
Formal Verification of VHDL
The Model Checker CV �

David Déharbey
Universidade Federal do Rio Grande do Norte — Brazil

david@dimap.ufrn.br

Subash Shankar
Carnegie Mellon University — USA

sshankar@cs.cmu.edu

Edmund M. Clarke
Carnegie Mellon University — USA

emc@cs.cmu.edu

Abstract

This article describes a prototype formal verification sys-
tem for a subset of VHDL. The behavior of a VHDL design
can be specified with temporal logic formulas and be veri-
fied with an algorithm called symbolic model checking. The
model checker applies a number of new techniques to han-
dle larger designs, thus allowing for efficient verification of
real circuits. We have completed an initial release of the
VHDL model checker and have used it to verify complex
circuits, including the control logic of a commercial RISC
microprocessor.

1. Introduction

Ensuring the correctness of computer circuits is an ex-
tremely important and difficult task. As evidenced by sev-
eral bugs in recent processors, there are serious ramifica-
tions resulting from bugs in released hardware. The most
commonly used verification technique is simulation. How-
ever, simulation is by nature incomplete, and it can miss
important errors in many cases. An alternative approach is
to use formal methods to formally prove that a circuit imple-
mentation satisfies its specification. Temporal logic model
checking [4] is a particularly popular and proven technique
for proving hardware correctness.

Three major issues that must be addressed for model
checking to be useful in a design environment are: ease
of interfacing to existing hardware description languages
(HDL) used to describe circuit implementations, an appro-
priate language for specifying the properties to be proven,
and the efficiency of the model checker. VHDL is an ob-
vious HDL choice: it is used as input for many CAD sys-

�This research is sponsored by the Semiconductor Research Corpora-
tion (SRC) under Contract No. 97-DJ-294, the National Science Founda-
tion (NSF) under Grant No.CCR-9505472, and the Defense Advanced
Research Projects Agency (DARPA) under Contract No. DABT63-96-C-
0071. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily
reflect the views of SRC, NSF, DARPA, or the United States Government.

yContact author. Partly supported by CNPq and Projeto Nordeste.

tems, it provides a variety of descriptive styles, and it is an
IEEE standard [9]. Temporal logics such as Computation
Tree Logic (CTL) have proven their usefulness for specify-
ing hardware properties, and there has been much research
on making CTL model checking more efficient. However,
most existing model checkers can only verify circuits that
are written in their own language. This makes it difficult to
apply model checking in practice, since very few designers
use these languages. For model checking to beaccepted by
industry, we believe that it is essential to provide a mech-
anism for automatically interfacing the model checker to a
language such as VHDL.

We have developed a VHDL verification system called
CV. The verification system automatically generates mod-
els from VHDL descriptions, and then uses symbolic model
checking to prove that the specification is met. An initial
prototypehas been implemented and used to verify complex
designs. Our approach allows for a number of optimizations
that result in dramatically smaller state spaces, and we have
implemented several of these. These optimizations allow
our model (and thus, state space) to be smaller than in other
approaches.

2. Overview

In the context of this work, a VHDL description can be
considered to be animplementationthat must be checked
against a (partial)specificationcomposed of a set of tempo-
ral logic formulas. Initially, theVHDL description is com-
piled into a state-transition graph represented internally by
BDDs [3]. Model checking techniques are then used to de-
termine if the specification holds in the circuit model.

We want the temporal logic specification and the VHDL
implementation to be physically independent and reside in
separate files. This independence property is quite impor-
tant, since we might want to modify the specification (e.g.
in incremental verification) without recompiling theVHDL
implementation. Also, when using a structural description
style, the same VHDL design can be instantiated several
times as a component of a larger model. The system must
be flexible enough to avoid recompiling the same descrip-
tion in such cases. Consequently, the compilation process is



split into a front-end that checks that the description is legal
VHDL and a back-end that generates the symbolic model.

The system is composed of a general-purpose VHDL an-
alyzercva and a VHDL model checkercvc .

cva takes as input a text file that contains VHDL de-
scriptions and generates library units in an intermediate for-
mat that can be accessed with a C library, in much the same
way as commercial VHDL front-ends.

cvc takes as input a specification file and builds the
model of the corresponding VHDL description, and applies
the verification algorithms to this model. Themodel elabo-
rator implements the semantics of VHDL in terms of state-
transition graphs as described in [6]. It reads the interme-
diate format files produced by the compilercva and builds
a symbolic, BDD-based model of the VHDL design. This
step is crucial for the entire verification process since the
complexity of the model checking algorithms heavily de-
pends on the size of the model (i.e. the number of state
variables, and the size of the BDDs). To this end, consider-
able effort has been devoted to generating a compact model.
The consistency checker takes as input a specification file
composed of temporal logic properties. Themodel checker
itself determines if the implementation satisfies the specifi-
cation. When an error is detected, the model checker can
produce a counterexample as a VHDL testbench. The test-
bench can be directly used with a conventional simulator to
show an execution trace that violates the property.

