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Word Level Model Checking - Avoiding the Pentium FDIV Error * 

E. M. Clarket M. Khairal X. Zhaotf 

Abstract 

The highly-publicized division error in the Pentium has em- 
phasized the importance of formal verification of arithmetic 
circuits. Symbolic model checking techniques based on bi- 
nary decision diagrams (BDDs) have been successful in ver- 
ifying control logic. However, lack of proper representation 
for functions tha t  map boolean vectors into the integers has 
prevented this technique from being used for verifying arith- 
metic operations. 

We have developed a new technique for verifying arith- 
metic circuits. The  new technique, called word level model 
checking, has been used successfully to  verify circuits for di- 
vision and square root computation that are based on the 
SRT algorithm used by the Pentium. The  technique makes 
it possible to  handle both the control logic and the da ta  
paths in the circuit. The  total number of state variables ex- 
ceeds 600 (which is much larger than any circuit previously 
handled by other symbolic model checkers). 

1 Introduction 

Proving the correctness of arithmetic operations has always 
been an important problem. The  importance of this prob- 
lem has been recently emphasized by the highly-publicized 
division error in the Pentium. In order to  verify such cir- 
cuits, it is necessary to  represent and manipulate functions 
that map boolean vectors to  integer values. We have used 
hybrid decision diagrams (HDDs) [5] to  represent the 
integer functions tha t  occur in the arithmetic circuit verifi- 
cation. For the state variables corresponding to  da ta  bits, 
our representation behaves like a binary moment diagram 
(BMD) while for the state variables corresponding to  control 
signals, it behaves like a multi-terminal BDD (MTBDD). By 
using this representation, we are able to  handle circuits with 
both control logic and wide da ta  paths. 

Our representation for functions tha t  map boolean vec- 
tors into the integers enables us to  extend temporal logic 

model checking [3, 41 so that  it can handle arithmetic cir- 
cuits. In traditional model checking systems, specifications 
are expressed in a propositional temporal logic, and circuit 
designs a.nd ]protocols are modeled as state-transition sys- 
tems. An efficient search procedure is used to determine 
automatically if the specifications are satisfied by the transi- 
tion systems. The  main disadvantage of this approach is the 
state explosion which can occur if the system being verified 
has many components that  can make transitions in paral- 
lel. The  size of the transition systems tha t  can be verified 
by model checking techniques has increased dramatically be- 
cause of the use of BDDs [a ] .  Although such symbolic model 
checking techniques have been successful in verifying control 
logic, they cannot be  directly used for verifying arithmetic 
circuits. 

In the word level model checking system, propositions de- 
noting nodes in circuits are represented as BDDs and are 
computed in exactly the same way as in the original sym- 
bolic model checking system. Words are arrays of proposi- 
tions, each of' which corresponds to  a single bit. Expressions 
are composetd of arithmetic operations applied to  words. 
Hybrid decision diagrams can be computed for words and 
expressions using the algorithms for arithmetic operations. 
Atomic formulas can be relations between expressions, and 
their BDD representations can be computed by the algo- 
rithm that handles arithmetic relations. After the BDD 
representations for the atomic formulas are generated, the 
BDDs for static formulas and temporal formulas are com- 
puted in the same way as in ordinary model checking. In 
particular, the fixpoint computations are exactly the same 
in both cases. 

By using i,he word level model checking system, we have 
successfully verified circuits for division and square root com- 
putation that are based on the SRT algorithm used by the 
Pentium. Wme are able to  handle both the control logic and 
the da ta  paths. All of the states in the finite state machine 
for the control logic have been verified. Moreover, we have 
proved invariant properties that  guarantee the correctness of 
the da ta  values and prevent overflows. The  total number of 
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fortunately, there are fundamental problems with applying 
either the MTBDD or the BDD array representations for ver- 



ification of arithmetic circuits. For the functions that arise 
in this type of application, the number of possible values is 
exponential in the number of bits. Therefore, the MTBDDs 
also have exponential size. On the other hand, arithmetic 
operations on BDD arrays are very expensive. In particular, 
since the BDD size for the middle bit of a combinational 
multiplier is exponential in the length of its operands, the 
BDD array representation is exponential for multiplication. 

