
41.4

Word Level Model Checking - Avoiding the Pentium FDIV Error *

E. M. Clarket M. Khairal X. Zhaotf

Abstract

The highly-publicized division error in the Pentium has em-
phasized the importance of formal verification of arithmetic
circuits. Symbolic model checking techniques based on bi-
nary decision diagrams (BDDs) have been successful in ver-
ifying control logic. However, lack of proper representation
for functions tha t map boolean vectors into the integers has
prevented this technique from being used for verifying arith-
metic operations.

We have developed a new technique for verifying arith-
metic circuits. The new technique, called word level model
checking, has been used successfully to verify circuits for di-
vision and square root computation that are based on the
SRT algorithm used by the Pentium. The technique makes
it possible to handle both the control logic and the da ta
paths in the circuit. The total number of state variables ex-
ceeds 600 (which is much larger than any circuit previously
handled by other symbolic model checkers).

1 Introduction

Proving the correctness of arithmetic operations has always
been an important problem. The importance of this prob-
lem has been recently emphasized by the highly-publicized
division error in the Pentium. In order to verify such cir-
cuits, it is necessary to represent and manipulate functions
that map boolean vectors to integer values. We have used
hybrid decision diagrams (HDDs) [5] to represent the
integer functions tha t occur in the arithmetic circuit verifi-
cation. For the state variables corresponding to da ta bits,
our representation behaves like a binary moment diagram
(BMD) while for the state variables corresponding to control
signals, it behaves like a multi-terminal BDD (MTBDD). By
using this representation, we are able to handle circuits with
both control logic and wide da ta paths.

Our representation for functions tha t map boolean vec-
tors into the integers enables us to extend temporal logic

model checking [3, 41 so that it can handle arithmetic cir-
cuits. In traditional model checking systems, specifications
are expressed in a propositional temporal logic, and circuit
designs a.nd]protocols are modeled as state-transition sys-
tems. An efficient search procedure is used to determine
automatically if the specifications are satisfied by the transi-
tion systems. The main disadvantage of this approach is the
state explosion which can occur if the system being verified
has many components that can make transitions in paral-
lel. The size of the transition systems tha t can be verified
by model checking techniques has increased dramatically be-
cause of the use of BDDs [a] . Although such symbolic model
checking techniques have been successful in verifying control
logic, they cannot be directly used for verifying arithmetic
circuits.

In the word level model checking system, propositions de-
noting nodes in circuits are represented as BDDs and are
computed in exactly the same way as in the original sym-
bolic model checking system. Words are arrays of proposi-
tions, each of' which corresponds to a single bit. Expressions
are composetd of arithmetic operations applied to words.
Hybrid decision diagrams can be computed for words and
expressions using the algorithms for arithmetic operations.
Atomic formulas can be relations between expressions, and
their BDD representations can be computed by the algo-
rithm that handles arithmetic relations. After the BDD
representations for the atomic formulas are generated, the
BDDs for static formulas and temporal formulas are com-
puted in the same way as in ordinary model checking. In
particular, the fixpoint computations are exactly the same
in both cases.

By using i,he word level model checking system, we have
successfully verified circuits for division and square root com-
putation that are based on the SRT algorithm used by the
Pentium. Wme are able to handle both the control logic and
the da ta paths. All of the states in the finite state machine
for the control logic have been verified. Moreover, we have
proved invariant properties that guarantee the correctness of
the da ta values and prevent overflows. The total number of

'This research was sponsored in part by the National Science Foun-
dation under grant no. CCR-8722633, by the Semiconductor Research
Corporation under contract 92-DJ-294, and by the Wright Laboratory,

state variables exceeds 600 (which is much larger than any
circuit previously checked by SMV)'

Aeronautical Systems Center, Air Force Materiel Command, USAF,
and the Advanced Research Projects Agency (ARPA) under grant

+School of Comuuter Science. Carnenie Mellon Universitv. Pitts-
F33615-93-1-1330. 2 Word Level CTL

- ",
burgh, PA 15213

Pkwv, Hillsboro, OR 97124
$Intel Development Labs., Intel Corporation, 5200 N E Elam Young

Symbolic checking techniques based On Binary De-
cision Diagrams (BDDs) have been successful in verifying
control logic [a]. However, lack of proper representation for
functions that map boolean vectors into integers has Pre-

33rd Design Automation Conference@
Permission to make digitaVhard CODV of all or part of this work for personal 01 class-

.I

room use i s granted wGhout fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires

vented this technique from being used for verifying arith-
metic circuits. w e have experimented with the different
representations that are introduced in previous sections. Un-

prior specific permission and/or a fee.
DAC 96 - 06/96 Las Vegas, NV, USA
01996 ACM 0-89791-779-0/96/OOO6 $3.50

645

fortunately, there are fundamental problems with applying
either the MTBDD or the BDD array representations for ver-

ification of arithmetic circuits. For the functions that arise
in this type of application, the number of possible values is
exponential in the number of bits. Therefore, the MTBDDs
also have exponential size. On the other hand, arithmetic
operations on BDD arrays are very expensive. In particular,
since the BDD size for the middle bit of a combinational
multiplier is exponential in the length of its operands, the
BDD array representation is exponential for multiplication.

