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Abstract. Model checking has been successfully employed for verification
of industrial hardware systems. Recently, model checking techniques
have also enjoyed limited success in verifying software systems, viz., de-
vice drivers. However, there are several hurdles which must be overcome
before model checking can be used to handle industrial-scale software
systems. This article reviews some of the prominent model checking
techniques being used for verification of software and summarizes the
existing challenges in the field.
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1. Introduction

Critical infrastructures in several domains, such as medicine, power, telecommu-
nications, transportation and finance are highly dependent on computers. Dis-
ruption or malfunction of services due to software failures (accidental or mali-
cious) can have catastrophic effects, including loss of human life, disruption of
commercial activities, and huge financial losses. The increased reliance of critical
services on software infrastructure and the dire consequences of software failures
have highlighted the importance of software reliability, and motivated systematic
approaches for asserting software correctness. While testing is very successful for
finding simple, relatively shallow errors, it cannot guarantee that a program con-
forms to its specification. Consequently, testing by itself is inadequate for critical
applications, and needs to be complemented by automated verification.

Model checking [15,19] is an automated technique to check the correctness of
finite state concurrent systems. The verification procedure involves an exhaustive
search of the state space of the system. As compared to theorem proving, model
checking is faster primarily due to the fact that it does not involve generating
tedious proofs, which often need manual intervention. Temporal logics are used
to express a wide variety of partial system specifications, which are then verified
by an appropriate model checking procedure. Finally, the technique is capable of
providing diagnostic counterexamples which are useful for debugging the system
during its design. Model checking has been successfully employed to verify and
detect bugs in non-trivial hardware systems, e.g., IEEE Futurebus [20] etc.
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Real-life software systems often involve a large number of processes and com-
plex data structures. Model checking, when applied to such systems, encounters
the infamous problem of state space explosion. Twenty five years of research have
led to development of multiple techniques to counter this problem. Such tech-
niques include using symbolic data structures, abstraction, partial-order reduc-
tion, compositional reasoning, symmetry reduction, slicing and semantic mini-
mization. In particular, symbolic representation of state space using compact data
structures like BDDs [9] and model abstraction are two of the techniques known
to handle the state space explosion in hardware verification efficiently. Inspite of
their widespread success in verifying hardware systems, symbolic representation
alone is not sufficient to alleviate the problem in the case of software verification.
For example, as opposed to hardware, the state space of software programs is
potentially infinite due to presence of unbounded data structures and pointers.
Abstraction techniques are therefore considered to be of increased importance for
verifying software.

Abstraction techniques reduce the state space during verification essentially
by ignoring details of the system description (variables, predicates on variables
etc.) which are irrelevant for showing the correctness of a given property on the
system. The framework of existential abstraction involves computing a small over-
approximation of the original system such that validity of universal specifications
on the abstract system implies their validity on the concrete model also. However,
existential abstractions allow for false negatives (also known as spurious coun-
terexamples) and require refinement of the previous coarse abstraction in order
to eliminate them. Owing to the fact that abstractions are difficult to compute
manually together with the possibility of false negatives, several automated ab-
straction refinement techniques have been proposed [38,18]. Clarke et al. devel-
oped an automated abstraction-refinement technique [18] which uses the spurious
counterexamples obtained when model checking an abstraction, for the purpose
of refining it. Counterexample-guided abstraction refinement (CEGAR) together
with predicate abstraction [28,21,42] have been found to be effective in handling
the large state spaces of software systems [4] and also forms the core idea behind
several software model checking tools [43,32,12,35].

Although software verification has been the subject of ambitious projects for
several decades, software verification tools have, until recently, not attained the
level of practical applicability required by industry. Motivated by urgent industrial
need, the success and maturity of formal methods in hardware verification, and
by the arrival of new techniques such as predicate abstraction, several research
groups have started to develop a new generation of software verification tools. A
common feature of all these tools is that they operate directly on programs written
in a general purpose programming language such as C or Java instead of those
written in a more restricted modeling language such as Promela. In addition, all
of them are characterized by a CEGAR-based model checking algorithm which
interacts with theorem provers and decision procedures to reason about software
abstractions, in particular about abstractions of data types.