3. The VHDL Subset

VHDL is a very rich language. Some of its constructs
generate infinite models and cannot be modeled by a finite-
state tools such asCV. Examples of such constructs include
combination of an increasingly delayed signal assignment
nested in an infinite loop, or a non-halting recursive func-
tion with local variables. Also, many constructs can be ex-
pressed in terms of more basic constructs, while maintain-
ing the same semantics. It is also desirable to concentrate
on a synthesizable subset of VHDL, as most such subsets
eschew some parts of VHDL (e.g. either delta delays or
unit time delays). Our approach has been to identify and
implement a core subset of the language and incrementally
extend this subset based on these guidelines. The elements
of current supported subset are:

Design entities: entity declaration, architecture, package.

Concurrent statements: block, process, (with optional
sensitivity lists), selected and conditional signal as-
signment.

Sequential statements: wait (with arbitrary sensitivity
and condition clauses), signal and variable assignment,
if, case, while, null.

Libraries: library, library clause and use clause.

Declarations: signal (input, output and local), variable,
constant and type declarations.

Types: bounded integers, enumerations, arrays, and
records.

Quantitative timing aspects are not yet handled in the subset
but work is under way to include them.

4. VHDL Semantics for Symbolic Model
Checking

Much research has been conducted to give a formal se-
mantics to VHDL and apply formal verification techniques
(see e.g. [10, 2]). While there exist formal VHDL seman-
tics in a number of formalisms, it is difficult to use many
of these in formal verification. Many operational seman-
tics approaches tend to lead to excessively large models.
Many axiomatic semantics either restrict the VHDL subset
too much or are in logics difficult to reason in.

In this section we give a general overview of the VHDL
simulation model, define the finite-state machine model
used for symbolic model checking and present the relation-
ship between the simulation model and the formal verifica-
tion model used in CV.

4.1. VHDL simulation model

In VHDL, digital systems are modeled as a set of real-
time communicating, synchronizing, concurrent processes.
The set of all possible simulations of these processes is a
model of the behavior of these systems. Thecommunication
channels between processes are called signals. Whenever
several processes simultaneously assign different values to
the same signal, the simulator calls a user-defined resolu-
tion function and computes the effective value of the signal.
Signal assignment may optionally be delayed by some time
quantity. Processessynchronizeby means of wait state-
ments, which explicitly let time pass until some condition
is realized or for some specific duration. VHDLtimeis dis-
crete: the base unit is the femto-second. In a simulation cy-
cle, time may pass or not, for instance when a zero-delayed
signal assignment occurs. Therefore, several consecutive
simulation cycles may occur at the same time.

[9] defines the event-driven simulation algorithm for
VHDL. First, the model is initialized: signals are assigned
their initial values and processes are executed until they sus-
pend. The time counter is then advanced until a new signal
attribution is scheduled or a process resumes. That may be
the current simulation time, and in this case, the simulation
cycle is called a delta cycle. If new signal assignments have
taken effect, then the effective value of some signals may
change. Processes scheduled to resume, or sensitive to such
signals, are run, and new signal assignments may in turn be
executed. For a theoretical discussion on properties of the
VHDL simulation see e.g. [8].

4.2. Formal verification model

Definition 1 (Formal verification model) A formal verifi-
cation modelM is defined as a tuplehS; �0; f i, where:

– S is a set ofstateboolean variables ofM: S =
fv1; : : : ; vng.



– �0 2 IBn is theinitial stateofM: �0 is a valuation of
the state variablesS ofM;

– f is the transition functionof M: f = [f1; : : : ; fn];
wherefk : IBn ! IB is the transition function of state
variablevk.

A states of M is a valuationfv1; : : : ; vng of the state
variables. States0 = fv01; : : : ; v

0
ng is thesuccessorof state

s if
Vn

i=1 v
0
i = fi(v1; : : : ; vn). A path is a sequence of

statess0; s1; : : :sk; : : : such that, for alli, si+1 is the suc-
cessor ofsi. In other words, a formal verification model
is a state transition graph labeled with boolean propositions
called state variables here. The computation tree ofM is
the branching structure obtained when unwinding this state
transition graph:each branch of this tree is a path of the
model.

