
on Very Large

[Hammer ang Sarin 78]
Hammer, M. M.

of Database Assertions", Proceedings of 1978
SICMoD Conference on HManagement of Data, ACM,
NY , 1978,

[Hoare 69]

Hoare, c. a. R., "An Axiomatic
‘Programming*, in CacM, Vol.1l2, No.lo, October,
1969,

[Hoare ang Wirth 73]
Hoare, c. A, R., and Wirth, N., ™An Axiomatic
Definition of the Programming Language PASCAL",
in Acta Infbrmutica, Vol.2, 1973, PP-335-355,

Harvard University,

Vol.6, Prentice-

and Sarin, S.,"Efficient Monitoring

Basis for Computer

1]

[8arin 771
Sarin, g, K., "automatic Synthesis of Efticient
Procedures for Database Integrity Checking ™,
Master's Thesis, Massachusetts Institute gof
nology, Sept., 1977,

Tech-

[Stonebrakcr 75]
Stonebraker, M., "Implcmentation of Integrity
Constraints and Views by Query Modtficatinn",
Proccedings 1875 AcM-510MOD Cbnjhvencejpp.GS—TB.

"Efficient
Maintenance of Semantic Integrity Assertions con-