In this paper, we first present the background about model checking and
automated abstraction procedures, including the details of the CEGAR approach
and theorems on property-preserving abstractions. We then briefly survey the
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existing methods for software verification. Finally, we discuss a promising SAT-
based [41] CEGAR scheme recently proposed by members of model checking group
at CMU and its applications to software model checking.

2. Background

Kripke Structures. In model checking, the system to be verified is formally rep-
resented by a finite Kripke structure. Essentially, a Kripke structure is a directed
graph whose vertices are labeled by sets of atomic propositions. Vertices and edges
are called states and transitions respectively. One or more states are considered
to be initial states. More formally, a Kripke structure over a set of atomic propo-
sitions A is a tuple K = (S,R,L, I) where S is the set of states, R ⊆ S2 is the set
of transitions, I ⊆ S is the non-empty set of initial states, and L : S → 2A labels
each state by a set of atomic propositions. Note that Kripke structures may be
transformed into automata with labels on edges and vice-versa. We, therefore, use
Kripke structures to represent both concrete and abstract state transition graphs
of the system being verified.

Computation Tree Logic. Computation Tree Logic(CTL) is an extension of
propositional logic obtained by adding path quantifiers and temporal operators.

1. Path quantifiers:

A for every path
E there exists a path

2. Temporal Operators:

Xp p holds next time
Fp p holds sometime in the future
Gp p holds globally in the future
pUq p holds until q holds

In the CTL each temporal operator must be immediately preceded by a path
quantifier. Thus, CTL can be viewed as a temporal logic based on the compound
operators AX, EX, AF, EF, AG, EG, AU, EU. Let s0 be a state in a kripke
structure K. The formal semantics of EX, EG and EU is defined as follows:

s0,K � EXφ iff there exists a path p = s0, s1, . . . such that s1,K � φ

s0,K � EGφ iff there exists a path p = s0, s1, . . . such that
for all i ≥ 0, si,K � φ

s0,K � EφUψ iff there exists a path p = s0, s1, . . . and an i ≥ 0 such that
for all 0 ≤ j ≤ i, sj ,K � φ and si,K � ψ

The remaining CTL operators are defined by abbreviations as follows: EFφ =
E(trueUφ),AGφ = ¬EF¬φ and so on.

ACTL is the fragment of CTL where only the operators involving A are used,
and negation is restricted to atomic formulas. An important feature of ACTL
is the existence of counterexamples. For example, the CTL specification AFp
denotes on all paths, p holds sometime in the future. If the specification AFp is
violated, then there exists an infinite path where p never holds. This path is called
a counterexample of AFp. In this paper, we will focus on counterexamples which
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are finite or infinite paths. For a formal definition of CTL and related temporal
logics such as LTL, please refer to [19].

Model Checking Problem. Given a Kripke structure K = (S,R, I, L) and a
specification φ in a temporal logic such as CTL, the model checking problem is
the problem of finding all states s such that s,K � φ and checking if the initial
states are among these. An explicit state model checker is a program which per-
forms model checking directly on a Kripke structure obtained from the program
description.

State space explosion. Kripke structure represents the state space of the sys-
tem under investigation which potentially is of size exponential in the size of the
system description. For example, the number of reachable states of a concurrent
program can grow exponentially with the number of components due to the large
number of possible execution interleavings. Therefore, even for systems of rela-
tively modest size, it is often impossible to compute their Kripke structures ex-
plicitly. The state space explosion problem in model checking remains the chief
obstacle to the practical verification of real-world distributed systems.

Several techniques have been proposed to alleviate the state explosion prob-
lem [19]. In particular, symbolic techniques represent the state space compactly
using data structures like Ordered Binary Decision Diagrams(OBDDs) [9]. Ab-
straction techniques, in contrast, use the model description and the property spec-
ification in order to abstract away the irrelevant state space. Abstractions are
a promising technique to mitigate the state space explosion that occurs during
verification of software systems.