Bryant and Chen [l] have shown that BMDs give a com- 
pact representation for certain functions that have exponen- 
tial size MTBDDs. They have used this representation to 
verify the da ta  paths of some arithmetic circuits. They are 
able to  conclude tha t  a circuit is correct if the BMDs for 
the circuit and the specification are exactly the same. How- 
ever, depending on the implementation and the control logic, 
there can be cases in which the circuits are correct but the 
BMDs are not identical. Moreover, since their technique 
cannot handle inequalities, it is impossible to check some of 
the properties that  are needed in order to avoid the Pentium 
error. 

We have used hybrid decision diagrams (HDUs) [5] to  rep- 
resent the integer functions that occur in the arithmetic cir- 
cuit verification. In particular, for the state variables corre- 
sponding to  da ta  bits, we use the inverse Reed-Muller trans- 
form while for the state variables corresponding to  control 
signals, we use the identity transform. Therefore, for data 
variables, this representation behaves like a BMD while for 
control variables, i t  behaves like an MTBDD. By using this 
representation, we are able to handle circuits with both con- 
trol logic and wide da ta  paths. Since this representation is 
a special case of the hybrid decision diagrams, all the algo- 
rithms mentioned in previous sections can be applied. 

By using this representation, we have extended the sym- 
bolic model checking system SMV [7]  so that it can also 
handle properties involving relationships among da ta  words. 
In the original SMV system, atomic formulas can only con- 
tain state variables. In the extended system, we allow atomic 
formulas be equations or inequalities between expressions as 
well. These expressions are represented as hybrid BDDs. 

logic that we use is the following: 

Atomic propositions: A p  = {PI, . . . , p k }  

Propositional formulas: 
7 Prop 

Words: Word ::= (Prop ,  Prop , .  . . , Prop) 

Expressions: 
Exp ::= Constant I Word 1 next( Word) I E x p  @ Exp 1 
if S F  then Exp else Exp,  where 0 can be +, -, or X .  

Atomic Formulas: A F  ::= Ap I {A I E } ( E z p  N E x p ) ,  
where N can be =, <, or <. Because of the nondeter- 
ministic behavior of the system, there can be more than 
one possible next state for a given state. Therefore, a 
path quantifier is needed when the next state operator 
is used in the expressions. 

Static Formulas: S F  ::= A F  I S F  A S F  I -SF 
Temporal Formulas: T F  ::= S F  I T F  A T F  1 -TF 1 
A X T F  I {A I E } [ T F  U T F ]  

Prop ::= A p  I Prop A Prop 1 

a States: s = z A p  

Transition relation: R C S x S 

a Initial states: SO E S 

a Valuation mapping for atomic propositions 
V : Ap x S --f ( 0 , l )  

The  semantics for the logic is given by: 

a Propositional formulas: P : Prop x S -+ ( 0 ,  I} 

%Jt, s )  = V(P2 1 3) 

P(f1 A f 2 )  = Wl, 3) A P(f2, .) 
P(,f, 3 )  = +(fl.) 

a Words: W : Word x S + N 

a Expressions: E : Exp x S x S + N .  The  state s’ 
is used to  handle next-state operators tha t  occur in 
expressions. 

E(e1 0 e 2 ,  s ,  5’) = E(e1, s, s’) 0 E(e2, s ,  3’) 

E(if f then el else e 2 ,  s, s’) = 

if (s /= f) then E(e1, s ,  s’) else E(e2,  s ,  s’) 
E ( w ,  s ,  S I )  = W ( w ,  s )  
E(next(w),  s, s’) = W ( w ,  s’) 

a Atomic formulas: 

3 l= pz * V(PZ,S) = 1 

s l= A ( e i  N e z )  U 

s l= E(e1 N e 2 )  U 

VS’. R(s ,  s’) -+ (E(e1, s, s’) - E(e2, s, s’))  

3s’ .  R ( s ,  s’) A (E(e1 ,  s ,  s’) - E(e2, s ,  s’)) 

The formula A ( e 1  N e z )  is true in state s when (el  - 
e 2 )  holds for all successor states. Likewise, E(e1 N 

e 2 )  is true in state s when (el  - e 2 )  holds for some 
successor state. 

a The semantics of SF  and TF are the same as in CTL. 

