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Abstract

We give a uniform algebraic framework for computing
hybrid spectral transforms in an efficient manner. Based
on properties of the Kronecker product, we derive a set
of recursive equations, which leads naturally to an al-
gorithm for computing such transforms efficiently. As a
result, many applications of transforms like the Walsh
transform and the Reed-Muller transform, which were
previously impossible because of memory constraints,
have now become feasible. The same set of recursive
cquations also gives a new way of explaining hybrid
transform diagrams, an efficient data-structure for in-
teger valued boolean functions.

1 Introduction

Spectral transformations of boolean functions (15, 18],
like the Walsh or Reed-Muller transformations, have nu-
merous applications in computer aided design, especially
in the synthesis and testing of combinational circuits.
Using a straightforward implementation, the complex-
ity of computing these transformations grows rapidly in
the number of variables of the boolean function. In the
past, this has severly limited the usefulness of spectral
techmiques for industrial applications. New techniques
for computing the spectrum of a boclean function us-
ing binary decision diagrams, have made it possible to
compute concise representations for the transforms of
functions with several hundred variables [10).

This has led to a proliferation of similar transforms
including MTBDD [6], FDD [5], BMD [5], OKFDD
(12, 13, 19], and others [18]. It is often difficult to
understand, how these transforms are related. In this
paper we censider a class of transforms, called hybrid
spectral transforms [7, 8], which encompasses all of these
transforms. Let F' be a function, which maps boolean
vectors of length n into some set D. The Q-spectrum
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of F is a linear transformation QJf of the vector rep-
resentation f = (F(0,...,0) P, 2051) )T of F.
We consider only spectral transformations ¢}, which are
constructed as Kronecker products of certain elementary
matrices. When we want to emphasize a particular hy-
brid spectral transformation @, we call it a {hybrid) Q-
transformation. We provide a uniform algcbraic frame-
work for reasoning about such transformations. This
framework is based entirely on properties of the Kro-
necker product. We derive a set of recursive equations,
which lead naturally to an algorithm for evaluating prod-
ucts of the form (Jv where ¢ is given as a Kronecker
product, and v is a vector. Typically the hybrid spec-
tral transformation is given by a matrix Q. This matrix
maps a vector representation of the original function to
the ()-spectrum of I, the vector representation for the
Q-transform. We show how various spectral transforms
like the Walsh transform and the Reed-Muller trans-
form can be computed efficiently using this algorithm.
The same set of recursive equations gives a new way of
explaining hybrid transform diagrams, an efficient data-
structure for representing the @-transform for D-valued
boolean functions. The methodology developed in this
paper also yields a concise classification of all known ap-
plicable spectral transformation diagrams.

2 Binary tree indexing

Let F' : B® — D be a D-valued boolean function; as-
sume that F is given in tabular form {(b, F'(0)) |b € B®}.
Since the vector b = (by,...,bn—1) is encoded by an in-
teger 7 € {0,...,2" — 1}, the list of values of F can be
represented conveniently as a vector indexed by boolean
sequences of length n. A boolean sequence is either empty
(denoted ), or of the form ¢0 or c1, where cis a boolean
sequence. Let v be a vector of dimension 2", and c a
boolean sequence of length |¢| < n—1. Then, we use the
following indexing scheme: v|. is defined such that

and vl = (Z!ct)

where v|¢o and v|c1 have the same length. This scheme
is called binary tree indewing.

e =v,

0-7803-3676-3/97/$10.00 © 1997 IEEE

251



3 Efficient Kronecker products

The Kronecker product A® B for a (k x I)-matrix 4 and
a (mxn)-matrix B is defined as the following (km x In)—
matrix:

a11B e13B ay B

0B a2 B ayB
A® B = - ; ;

ap1 8 agy B ap B

The Kronecker product is associative, but not commuta-
tive. The following identity relates the Kronecker prod-
uct and ordinary matrix multiplication.