Bryant and Chen [l] have shown that BMDs give a com-
pact representation for certain functions that have exponen-
tial size MTBDDs. They have used this representation to
verify the da ta paths of some arithmetic circuits. They are
able to conclude tha t a circuit is correct if the BMDs for
the circuit and the specification are exactly the same. How-
ever, depending on the implementation and the control logic,
there can be cases in which the circuits are correct but the
BMDs are not identical. Moreover, since their technique
cannot handle inequalities, it is impossible to check some of
the properties that are needed in order to avoid the Pentium
error.

We have used hybrid decision diagrams (HDUs) [5] to rep-
resent the integer functions that occur in the arithmetic cir-
cuit verification. In particular, for the state variables corre-
sponding to da ta bits, we use the inverse Reed-Muller trans-
form while for the state variables corresponding to control
signals, we use the identity transform. Therefore, for data
variables, this representation behaves like a BMD while for
control variables, i t behaves like an MTBDD. By using this
representation, we are able to handle circuits with both con-
trol logic and wide da ta paths. Since this representation is
a special case of the hybrid decision diagrams, all the algo-
rithms mentioned in previous sections can be applied.

By using this representation, we have extended the sym-
bolic model checking system SMV [7] so that it can also
handle properties involving relationships among da ta words.
In the original SMV system, atomic formulas can only con-
tain state variables. In the extended system, we allow atomic
formulas be equations or inequalities between expressions as
well. These expressions are represented as hybrid BDDs.

logic that we use is the following:

Atomic propositions: A p = {PI, . . . , p k }

Propositional formulas:
7 Prop

Words: Word ::= (Prop , Prop , . . . , Prop)

Expressions:
Exp ::= Constant I Word 1 next(Word) I E x p @ Exp 1
if S F then Exp else Exp, where 0 can be +, -, or X .

Atomic Formulas: A F ::= Ap I {A I E } (E z p N E x p) ,
where N can be =, <, or <. Because of the nondeter-
ministic behavior of the system, there can be more than
one possible next state for a given state. Therefore, a
path quantifier is needed when the next state operator
is used in the expressions.

Static Formulas: S F ::= A F I S F A S F I -SF
Temporal Formulas: T F ::= S F I T F A T F 1 -TF 1
A X T F I {A I E } [T F U T F]

Prop ::= A p I Prop A Prop 1

a States: s = z A p

Transition relation: R C S x S

a Initial states: SO E S

a Valuation mapping for atomic propositions
V : Ap x S --f (0 , l)

The semantics for the logic is given by:

a Propositional formulas: P : Prop x S -+ (0 , I}

%Jt, s) = V(P2 1 3)

P(f1 A f 2) = Wl, 3) A P(f2, .)
P(,f, 3) = +(fl.)

a Words: W : Word x S + N

a Expressions: E : Exp x S x S + N . The state s’
is used to handle next-state operators tha t occur in
expressions.

E(e1 0 e 2 , s , 5’) = E(e1, s, s’) 0 E(e2, s , 3’)

E(if f then el else e 2 , s, s’) =

if (s /= f) then E(e1, s , s’) else E(e2, s , s’)
E (w , s , S I) = W (w , s)
E(next(w), s, s’) = W (w , s’)

a Atomic formulas:

3 l= pz * V(PZ,S) = 1

s l= A (e i N e z) U

s l= E(e1 N e 2) U

VS’. R(s , s’) -+ (E(e1, s, s’) - E(e2, s, s’))

3s’ . R (s , s’) A (E(e1 , s , s’) - E(e2, s , s’))

The formula A (e 1 N e z) is true in state s when (el -
e 2) holds for all successor states. Likewise, E(e1 N

e 2) is true in state s when (el - e 2) holds for some
successor state.

a The semantics of SF and TF are the same as in CTL.