2.1. Model Checking using Abstractions

Abstraction techniques reduce the program state space by mapping the set of
states of the actual system to an abstract, and smaller, set of states in a way
that preserves the relevant behaviors of the system. Abstractions are most often
performed in an informal, manual manner, and require considerable expertise.
The framework of existential abstractions provides a systematic way of computing
conservative over-approximations of the concrete system.

Existential Abstraction. Intuitively speaking, existential abstraction amounts
to partitioning the states of a Kripke structure into clusters, and treating the
clusters as new abstract states. Formally, an abstraction function h is described
by a surjection h : S → Ŝ where Ŝ is the set of abstract states. The surjection
h induces an equivalence relation ≡ on the domain S in the following manner:
let s, s′ be states in S, then s ≡ s′ iff h(s) = h(s′). Since an abstraction can be
represented either by a surjection h or by an equivalence relation ≡, we sometimes
switch between these representations.

The abstract Kripke structure M̂ = (Ŝ, Î, R̂, L̂) corresponding to the abstrac-
tion function h is defined as follows:

1. Î(ŝ) iff ∃s. h(s) = ŝ ∧ I(s).
2. R̂(ŝ1, ŝ2) iff ∃s1, s2. h(s1) = ŝ1 ∧ h(s2) = ŝ2 ∧R(s1, s2).
3. L̂(ŝ) =

⋃

h(s)=ŝ L(s).

An atomic formula f respects an abstraction function h if for all s and s′ in
the domain S, (s ≡ s′) ⇒ (s � f ⇔ s′ � f). Let ŝ be an abstract state. L̂(ŝ)
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Figure 1. The Counterexample-based Abstraction Refinement(CEGAR) Framework

is consistent, if all concrete states corresponding to ŝ satisfy all labels in L̂(ŝ),
i.e., collapsing a set of concrete states into an abstract state does not lead to
contradictory labels.

Spurious Counterexamples. It is easy to see that M̂ is a conservative approx-
imation of M . Thus, model checking M̂ may potentially lead to wrong results.
The following theorem shows that at least for ACTL, the specifications which
hold on M̂ , hold on M as well.

Theorem 1 Let h be an abstraction function and φ be an ACTL specification where
the atomic subformulas respect h. Then the following holds: (i) L̂(ŝ) is consistent
for all abstract states s in M; (ii) M̂ � φ⇒M � φ.

2.2. Counterexample-Guided Abstraction

Recall that for a Kripke structure M and an ACTL formula φ, our goal is to
check whether the Kripke structure M̂ satisfies φ. Our methodology consists of
the following main steps, cf. Figure 1.

1. Generate the initial abstraction: We generate an initial abstraction h by
examining the transition blocks corresponding to the variables of the pro-
gram which describes M . A detailed description of the initial abstraction
approach is given in [18].

2. Model-check the abstract structure: Let M̂ be the abstract Kripke struc-
ture corresponding to the abstraction function h. We check whether M̂ � φ.
If the check is affirmative, then we can conclude that M � φ (see Theo-
rem 1). Suppose the check reveals that there is a counterexample CE. We
then verify if CE is a valid counterexample,

3. Validate the counterexample: A counterexample is said to be valid (or
actual) if it is an actual behavior of the concrete model M . If CE turns
out to be an actual counterexample, we report it to the user. Otherwise
CE is a spurious counterexample and we proceed to step 4.

4. Refine the abstraction: We refine the abstraction function h by partitioning
one or more equivalence classes of ≡ so that, after the refinement, the
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abstract structure M̂ corresponding to the refined abstraction function
no longer admits the spurious counterexample CE. We will discuss SAT-
based algorithms to achieve this in the later sections. After refining the
abstraction function, we return to step 2.