This logic can naturally be divided into three layers. The  
top layer contains atomic formulas, static formulas and tem- 
poral formulas. The  second layer contains words and ex- 
pressions. The  third layer contains atomic propositions and 
propositional formulas. All of the objects in the top and 
bottom layers are boolean functions while the objects in the 
second layer are functions that map boolean vectors into the 
integers. Therefore, in the word level model checking sys- 
tem, all of atomic propositions, propositions, atomic formu- 
las, static formulas and temporal formulas are represented 
as BDDs; while words and expressions are represented as 

A model is given by: hybrid decision diagrams. 
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3 Word Level Model Checking 

Model checking is a technique of finding the set of states in 
a state-transition graph where a given CTL formula is true. 
There is a model checker called EMC that solves this prob- 
lem using efficient graph-traversal techniques. If the model is 
represented as a state-transition graph, the complexity of the 
algorithm is linear in the size of the graph and in the length 
of the formula. The  algorithm is quite fast in practice [3, 41. 
However, an explosion in the size of the model may occur 
when the state-transition graph is extracted from a finite 
state concurrent system that has many processes or com- 
ponents. In symbolic model checking systems [ 2 ] ,  BDDs are 
used to represent the transition relations and sets of states. 
The model checking process is performed by fixpoint oper- 
ations on these BDDs. By using symbolic model checking 
techniques, the size of the transition systems that can be ver- 
ified has increased dramatically. Although such techniques 
have been successful in verifying control logic, they cannot 
be directly used for verifying arithmetic circuits. This is 
because expressions that involve words with integer values 
cannot be handled properly. 

In order to be able to perform model checking on the logic 
discussed in the previous section, it is desirable to imple- 
ment various operations on hybrid decision diagrams. We 
consider scalar multiplication, addition and multiplication 
of two functions, and the if-then-else operation. Although 
the worst case complexity for these algorithms can be expo- 
nential, in practice, this algorithm works quite well. Model 
checking for word level properties also requires computing 
the set of assignments that  satisfy fi N fi,  where N can be 
one of =, f, <, <, >, or 2.  We have developed an efficient 
algorithm that can compute the BDD for the set of assign- 
ment satisfying an arithmetic relation. In particular, this 
algorithm has linear complexity for linear expressions [5]. 

Now that we are able to handle arithmetic operations and 
arithmetic relations, it  is possible to extend the symbolic 
model checking algorithm so that it can verify word level 
properties. BDDs for the transition relation and all proposi- 
tions are generated in exactly the same way as in the original 
symbolic model checking system. The hybrid decision dia- 
gram representation of a word (fo, f1,. . . , fn) can be com- 
puted as 

n 

z(if fi then 2’ else 0) 
2 = 1  

using operations mentioned above. The hybrid decision di- 
agram representation of most expressions can be computed 
using similar operations. The  only exception is the next  op- 
eration, which can be performed by variable substitution. 
The substitution replaces all of the current state variables 
in the hybrid decision diagram for the word by their corre- 
sponding next state variables. The  algorithm to obtain the 
BDD representing the set of variable assignments that  make 
an algebraic relation true can be used to compute the BDD 
for atomic formulas. After the BDD representation for the 
atomic formulas is generated, the BDDs for static formu- 
las and temporal formulas are computed in the same way 
as in ordinary model checking. In particular, the fixpoint 
computations are exactly the same in both cases. 

Since we h.ave used the same algorithm to compute the 
transition relation as in the ordinary model checking algo- 
rithm. The word level model checking algorithm does not 
work well when the transition relation does not have a con- 
cise representation. As an example, let’s consider a multi- 
plier. Let x and y be the input registers and z be the output 
register. Suppose the transition relation can be represented 
as follows: 

T r ( z ,  y, z )  = T T ’ ( ~ ,  y) A (next(z) = z x y) 

Obviously, the BDD representation of the transition re- 
lation has exponential size since the BDD representation of 
the middle bit of a multiplier is exponential. This problem 
can sometimes be avoided by conjunctive decomposition of 
the transition relation. Let E ,  g, and be the state variables 
that encode the current state value of x , y  and z ,  respec- 
tively. Let i-’,$, and 2 be the state variables that encode 
the next state value of x , y  and z .  Suppose that we want 
to verify a word level property of the form f ( z ,  y ,  z ) .  There 
may be appearances of next(z); if so, we can replace them by 
z x y at the word level and obtain a new formula. Hopefully, 
the resulting formula will be independent of z and the BDD 
representation of the formula can be denoted as f’(z,  j j ) .  In 
this case, we can use TT’ as the transition relation to perform 
the fixpoint operations. Even if f’ depends on some bits of 
z ,  we can often obtain a much simpler transition relation by 
eliminating the conjuncts that  give the values of bits that  
are not needed. 

