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Abstract. This article describes a prototype implementation of a sym-
bolic model checker for a subset of VHDL. The model checker applies a
number of techniques to reduce the search space, thus allowing for ef-
ficient verification of real circuits. We have completed an initial release
of the VHDL model checker and have used it to verify complex circuits,
including the control logic of a commercial RISC microprocessor.

1 Introduction

Ensuring the correctness of computer circuits is an extremely important and diffi-
cult task. The most commonly used verification technique is simulation. However,
in many cases simulation can miss important errors. A more powerful approach
is the use of formal methods such as temporal logic model checking [3], which
can guarantee correctness. However, most model checkers can verify only cir-
cuits that are written in their own language. This makes it difficult to apply the
technique in practice, since very few designers use these languages. For model
checking to be accepted by industry, we believe that it is essential to provide
an interface between the verification tools and some widely used hardware de-
scription language. VHDL is an obvious choice for such a language: it is used as
input for many CAD systems, it provides a variety of descriptive styles, and it
is an IEEE standard [6].

Much research has been conducted to give a formal semantics to VHDL and
apply formal verification techniques (see e.g. [7,1]). While there exist formal
VHDL semantics in a number of formalisms, it is difficult to use many of these
in formal verification. Whereas many operational semantics approaches tend to
lead to excessively large models, many axiomatic semantics either restrict the
VHDL subset too much or are in logics difficult to reason in. There have been
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some attempts to apply model checking to VHDL specifications, though it is still
desirable to reduce the state space generated from the VHDL programs.

We have developed a VHDL verification system called CV. The verification
system uses symbolic model checking. Our approach allows for a number of opti-
mizations that result in dramatically smaller state spaces. We have incorporated
several of these into CV, and our results show state space reductions of several
orders of magnitude using these optimizations. The optimizations include cone
of influence reduction to eliminate irrelevant portions of the circuit along with a
new scheme for approximating the set of reachable states. This approximation is
simple to compute, and results in additional large reductions in state space size.
Finally, our models represent whole VHDL simulation cycles with single tran-
sitions, unlike several other VHDL model checkers, thus affording additional
savings.

An initial prototype of CV has been implemented and used to verify several
complex designs, including the control logic of a commercial RISC processor. In
this demonstration, we describe this prototype and present results that demon-
strate the applicability of the method to actual industrial designs.

2 Overview of the System

In the context of this work, a VHDL description can be considered to be an
implementation that must be checked against a (partial) specification composed
of a set of temporal logic formulas. Initially, the VHDL description is compiled
into a state-transition graph represented internally by BDDs [2]. Model checking
techniques are then used to determine if the specification holds in the circuit
model.

We want the temporal logic specification and the VHDL implementation
to be physically independent and reside in separate files. This independence
property is quite important, since we might want to modify the specification
(e.g. in incremental verification) without recompiling the VHDL implementation.
Also, when using a structural description style, the same VHDL design can
be instantiated several times as a component of a larger model. The system
must be flexible enough to avoid recompiling the same description in such cases.
Consequently, the compilation process is split into a front-end that checks that
the description is legal VHDL and a back-end that generates the symbolic model.

The system is composed of:

1. A general-purpose VHDL analyzer, called cva, which takes as input a text
file that contains VHDL descriptions and generates library units in the inter-
mediate format .cv. This compiler is constructed in much the same way as
commercial VHDL front-ends. A library of C functions has been developed
to access the intermediate format files. Thus, the front-end can be used inde-
pendently of the model checker. CV does not require a commercial compiler.
In Section 3 we describe the current VHDL subset.
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2. A VHDL model checker, called cvc, which takes as input a specification file,
builds the model of the corresponding VHDL description, and applies the
verification algorithms to this model.
(a) The model elaborator implements the semantics of VHDL in terms of

state-transition graphs as described in [5]. It reads the intermediate for-
mat files produced by the compiler cva and builds a symbolic, BDD-
based model of the VHDL design. This step is crucial for the entire ver-
ification process since the complexity of the model checking algorithms
heavily depends on the size of the model (i.e. the number of state vari-
ables, and the size of the BDDs). To this end, considerable effort has
been devoted to generating a compact model.

(b) The consistency checker takes as input a specification file composed of
temporal logic properties. The specification language is defined in Sec-
tion 4.

(c) The model checker itself determines if the implementation satisfies the
specification. When an error is detected, the model checker can produce
a counterexample as a VHDL testbench. The testbench can be directly
used with a conventional simulator to show an execution trace that vi-
olates the property. This information can then be used to debug the
circuit. It is also possible to output the counterexample as a sequence
of states of the VHDL architecture. Details about the model checker
implementation are provided in Section 5.

The structure of CV is depicted in Figure 1. Solid lines correspond to com-
mands given by the user whereas dashed lines represent data automatically read
or written by cva and cvc.