Using counterexamples to refine abstract models has been investigated by a
number of researchers beginning with the localization reduction approach of Kur-
shan [38]. Counterexample-based abstraction refinement (CEGAR) [18] forms the
basis of several software verification tools, including SLAM [4], BLAST [32] and
MAGIC [12]. Considerable progress in the domain of software verification over
the last few years has been driven by the emergence of powerful yet automated
abstraction techniques such as predicate abstraction [28]. Here, the initial ab-
stractions are computed using a given set of seed predicates on program variables
and the spurious counterexamples are removed by addition of new predicates,
automatically inferred during the refinement phase. Before presenting the details
of the CEGAR technique using predicate abstraction for software, we first briefly
survey the existing software model checking techniques and tools.

3. Software Model Checking

Software model checking as compared to hardware model checking faces several
new and difficult problems. These problems arise mainly due to the following
constructs, common to several programming languages:

• Presence of large/unbounded base types, e.g., int, float.
• User-defined types and classes.
• Pointers/aliasing together with unbounded heap size.
• Procedure calls, recursion, function calls through pointers, dynamic method

lookup.
• Concurrency together with unbounded number of threads
• Exceptions and callbacks.

The problems are further accentuated by the large code size of industrial software
and unavailability of source code for system libraries and routines. Software model
checking is a multifaceted and difficult task, and it is only to be expected that
numerous approaches with different strengths and limitations will be required if
the wide variety of existing industrial-scale programs are to be handled. We now
present an overview of a set of useful software verification methodologies.

3.1. Survey of Current Approaches

Combining Static Analysis with Model Checking. Static analysis is used to ex-
tract a finite state model from the Boolean abstraction of a program obtained
by predicate abstraction. Model checking is then used to verify a partial specifi-
cation φ on this model. This technique has been used widely and forms the core
of several model checkers for the C programming language: SLAM at Microsoft
Research [4,43], Bandera [24,5] at KSU, JPF [8,37] at NASA, BLAST [32,7] at
Berkeley and MAGIC [12,39] at CMU.
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Symbolic Execution. This technique tries to simulate all the possible execution
paths of a program using symbolic representation of the program variables, e.g.,
path predicates. Since the number of possible executions may be unbounded,
the algorithm uses backtracking to prune away portions of state space which it
considers irrelevant. Notable examples of tools using symbolic execution together
with backtracking are Verisoft [27] and Prefix [10].

Bounded Model Checking. Kroening et al. have successfully used bounded model
checking (BMC) [6] along with satisfiability checking (SAT) [41] to detect bugs in
programs [16]. The key idea is to avoid the expensive fixpoint computation over
the reachable state space by only considering the states reachable by exploring a
fixed number of transitions, say n, from the initial state. The program transition
relation is first unrolled up to the fixed depth symbolically and the resulting
Boolean formula together with the error condition is passed to a SAT solver. If a
satisfying assignment to the formula is found, a bug is detected. Otherwise, the
depth n is increased and the algorithm proceeds with the next iteration.

Design using Statecharts and Esterel programming languages. The code is syn-
thesized from finite state behavioral models of software, which avoid the complex-
ity of actual software implementation while remaining sufficiently expressive.

Other techniques include use of finite state machines to look for patterns in
the program control flow graph [26]. Some prominent software verification tools
include:

• SLAM: Microsoft Research’s SLAM project [4] is focused on verifying safety
properties of sequential programs. They compute Boolean abstractions of
programs using predicate abstraction and then perform the model checking
of the Boolean programs followed by refinement (if needed). Procedures are
handled by computing their summaries beforehand. The project has been
very successful at analyzing device drivers. An ongoing project, ZING, aims
to handle concurrent programs.

• BLAST: BLAST [32] is an explicit-state abstraction-based model checker
originally developed for sequential programs. During the refinement stage,
the tool adds predicates lazily, i.e., refines only relevant portions of the
state space. The BLAST approach has also been extended to verify some
concurrent programs [31].

• MAGIC: MAGIC [12], developed by members of the model checking group
at CMU, is also an explicit-state abstraction-based model checker. MAGIC
can be used to verify either simulation relation or trace containment.
MAGIC’s two-level abstraction [11] can be used to verify properties of con-
current message-passing systems in the CEGAR framework. Since the pred-
icates are stored explicitly, both MAGIC and BLAST are able to avoid
spurious counterexamples due to infeasible predicate valuations, which may
occur in SLAM.