(A1 @ B1)- (A2 ®@ By) = A1 4, @ By - By

Next, we derive a recursive algorithm for computing
Q- f, where the matrix Q is given by Q = @™ Q;
and binary tree indexing is used for the vector f. The
algorithm is efficient because it avoids the construction
of the Kronecker product. [irst, we consider the case
where the @; is a (2 x 2)~matrix. The elements of Q; are
denoted (Q;); &, where 7,k € {1,2}. We assume, that
the dimension of f|, is 2*~%. The algorithm is based on
the following recursive equation.

When k =n ~ 1:

(B @) fle=Ques e

otherwise:

n—1

L ( ® QJ‘) * fleo
= F=k+1
(®@) fle=@onn |
=k
4 ( ® Q}) * ficl
F=k41
I,k is an identity matrix of the dimension 2*—*., The
proof of the recursion can be found in [11].
Using these equations, Q- f is computed recursively by
setting k = 0 and ¢ = e. We illustrate how the algorithm
works by the following example. Let

f=(1 6614101 14,

and Q = Qo & @1 ® Q2 where each Q; = {1 ;) . The
computation of Q) - f starts with the four 2-element sub-
vectors floo, flo1, flio and f|11, which are {ransformed
separately by (Jo. The results of these transformations
are then assembled into two 4-element vectors, which
are in turn transformed by Q1 ® I3, into the result Q- f.
This process is illustrated in figure 1.

Of course, in any implementation of the algorithm, the
Kronecker products (@Q); ® I, ;) need not be constructed.
(@5 ®In;) - v can be computed by applying the (2 x 2)—
matrix @; to the blocks v|o and v|; of the vector v. This
operation only involves computing linear combinations
of the vectors v|g and v|; with the scalars (Q5)kt.

This algorithm is easily generalized to ()—transforms
over Z;, where the @)—transform is a Kronecker prod-
uct made up from (I x [}-matrices @, j = 0...n - 1.

The recursive equations, however, also work for (m x [)-
matrices (J;. For details we must refer to [11]. Such
generalized recursive equations are used below to evalu-
ate the @—transforms.

4 Hybrid spectral transforms

In the remainder of the paper, we will restrict our atten-
tion to functions that map boolean vectors to D = Z,
or Z. Such functions ¥ : B® — D may be uniformly ex-
pressed using the so-called minterm-representation. Let, -
and + be the standard multiplication and addition oper-
ations on Z and Z. Also,lete: {0,...,2"-1} — B™ be
the encoding for boolcan sequences from 2. The minterm
m(b) for a vector b € B™ is delined as follows:

i if b =1
_ ' _ )t b=
m(b) = ,_-I,GI t; , where f; {T} if b, = 0
The minterm representation of I : B* — D is given by:

an—1

F(@oy. ey Bna) = D mic(d)) - fi -

i=0

This sum can be regarded the scalar product m7” f of the

T
m(e(0) ... mle(2" - 1))
and the vector f for F' as given above. The minterm
vector can be expressed as a Kronecker product:

T

m= (@5 (7 =))
The concept of minterm representation is easily gener-
alized to get other representations of the same function:

F=mTf=mTIf = (mTQ )(Qf)

minterm-vector m = (

where I is the appropriate identity matrix, and @ is some
non-singular matrix. The vector @Qf is called the Q-
spectrum of I with respect to the spectral transformation
matriz Q). Since @ is non-singular, the spectrum of a
function provides a canonical form for the function. In
general, any nonsingular matrix @ can be used for this
purpose. For boolean functions it is useful to restrict
spectral transforms to Kronecker products of (2 x 2)-
matrices over {0,1,—1}. Generally, two important cases
of the ()-transformation are distinguished:

Q = @, Qo, the homogeneous transformation (10},

Q = @, Qr, not all Qs are equal: the heteroge-
neous, or hybrid transformation [7).