4.3. Relationship between the simulation and for-
mal verification models

The formal verification model of a given simulation
model is such that state variables represent the value of
signals, process variables, and process program counters.
Therefore, the initial state represents the initial valuation of
variables, signals and program counter. The transition func-
tion represents the state transformation operated in the body
of the processes as well as the kernel activity. The goal is
that the behavior of the simulation model be represented by
the computation tree of the verification model. Therefore, a
state of the verification model represents a valuation of the
signals and variables, and a transition models a simulation
cycle. Also, a path of the model corresponds to one possible
simulation run.

The reader interested in technical details is referred to
[6], where it is shown precisely how formal verification
models can be constructed from VHDL descriptions and
pointers to other approaches to finite-state modelling of
VHDL designs can be found.

5. The Model Checker

5.1. Specification Language

The language used in CV for specifying the expected be-
havior of a VHDL design in a given environment is essen-
tially the logic CTL with fairness constraints. The envi-
ronment is described in terms of assumptions on the values
taken by the input signals of the design. A valid simula-
tion of the design is a simulation where all assumptions on
the input signals are verified. The behavior of a VHDL de-
sign in an environment is then defined to be the set of all
valid simulations with respect to this environment. There-
fore, a specification is composed of a set ofassumptionsand
commitmentsabout a VHDL description. An assumption is
a condition on the inputs of the design under verification.
Commitments describe the expected behavior of the system
provided all assumptions hold. It is the role of the model
checker to verify that the VHDL description satisfies the
commitments provided the assumptions hold.

For convenience purposes, the specification language
also makes it possible to define abbreviations. An abbre-
viation is an identifier that denotes an expression and may
be used to simplify assumptions and commitments.

Two categories of assumptions are possible: invariant
and fairness. The effect of an invariant definition is to re-
strict the behavior to the set of simulations where the associ-
ated condition holds for every cycle. The effect of a fairness
definition is to restrict the behavior to the set of simulations
where the associated condition holds infinitely often. Fair-
ness is often needed to prove properties about the progress
of a system. Generally, fairness constraints increase verifi-
cation time and memory consumption.

Commitments are expressed in the temporal logic CTL
(Computation Tree Logic). A CTL operator is composed of
a path quantifier (A, E) followed by a linear temporal op-
erator (X, G, F, U, W). Since the (standard) semantics of
a VHDL design is defined in terms of simulation, we use
temporal logic to express properties of the possible simu-
lations of a design. The path quantifierA (E) selects all
(some) simulations, and the linear temporal operatorX (G,
F, U, W) selects the next simulation cycle (all cycles, some
cycle, until some cycle, unless some cycle) in a given sim-
ulation. A formula is true for a description if it holds in
all initial states. For example, the CTL formulaAGf states
thatf must hold at all states reachable from the initial states
in all possible simulations.

For example, suppose it is necessary to check that a bad
situation never happens. An abbreviation can be used to
denote this bad situation and later reused in a commitment
to state that it shall not happen:

abbreviation BAD is <some condition> ;
commit safe: ag not BAD;

More complex properties involving, for instance, events on
signals can also be expressed in the logic.

5.2. The Model Checker

Transitions in the BDD-based models built by CV cor-
respond to whole simulation cycles in the VHDL program.
This allows our models to have fewer variables and fewer
bits to represent the program counter, compared to ap-
proaches which use multiple transitions foreach simulation
cycle.

The models built by CV use a boolean functional vector
representation for the transitions [5]. This limits consider-
ably the explosion of the size of the transition representation
for large systems. The representation also makes it easy to
eliminate parts of the model that are not relevant with re-
spect to the specification. The model checker needs only
to consider the transition functions of the variables that can
potentially affect the specification, which we denote as the
cone of influenceof the specification, constructed from the
true support set of the transition functions.

Computing the reachable states of the model proves use-
ful to improve the performance of symbolic model check-
ing. A heuristic based on the observation that a conser-
vative approximation, oroverestimation, of the reachable
states, is used to simplify the transition representation, and



to simplify the computation of the reachable states. Overes-
timations can be computed much faster than the valid states
themselves.

To the best of our knowledge, these optimizations are
unique for a VHDL-based model checker. Our experience
was that, for some examples, each of the optimizations re-
duces the computation time by an order of magnitude and
decreases the amount of space used. It is possible to handle
significantly larger examples when both optimizations are
combined.

6. Analysis

A good measure to evaluate the complexity of the model
is the number of boolean variables in the formal verification
model of a given VHDL design, since the size of the formal
verification model is related to this quantity, as is the com-
plexity of the symbolic model checking algorithms used in
the verification process.