This logic can naturally be divided into three layers. The
top layer contains atomic formulas, static formulas and tem-
poral formulas. The second layer contains words and ex-
pressions. The third layer contains atomic propositions and
propositional formulas. All of the objects in the top and
bottom layers are boolean functions while the objects in the
second layer are functions that map boolean vectors into the
integers. Therefore, in the word level model checking sys-
tem, all of atomic propositions, propositions, atomic formu-
las, static formulas and temporal formulas are represented
as BDDs; while words and expressions are represented as

A model is given by: hybrid decision diagrams.

646

3 Word Level Model Checking

Model checking is a technique of finding the set of states in
a state-transition graph where a given CTL formula is true.
There is a model checker called EMC that solves this prob-
lem using efficient graph-traversal techniques. If the model is
represented as a state-transition graph, the complexity of the
algorithm is linear in the size of the graph and in the length
of the formula. The algorithm is quite fast in practice [3, 41.
However, an explosion in the size of the model may occur
when the state-transition graph is extracted from a finite
state concurrent system that has many processes or com-
ponents. In symbolic model checking systems [2] , BDDs are
used to represent the transition relations and sets of states.
The model checking process is performed by fixpoint oper-
ations on these BDDs. By using symbolic model checking
techniques, the size of the transition systems that can be ver-
ified has increased dramatically. Although such techniques
have been successful in verifying control logic, they cannot
be directly used for verifying arithmetic circuits. This is
because expressions that involve words with integer values
cannot be handled properly.

In order to be able to perform model checking on the logic
discussed in the previous section, it is desirable to imple-
ment various operations on hybrid decision diagrams. We
consider scalar multiplication, addition and multiplication
of two functions, and the if-then-else operation. Although
the worst case complexity for these algorithms can be expo-
nential, in practice, this algorithm works quite well. Model
checking for word level properties also requires computing
the set of assignments that satisfy fi N fi, where N can be
one of =, f, <, <, >, or 2. We have developed an efficient
algorithm that can compute the BDD for the set of assign-
ment satisfying an arithmetic relation. In particular, this
algorithm has linear complexity for linear expressions [5].

Now that we are able to handle arithmetic operations and
arithmetic relations, it is possible to extend the symbolic
model checking algorithm so that it can verify word level
properties. BDDs for the transition relation and all proposi-
tions are generated in exactly the same way as in the original
symbolic model checking system. The hybrid decision dia-
gram representation of a word (fo, f1,. . . , fn) can be com-
puted as

n

z(if fi then 2’ else 0)
2 = 1

using operations mentioned above. The hybrid decision di-
agram representation of most expressions can be computed
using similar operations. The only exception is the next op-
eration, which can be performed by variable substitution.
The substitution replaces all of the current state variables
in the hybrid decision diagram for the word by their corre-
sponding next state variables. The algorithm to obtain the
BDD representing the set of variable assignments that make
an algebraic relation true can be used to compute the BDD
for atomic formulas. After the BDD representation for the
atomic formulas is generated, the BDDs for static formu-
las and temporal formulas are computed in the same way
as in ordinary model checking. In particular, the fixpoint
computations are exactly the same in both cases.

Since we h.ave used the same algorithm to compute the
transition relation as in the ordinary model checking algo-
rithm. The word level model checking algorithm does not
work well when the transition relation does not have a con-
cise representation. As an example, let’s consider a multi-
plier. Let x and y be the input registers and z be the output
register. Suppose the transition relation can be represented
as follows:

T r (z , y, z) = T T ’ (~ , y) A (next(z) = z x y)

Obviously, the BDD representation of the transition re-
lation has exponential size since the BDD representation of
the middle bit of a multiplier is exponential. This problem
can sometimes be avoided by conjunctive decomposition of
the transition relation. Let E , g, and be the state variables
that encode the current state value of x , y and z , respec-
tively. Let i-’,$, and 2 be the state variables that encode
the next state value of x , y and z . Suppose that we want
to verify a word level property of the form f (z , y , z) . There
may be appearances of next(z); if so, we can replace them by
z x y at the word level and obtain a new formula. Hopefully,
the resulting formula will be independent of z and the BDD
representation of the formula can be denoted as f’(z, j j) . In
this case, we can use TT’ as the transition relation to perform
the fixpoint operations. Even if f’ depends on some bits of
z , we can often obtain a much simpler transition relation by
eliminating the conjuncts that give the values of bits that
are not needed.