4 Verification of an SRT division circuit 

By using the word level model checking system, we have suc- 
cessfully verified circuits for division and square root com- 
putation that are based on the SRT algorithm used by the 
Pentium. We are able to  handle both the control logic and 
the data paths. The  division circuit that  we investigated has 
5 states, idle, init, loop, last and rem. This circuit can per- 
form two diEerent operations division and remainder. When 
the operation is division, the steps in the Computation are 

idle -+ in i t  i loop* -+ last  - idle 

When the operation is remainder, the steps are 

idle -+ in i t  i loop* -+ last + rem -+ idle 

Figure 1 gives the data path of the circuit at  the loop state. 
All the words have 70 bits. However, only the leading bits of 
the partial remainder and multiples of the divisor are used 
to compute the quotient digit for the next cycle. 

We have verified the circuit with both control logic and the 
data path. All states of the finite state machine have been 
checked. Let T be the partial remainder, q be the quotient, 
d be the divisor. We have checked the following properties: 

The  expression r f q . d always equals the left-shifted 

The  computation does not overflow. This is guaranteed 

dividend, i.e. T + q . d = 22k . dividend. 

by - ! id  5 T 5 i d .  
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Figure 1: The da ta  path for the division circuit 

For example, we have proved that at  init state, the re- 
mainder is the dividend and the quotient is zero. Therefore, 
the initial value for r + 9 .  d equals the dividend. Moreover, 
the inequality mentioned above holds at  the init state. 

SPEC AG(state = i n i t  -> r = dividend .& q = 0)  

SPEC AG(state = i n i t  -> (-8) * d <= 3 * r <= 8 * d) 

We have also proved that the inequality always holds in 
the loop states, and that T + q d is invariant with respect 
to left shifting. 

SPEC AG(state = l oop  -> 
A[((-8)*d <= 3*r <= 8*d) U s t a t e  = l a s t ] )  

SPEC AG((state  = l o o p  & ((-8)*d <= 3*r  <= 8*d)) -> 
A((r+q*r)*4 = n e x t ( r + q * r ) ) )  

The above properties are sufficient to guarantee that in the 
loop state, T + q . d always equals the dividend after left 
shifting. Similar properties are proved for the last and rem 
states. In addition, we have verified a circuit for computing 
square roots. The  total number of state variables for the 
circuit that  we verify exceeds 600 (which is much larger than 
any circuit previously checked by SMV). 

5 Directions of  Future Research 

We have used word level symbolic model checking to repli- 
cate the Pentium FDIV bug and successfully verified the 
corrected circuit. In this paper, we have described the for- 
mal verification of a floating point division circuit based on 

the SRT algorithm using our word level model checker. We 
plan to experiment on more circuits. Possible applications 
include floating point multipliers, floating point adders, etc. 

Our algorithm for solving arithmetic relations works ex- 
tremely well for linear equations and inequalities. Although 
the current algorithm can handle some nonlinear equations 
and inequalities as well, it may be possible to extend this 
algorithm or to find a new algorithm that can handle more 
complicated nonlinear equations and inequalities. 

There is stiU one problem with this technique. I t  can only 
be used for circuits that  maintain the exact value of the data. 
When rounding occurs, the functions become less regular 
and the size of hybrid BDD representation is likely to ex- 
plode. In these cases, the new value obtained after rounding 
can be described by a system of inequalities, and the verifi- 
cation process reduces to solving such systems. In another 
research project, we have built a theorem prover based on 
symbolic computation system Mathematica. The theorem 
prover is called Analytica [6] and is quite good a t  handling 
equations and inequalities. We believe that after some mod- 
ification, Analytica will be useful for solving the inequalities 
that  arise because of rounding in computer arithmetic. 
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