• SPIN, JPF, and Bogor: SPIN [33,44] is widely used to check properties
of models of concurrent systems. Although SPIN was initially developed
to verify distributed concurrent protocols, it now includes a frontend for
translating C programs [34] into its input language, PROMELA. JPF [8]
model checks Java source code, and handles most of the concurrency fea-
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tures of Java. It is based on depth-first search of the state space and has
an built in scheduler for handling Java threads. Bogor [25] is an extensi-
ble model checker for object-oriented systems, featuring a number of state
space reductions. All these systems use explicit-state enumeration.

• CBMC: CBMC [16], also developed by members of the model checking
group at CMU, is a tool based on Bounded Model Checking (BMC) [6].
CBMC supports the full ANSI-C standard for C programs, which includes
keeping track of pointer arithmetic and overflows arising out of arithmetic
operations.

• F-Soft: F-Soft [35] is an ongoing software verification project at NEC Lab-
oratories. Verification is done using bounded model checking or iterative
predicate abstraction and refinement. It uses a Boolean analysis system
called DiVeR [29], which includes various SAT-based and BDD-based meth-
ods for performing both bounded and unbounded verification including
BMC-based techniques for providing correctness proofs.

4. CEGAR using SAT-based Predicate Abstraction

Recall that in Counterexample Guided Abstraction Refinement (CEGAR)
paradigm one starts with a coarse abstraction, and if it is found that an error-trace
reported by the model checker is not realistic, the error trace is used to refine the
abstract program, and the process proceeds until no spurious error traces can be
found. The actual steps of the loop follow the abstract-verify-refine paradigm and
depend on the abstraction and refinement techniques used. We discuss below a
CEGAR loop where abstraction is done with respect to a finite set of predicates
over the program variables.

Predicate abstraction [28,21] is one of the most popular and widely applied
methods for systematic abstraction of programs. It abstracts data by only keep-
ing track of certain predicates on the data. Each predicate is represented by a
Boolean variable in the abstract program, while the original data variables are
eliminated. Verification of a software system with predicate abstraction consists
of constructing and evaluating a finite-state system that is an abstraction of the
original system with respect to a set of predicates. The CEGAR steps in the
context of predicate abstraction are described below.

1. Program Abstraction. Given a set of predicates, a finite state model is
extracted from the code of a software system and the abstract transition
system is constructed.

2. Verification. A model checking algorithm is run in order to check if the
model created by applying predicate abstraction satisfies the desired be-
havioral claim ϕ. If the claim holds, the model checker reports success (ϕ
is true) and the CEGAR loop terminates. Otherwise, the model checker
extracts a counterexample and the computation proceeds to the next step.

3. Counterexample Validation. The counterexample is examined to determine
whether it is spurious. This is done by simulating the (concrete) program
using the abstract counterexample as a guide, to find out if the counterex-
ample represents an actual program behavior. If this is the case, the bug
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is reported (ϕ is false) and the CEGAR loop terminates. Otherwise, the
CEGAR loop proceeds to the next step.

4. Predicate Refinement. The set of predicates is changed in order to elim-
inate the detected spurious counterexample, and possibly other spurious
behaviors introduced by predicate abstraction. Given the updated set of
predicates, the CEGAR loop proceeds to Step 1.

We discuss the above steps in detail now. For illustration we will use a small
language consisting of assignment and guarded goto commands. Let v denote a
variable, exp denote an expression of same type as v, g denotes a guard (con-
dition), and l denote a label. Let v:=exp denote an assignment statement and
if g then goto l denote a guarded goto statement. The language we use for
illustration is given as follows:

v:=exp | if g then goto l

4.1. Predicate Abstraction

In predicate abstraction [28], the variables of the concrete program are replaced by
Boolean variables that correspond to predicates on the variables in the concrete
program. These predicates are functions that map a concrete state v̄ ∈ S into
a Boolean value. Let B = {π1, . . . , πk} be the set of predicates over the given
program. When applying all predicates to a specific concrete state v̄, one obtains
a vector of Boolean values, which represents an abstract state b̄. We denote this
function by α(v̄). It maps a concrete state into an abstract state and is therefore
called an abstraction function.