Choosing Kronecker products to define spectral (rans-
formation matrices for boolean functions has several ad-
vantages. First, using the recursive algorithm given in
section 3, the spectrum of any given function can be
computed efficiently without actually ever constructing
the huge transformation matrix. Enhancing the rep-
resentation of the vector from binary tree indexing to
a BDD-representation improves efficiency considerably
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Q2 floo =

Q- flor = (i) —i

Q2 fho —:(ﬁ}) _}
h ® I3

9 2

Q2 fln = (0 0

2 2 5

= |* 0 =1
; 1RE
QD@IS.D‘ 2 = 3

3 3 1

will -1 -1

1 1 -1

Figure 1: Computation of the spectrum

due to massive sharing of subvectors. Second, the uti-
lization of Kronecker products of (2 x 2)-matrices in the
iransformations results in a modular representation of
the function, which generalizes the notion of MTBDD
to (J-transform diagrams.

5 Hybrid transform diagrams

The term-representation of Fusing a suitable Q-
transform may be considerably shorter and more efficient
to evaluate than its equivalent minterm representation.
We develop BDD-like representalions for ()-transforms,
which allow efficient computation and evaluation of such
transforms.

Let F be a D-valued boolean function in the vari-
ables o, - -y T 1, and Q@ = "5 @ . Then, the Q-
transform of F is given by F(zo,.-. e JrE mTQ“lf
where f = Qf is the @Q-spectrum of F. Inserting the
definition of () as well as the decomposition of m as
mentioned earlier we obtain:

n—1

® (77 2)-Q) ]

F(rp, . y¥n_1) = (
3=0

Now, for any given assignment to the variables, the value
of the transform of F' can be computed efficiently using
a generalization of the recursive algorithm presented in
section 3. Since { x; 77)-Q;! is always a (1 x2)~matrix,
the recnrsion becomes particularly simple.

However, in order to compute different values of the
sane transform, data-structures are needed to represent
e transform efficiently. The key to this representation
Also sterns from the recursive equation in section 3. Intu-
itively, this can be seen best by unfolding the recursion
o few steps, as displayed in figure 2. Again, block oper-
ations are used:

((3’? T, )‘Q}l) v = Ui(z;) vlo + ri(25) vl

with scalar coefficients {;(z;) and r;(z;) (cf. {11)).
Using this recursive decomposition, evaluation of the
Q-transform of ' obviously follows a binary tree-
pallern, so, the natural choice to represent the Q-
iransform is an annotated binary tree, which we call
the Q-transform. tree. The leaves of a Q—transiorm tree

contain the elements of the Q-spectrum, whereas the
branches on level j are labeled with scalar coefficients
l;(z;) and r;(z;) (cf. [11]). An example best illustrates
the situation. We compute the Q~transform tree for

f=Q
where Q = (1 _)® (.5 1)®(; ). The Q-spectrum
Qf can be computed as described in section 3: Qf =
(3 00 2 =100 ~2)T . The evaluation of

the Q-transform can be represented conveniently by the
()-transform tree, shown in figure 3.

[
/ w—l)
o <
/ ¥_1 / &71
o (o]

l-2;:3/0\¢2 1~2u//0\m1 1—2:3/ Vg 1»-‘2::-_/ &:a
3 0 0 2 -1 0 0 -2

11 -1 2 -4 2 =2)7,

Figure 3: Q—-transform tree for F

More formally, we define the Q—transform tree T for
f, where the spectral transformation @ is given by a
Kronecker product of (2 x 2)-matrices Q@ = ®?=-01 Qi
and the vector f is of dimension 2". For any k < n — i
and boolean sequence ¢ of length less than » — 1, the
k,c-subtree Ty of T'is defined as follows.

. the left subtree of Tk i8 Tk+1,c0, the branch lead-
ing to it is labeled with lx(z);

. the right subtree of Tk . is Th41,c1, the branch lead-
ing to it is labeled with ri(z);

s = fleo and Ty.c1 = fle1 are the leaves.

T itself is its own subtree Tp .

Homogeneous Shannon-transform trees are an inter-
esting special case. Since the Shannon transformation
matrix is the (2 x 2)-identity matrix, the labeling on the
branches becomes particularly simple:

Li(z) =%; , ri(z)=7%;5 .
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Figure 2: Unfolding the recursive definition of a Q-transform

Thus, at every node in such a tree, one of the two
branches starting at that node is labeled 0 and the other
1. So, these trees actually are decision trees; this is not
the case for most other transforms.