4 Verification of an SRT division circuit

By using the word level model checking system, we have suc-
cessfully verified circuits for division and square root com-
putation that are based on the SRT algorithm used by the
Pentium. We are able to handle both the control logic and
the data paths. The division circuit that we investigated has
5 states, idle, init, loop, last and rem. This circuit can per-
form two diEerent operations division and remainder. When
the operation is division, the steps in the Computation are

idle -+ in i t i loop* -+ last - idle

When the operation is remainder, the steps are

idle -+ in i t i loop* -+ last + rem -+ idle

Figure 1 gives the data path of the circuit at the loop state.
All the words have 70 bits. However, only the leading bits of
the partial remainder and multiples of the divisor are used
to compute the quotient digit for the next cycle.

We have verified the circuit with both control logic and the
data path. All states of the finite state machine have been
checked. Let T be the partial remainder, q be the quotient,
d be the divisor. We have checked the following properties:

The expression r f q . d always equals the left-shifted

The computation does not overflow. This is guaranteed

dividend, i.e. T + q . d = 22k . dividend.

by - ! id 5 T 5 i d .

647

Figure 1: The da ta path for the division circuit

For example, we have proved that at init state, the re-
mainder is the dividend and the quotient is zero. Therefore,
the initial value for r + 9 . d equals the dividend. Moreover,
the inequality mentioned above holds at the init state.

SPEC AG(state = i n i t -> r = dividend .& q = 0)

SPEC AG(state = i n i t -> (-8) * d <= 3 * r <= 8 * d)

We have also proved that the inequality always holds in
the loop states, and that T + q d is invariant with respect
to left shifting.

SPEC AG(state = l oop ->
A[((-8)*d <= 3*r <= 8*d) U s t a t e = l a s t])

SPEC AG((state = l o o p & ((-8)*d <= 3*r <= 8*d)) ->
A((r+q*r)*4 = n e x t (r + q * r)))

The above properties are sufficient to guarantee that in the
loop state, T + q . d always equals the dividend after left
shifting. Similar properties are proved for the last and rem
states. In addition, we have verified a circuit for computing
square roots. The total number of state variables for the
circuit that we verify exceeds 600 (which is much larger than
any circuit previously checked by SMV).

5 Directions of Future Research

We have used word level symbolic model checking to repli-
cate the Pentium FDIV bug and successfully verified the
corrected circuit. In this paper, we have described the for-
mal verification of a floating point division circuit based on

the SRT algorithm using our word level model checker. We
plan to experiment on more circuits. Possible applications
include floating point multipliers, floating point adders, etc.

Our algorithm for solving arithmetic relations works ex-
tremely well for linear equations and inequalities. Although
the current algorithm can handle some nonlinear equations
and inequalities as well, it may be possible to extend this
algorithm or to find a new algorithm that can handle more
complicated nonlinear equations and inequalities.

There is stiU one problem with this technique. I t can only
be used for circuits that maintain the exact value of the data.
When rounding occurs, the functions become less regular
and the size of hybrid BDD representation is likely to ex-
plode. In these cases, the new value obtained after rounding
can be described by a system of inequalities, and the verifi-
cation process reduces to solving such systems. In another
research project, we have built a theorem prover based on
symbolic computation system Mathematica. The theorem
prover is called Analytica [6] and is quite good a t handling
equations and inequalities. We believe that after some mod-
ification, Analytica will be useful for solving the inequalities
that arise because of rounding in computer arithmetic.

References

[l] R. E. Bryant and Y. A. Chen. Verification of arithmetic
functions with Binary Moment Diagrams. In Proceed-
ings of the 32nd ACJiJ/IEEE Design Automat ion Con-
ference, pages 535-541. IEEE Computer Society Press,
June 1995.

[a] J . R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: IO2' states
and beyond. Information and Computation, 98(2):142-
170, June 1992.

[3] E. M. Clarke and E. A. Emerson. Synthesis of synchro-
nization skeletons for branching time temporal logic. In
Logic of Programs; Workshop, Yorktown Heights, N Y ,
May 1981, volume 131 of Lecture Notes in Computer
Science. Springer-Verlag, 1981.

Auto-
matic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, 1986.

Hybrid Deci-
sion Diagrams - overcoming the limit,ations of MTBDDs
and BMDs. In Proceedings of the 1995 Proceedings of

the I E E E International Conference on Computer Aided
Design, pages 159-163. IEEE Computer Society Press,
November 1995.

[6] E. M. Clarke and X. Zhao. Analytica: A theorem prover
The Journal of Mathematica, 3(1) ,

[7] K . L. McMillan. Symbolic Model Checking. Kluwer Aca-

[8] G. S. Taylor. Compatible hardware for division and
square root. In Proceedings o f the Fifth IEEE Sympo-
sium o n Computer Arithmetic, 1993.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla.

[5] E. M. Clarke, M. Fujita, and X. Zhao.

for Mathematica.
1993.

demic Publishers, 1993.

648