SAT based predicate abstraction Most tools using predicate abstraction for ver-
ification use general-purpose theorem provers such as Simplify [23,?] to compute
the abstraction. This approach suffers from the fact that errors caused by bit-
vector overflow may remain undetected. Furthermore, bit-vector operators are
usually treated by means of uninterpreted functions. Thus, properties that rely
on these bit-vector operators cannot be verified. However, low-level software de-
signs typically use an abundance of bit-vector operators, and that the property
of interest will depend on these operations.

In [17], the authors propose to use a SAT solver, e.g., [41], to compute the
abstraction of a sequential ANSI-C program. This approach supports all ANSI-C
integer operators, including the bit-vector operators. We describe their technique
below.

A transition relation T (v̄, v̄′) is computed for each statement (or basic block)
in the given program. Let V be the set of variables in the given program. An
assignment statement v := exp is transformed into an equality v′ = exp. The
primed version of a variable denotes the value of the variable in the next state
(after executing the statement). This equality is conjoined with equalities that
define the next value of any other variable u ∈ V \{v} to be the current value.
Thus, only the value of the variable v in the assignment statement changes. This
equation system is denoted by T , v denotes the vector of all variables in V .

T (v, v′) := v′ = exp ∧
∧

u∈V \{v}

u′ = u
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Next a symbolic variable bi is associated with each predicate πi. Each concrete
state v̄ = {v1, . . . , vn} maps to an abstract state b̄ = {b1, . . . , bk}, where bi =
πi(v̄). If the concrete machine makes a transition from state v̄ to state v̄′ =
{v′1, . . . , v

′
n}, then the abstract machine makes a transition from state b̄ to b̄′ =

{b′1, . . . , b
′
k}, where b′i = πi(v̄

′).
The formula that is passed to the SAT solver directly follows from the defi-

nition of the abstract transition relation T̂ as described in Section 2.1:

T̂ = {(b̄, b̄′) | ∃v̄, v̄′ : Γ(v̄, v̄′, b̄, b̄′)} (1)

Γ(v̄, v̄′, b̄, b̄′) :=
k

∧

i=1

bi = πi(v̄) ∧ T (v̄, v̄′) ∧
k

∧

i=1

b′i = πi(v̄
′) (2)

The set of abstract transitions T̂ is computed by transforming Γ(v̄, v̄′, b̄, b̄′)
into conjunctive normal form (CNF) and passing the resulting formula to a SAT
solver. Suppose the SAT solver returns v̄, v̄′, b̄, b̄′ as a satisfying assignment. We
project out all variables but b̄ and b̄′ from this satisfying assignment to obtain
an abstract transition (b̄, b̄′). Since we want all the abstract transitions, we add
a blocking clause to the SAT equation that eliminates all satisfying assignments
with the same values for b̄ and b̄′. This process is continued until the SAT for-
mula becomes unsatisfiable. The satisfying assignments obtained form the ab-
stract transition relation T̂ . As described in [14], there are numerous ways to
optimize this computation. These techniques are beyond the scope of this article.

An abstract state b̄ is an initial state in the abstract model, if there exists a
concrete state v̄ which is an initial state in the concrete model and maps to b̄.

Î = {b̄ | ∃v̄ :

k
∧

i=1

bi = πi(v̄) ∧ I(v̄)} (3)

Using this definition, the abstract set of initial states can be enumerated by
using a SAT solver.

4.2. Checking the abstract model

The abstraction process above results in a finite-state model, which can be checked
using a finite-state modelchecker such as NuSMV [13]. If the abstract model
satisfies the property, the property also holds on the original, concrete circuit. If
model checking of the abstraction returns false, we obtain a counterexample from
the model checker. In order to check if an abstract counterexample corresponds
to a concrete counterexample, a simulation step is performed.