In the case of the Shannon-transformation, a decom-
position of the function I along these lines is known as
the Shannon-ezpansion w.r.t. the variable z;:

F‘—‘(Tj mg)(Fh:j:n F[z,:l)’r

For arbitrary @-transformations we define the Q-
cxpansion with respect to z;:

F=((5 2,)07")(Qi(Floy=o Floy=1)) .

These expansions just describe the node-operations on
the Q-transform trees. Thus, each level of a Q-
transform tree can be regarded as a kind of Q j—expansion
with respect to the variable z;.

The space required to represent boolean functious by
(Q—transform trees can be greatly reduced in certain sit-
uations. Obviously, space can be saved by converting
these troes to directed acyclic graphs, where identical
subtrees are shared. Additional reduction in space arises
from the elimination of unnecessary nodes. A node in
a tree is unnecessary, if both its subtrees are identical.
Such a node can be eliminated, after an adjustment is
made to the label of the branch preceding this node.
This situation is depicted in figure 4. Algebraically, the
following term corresponds to the original (left) tree:

(Gwalzsn)  riaaleys)) - (g)
(Lilzs) r3(5)) 4
(Lv(zier) miga(zipn)) - (A)

Here, A, B and B' are the subtrees, where A occurs
twice as a subtree of the same node. This expression can
be simplified to the following one (for details cf. [11]):

(lj(x,-) ri{@i) G+ (z1) + ria(zi40) )

B
(G+1(@ja1)  Tiga(zsia)) - (B’)
A
which formalises the reduced (right) tree in fig.4.

°
/ N(t;‘rt“'fﬂ)

A

o
B Ny
(e] 0o

o]
[J-+/ \?'j+1 t_,“/ \1‘,+| t,.;./ \U-H
B’ B A A B’ B
Figure 4: Elimination of unneccssary nodes

The ordering of the variables for Q-transform trees
has not been considered so far. The variable ordering
determines which reductions can be made, and can have
a dramatic effect on the size of the final directed acyclic
graph. Since this topic has been discussed extensively in
the literature [14, 17], we will not discuss it further in
this paper.

Now, for any hybrid @-transformation, we define the
corresponding hybrid Q-transform diagram to be the Q-
transform tree together with the additional operations of
node elimination, sharing of common subdiagrams and
variable ordering. Various transform diagrams, thal ap-
pear in the literature, can be classified using this ter-
minology. For example, MTBDDs can be understood
as homogencous Shannon—transform diagrams. Some of
the most common diagrams are listed in table 1.

6 Directions for future research

In this paper we provided a uniform algebraic frame-
work for computing spectral transforms [10} and hybrid
transform-diagrams (an efficient data-structure for D-
valued boolean functions) [7, 8] in an efficient manner.
The use of such diagrams has resulted in the develop-
ment of new verification methods for computer arith-
metic [9]. It is clear that these ideas are not confined to
applications in digital circuit design. 1)-valued boolean
functions, expressed in terms of hybrid transform dia-
grams can be used to represent large matrices [6]. Thus,
applications of such methods in numerical analysis and
linear algebra are obvious. Direct and iterative meth-
ods for solving systems of linear equations are typical
examples(2, 6]. Many problems in graph theory can also
be formulated in terms of matrices and then solved by
the methods presented in [2, 6]. Finally, Markov analysis
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Matrix ( 1 0) 1 0 0 1 10 1 1

0 1 1 1 ], =1 -1 1 1 -1
Name Shannon Reed-Muller Arithmetic Walsh

Positive Davio Negative Davio

Expansion: o = i i
(fz) =i} (F z)v (T—a z)v (1 Z)v (1 z)v (1 ZT—a)
Homogeneous BDD [1,4] FDD [5, 16] = BMD (5] WDD [19]
Diagrams MTBDD (6] ACDD [19]
[eterogeneous KDD [13]
Diagrams « Hybrid transform diagrams [7)

Table 1: Common matrices and transform diagrams

and probabilistic model checking involve huge matrices,
and may ultimately benefit from these techniques {2, 3].

(10]
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