Let trig denote the set of signals to which at least one
process statement is sensitive. Ifo is a signal or a pro-
cess variable,type(o) denotes the set of values that this
object can take. IfS is a set, letjSj denote its cardinal-
ity. The number of state variables in the formal verification
model of a VHDL design unit withns signalss1; : : : ; sns

,
np processesp1; : : : ; pnp

, each withvi variable declarations
pi;v1; : : : ; pi;vi, andwi wait statements (1 � i � r) is:

(
Pns

k=1 dlog jtype(sk)je) +
�P

sk2trig dlog jtype(sk)je
�

+
Pnp

k=1

�
dlog jtype(wk)je

+
Pvk

j=1

�
log

��type(pk;vj )���
�

The first term of this sum is the number of variables that
represent the effective value of signals. The second term of
this sum is the number of variables that model the delayed
effective value of signals to which some process is sensi-
tive. The third term corresponds to the number of variables
needed to represent the local data of processes. It is itself
the sum of the variables representing the value of the pro-
cess program counter and the value of the process variables.

These are worst case figures. For example, a process
statement with a single finalwait statement need not have
a wait counter variable. This situation occurs quite fre-
quently, for example, in processes with sensitivity lists or
in concurrent signal assignments.

7. Results and Further Work

We have applied CV to several designs. One particularly
interesting circuit is a model of the control logic of a com-
mercial RISC processor. The VHDL description consists
of 25 different processes and spans several hundred lines
of code. CVC was used to check two properties related to
the handling of the reset signal and a safety property about
the data and instruction register not being loaded simultane-
ously.

Building the BDD-based model of this description takes
only about 5 seconds. Then, dynamic variable reordering is

invoked to reduce the size of the model. This step takes ap-
proximatively 75 seconds, and reduces the size of the tran-
sition function to only about 5,000 BDD nodes, despite the
fact that the model has 157 variables. An approximation of
the set of reachable states is then computed, resulting in a
further reduction to 4,000 BDD nodes. The resulting model
has about1028 reachable states out of1047 possible states.
By using the optimization that considers only the variables
in the model which affect the specification (cone of influ-
ence reduction), a simple property can be checked in just
30 seconds. Without this optimization, verification would
take two orders of magnitude longer. These results were
measured on a Sun Sparc 10 with 128 MB of RAM.

We are currently continuing the development of CV and
expect further developments to enhance performance (auto-
mated abstraction, compositional reasoning, low-level im-
plementation improvements) and usability (extensions of
the VHDL subset to timing aspects and structural design,
graphical user interface). Also, we wish to compare the
performances of CV other VHDL model checkers[11, 1, 7].
However because of commercial reasons, it will not be an
easy task.

References

[1] J. Bormann, J. Lohse, M. Payer, and G. Venzl. Model check-
ing in industrial hardware design. InDAC'95. IEEE Press.

[2] R. Brayton, E. Clarke, and P. Subrahmanyam, editors.For-
mal Methods in System Design, volume 7, (1/2). Kluwer,
Aug. 1995. Special Issue on VHDL Semantics – Guest Edi-
tor: D. Borrione.

[3] R. Bryant. Graph-based algorithm for boolean function ma-
nipulation. IEEE Trans. Comput., C(35):1035–1044, 1986.

[4] E. Clarke, E. Emerson, and A. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic
specifications.ACM Trans. Prog. Lang. Syst., 8(2):244–263,
Apr. 1986.

[5] O. Coudert and J.-C. Madre. Symbolic computation of the
valid states of a sequential machine : algorithms and dis-
cussion. InInternational workshop on formal methods for
correctVLSI design, Miami, Jan. 1991. ACM/IFIP WG10.2.

[6] D. Déharbe and D. Borrione. Semantics of a verification-
oriented subset of VHDL. InCHARME'95, volume 987 of
Lecture Notes in Computer Science. Springer Verlag.

[7] E. Encrenaz. A symbolic relation for a subset of vhdl' 87
descriptions and its application to symbolic model checking.
In CHARME'95, volume 987 ofLecture Notes in Computer
Science. Springer Verlag.

[8] K. Goossens. Reasoning about VHDL using operational and
observational semantics. InCHARME'95, volume 987 of
Lecture Notes in Computer Science. Springer Verlag.

[9] IEEE. IEEE Standard VHDL Language Reference Manual,
1987. Std 1076-1987.

[10] C. D. Kloos and P. Breuer, editors.Formal Semantics for
VHDL, volume 307 ofSeries in Engineering and Computer
Science. Kluwer Academic Publishers, 1995.

[11] R. Kurshan. Formal verification in a commercial setting.
Verification Times, I, 1997.