4.3. Simulation and Refinement

If the property does not hold on the abstract model, the model checker returns
a counterexample trace. This trace is then checked on the concrete model. This
process can be carried out using a theorem prover or a SAT solver as described
below.
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Let the counterexample trace have k steps. Each step in the abstract coun-
terexample corresponds to a particular statement in the concrete program. The
simulation requires a total of k SAT instances. Each instance adds constrains for
one more step of the counterexample trace. We denote the value of the (concrete)
variable v ∈ V after step i by vi. All the variables v ∈ V inside an arbitrary
expression e are renamed to vi using the function ρi(e).

The SAT instance number i is denoted by Σi and is built inductively as
follows: Σ0 (for the empty trace) is defined to be true. For i ≥ 1, Σi depends on
the type of statement of state i in the counterexample trace. Let pi denote the
statement executed in the step i.

If step i is a guarded goto statement, then the (concrete) guard g of the goto
statement is renamed and used as conjunct. Furthermore, a conjunct is added
that constraints the values of the variables to be equal to the previous values:

pi = (if g then goto l) −→ Σi :=
(

Σi−1 ∧ ρi(g) ∧
∧

u∈V

ui = ui−1

)

If step i is an assignment statement, the equality for the assignment statement
is renamed and used as conjunct:

pi = (v:=exp) −→ Σi :=
(

Σi−1 ∧ ρi(v) = ρi−1(exp) ∧
∧

u∈V \{v}

ui = ui−1

)

Note that in case of assignment statement, Σi is satisfiable if the previous
instance Σi−1 is satisfiable. Thus, the check only has to be performed if the last
statement is a guarded goto statement. If the last instance Σk is satisfiable, the
simulation is successful and a bug is reported. The satisfying assignment provided
by the SAT solver allows us to extract the values of all variables along the trace.
If any SAT instance is unsatisfiable, the step number and the guard that caused
the failure are passed to the refinement algorithm.

Refinement If the abstract counterexample cannot be simulated, it is an artifact
from the abstraction process and the abstraction has to be refined. This is done
by computing the weakest precondition of the guard g that caused the last SAT-
instance Σ to be unsatisfiable. The weakest preconditions are computed following
the simulation trace as built in the previous section. The new predicates obtained
from these weakest pre-conditions are added to the global set of predicates.

4.4. Scalability

The application of predicate abstraction to large programs depends crucially on
the choice and usage of the predicates. If all predicates are tracked globally in the
program, the analysis often becomes intractable due to the large number of pred-
icate relationships. In Microsoft’s SLAM [3] toolkit, this problem is handled by
generating coarse abstractions using techniques such as Cartesian approximation
and the maximum cube length approximation [2]. These techniques limit the num-
ber of predicates in each theorem prover query. The refinement of the abstraction
is carried out by adding new predicates. If no new predicates are found, the spu-
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rious behavior is due to inexact predicate relationships. Such spurious behavior
is removed by a separate refinement algorithm called Constrain [1].

The BLAST toolkit [32] introduced the notion of lazy abstraction, where the
abstraction refinement is completely demand-driven to remove spurious behaviors.
Recent work [30] describes a new refinement scheme based on interpolation [22,40],
which adds new predicates to a selected set of program locations only. On average
the number of predicates tracked at each program location is small and thus, the
localization of predicates enables predicate abstraction to scale to larger software
programs. Localization of predicates using weakest pre-conditions is described
in [36].

5. Discussion and Conclusions

Although considerable progress has been made in development of techniques and
tools for verification of programs, scalability of such approaches remains to be
an issue. CEGAR based on predicate abstraction still requires an exponential
cost in computing the abstraction as well inferring an optimal set of predicates
for refinement. Pointers, recursive data structures and heaps are handled only
to a limited extent in the current software verification tools. Finally, improved
symbolic techniques for handling concurrency (partial-order reduction has been
successful with explicit-state concurrent model checking) need to be developed.

We presented an overview of the current approaches to software verification
together with details of a promising SAT-based CEGAR scheme using predicate
abstraction. This technique allows precise treatment of ANSI-C constructs such
as multiplication/division, pointers, bit-wise operations, type conversion and shift
operators.
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