Temporal Logic
Specification

VHDL
Design

File
cva

VHDL
Library
Units

cvc
Yes/

No + Counterexample

Fig. 1. CV Structure

3 Description of the VHDL Subset

VHDL is a very rich language. Some of its constructs generate infinite models
and cannot be modeled by a finite-state tool such as CV, such as, for instance,
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combination of a increasingly delayed signal assignment nested in an infinite loop,
or a non-halting recursive function with local variables. Also, many constructs
can be expressed in terms of more basic constructs, while maintaining the same
semantics. It is also desirable to concentrate on a synthesizable subset of VHDL,
as most such subsets eschew some parts of VHDL (e.g. either delta delays or unit
time delays). Our approach has been to identify and implement a core subset
of the language and incrementally extend this subset based on these guidelines.
The elements of the core subset are

Design entities: Entity declaration, architecture body, package declaration.
Concurrent statements: Block statement and process statement.
Sequential statements: Wait statement, signal and variable assignment state-

ments, if statement.
Libraries: Library, library clause and use clause.
Declarations: Signal (input, output and local), variable, constant and type

declarations.
Types: Enumerated types.

The following extensions have already been implemented:

Concurrent statements: Selected signal assignment statement, concurrent
signal assignment statement, processes with sensitivity lists.

Sequential statements: Case statement, while statement, null statement.
Types: Integer, array, and record types.

4 Specification Language

The language used in CV for specifying the expected behavior of a VHDL de-
sign in a given environment is essentially the logic CTL with fairness constraints.
The environment is described in terms of assumptions on the values taken by
the input signals of the design. A valid simulation of the design is a simulation
where all assumptions on the input signals are verified. The behavior of a VHDL
design in an environment is then defined to be the set of all valid simulations
with respect to this environment. Therefore, a specification is composed of a set
of assumptions and commitments about a VHDL description. An assumption
is a condition on the inputs of the design under verification. Commitments de-
scribe the expected behavior of the system provided all assumptions hold. It is
the role of the model checker to verify that the VHDL description satisfies the
commitments provided the assumptions hold.

For convenience purposes, the specification language also makes it possible to
define abbreviations. An abbreviation is an identifier that denotes an expression
and may be used to simplify assumptions and commitments. For instance:

abbreviation PUSHED is (PUSH and PUSH_RDY);

Two categories of assumptions are possible: invariant and fairness. An invari-
ant is defined with the keyword always followed by a condition on the signals
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of in mode of the specified VHDL design. The effect of an invariant definition is
to restrict the behavior to the set of simulations where the associated condition
holds for every cycle. For instance, the following invariant assumption states that
inputs PUSH and POP are never simultaneously true.

assume always not ((PUSH = ’1’ ) and (POP = ’1’));

The effect of a fairness definition is to restrict the behavior to the set of sim-
ulations where the associated condition holds infinitely often. Fairness is often
needed to prove properties about the progress of a system. Generally, fairness
constraints increase verification time and memory consumption. For instance,
the following fairness assumptions can be used to state that CLOCK infinitely
often changes value:

assume recurring (CLOCK = ’0’);
assume recurring (CLOCK = ’1’);

Commitments are expressed in the temporal logic CTL (Computation Tree
Logic). A CTL operator is composed of a path quantifier (A, E) followed by a
linear temporal operator (X, G, F, U, W). Since the (standard) semantics of a
VHDL design is defined in terms of simulation, we use temporal logic to express
properties of the possible simulations of a design. The path quantifier A (E)
selects all (some) simulations, and The linear temporal operator X (G, F, U,
W) selects the next simulation cycle (all cycles, some cycle, until some cycle,
unless some cycle) in a given simulation. A formula is true for a description if it
holds in all initial states. For instance, the CTL formulaAGf states that f must
hold at all states reachable from the initial states in all possible simulations. f
must always hold.

For example, suppose it is necessary to check that a bad situation never
happens. An abbreviation can be used to denote this bad situation:

abbreviation BAD_SITUATION is <some condition> ;

The following commitment states that BAD_SITUATION never happens:

commit safe: ag not BAD_SITUATION;

Suppose it is necessary to show that whatever the current state of the system is,
it can reach the restart state. Let RESTART be the condition that identifies the
restart state:

commit RESTARTABLE: ag ef RESTART;

More complex properties, involving for instance, events on signals can also be
expressed in the logic.
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5 The Model Checker

Transitions in the BDD-based models built by CV correspond to whole simula-
tion cycles in the VHDL program. This allows our models to have fewer variables
and fewer bits to represent the program counter, compared to approaches that
use multiple transitions for each simulation cycle.

The models built by CV use a boolean functional vector representation for
the transitions [4]. This limits considerably the explosion of the size of the tran-
sition representation for large systems. The representation also makes it easy
to eliminate parts of the model that are not relevant with respect to the spec-
ification. The model checker needs to consider only the transition functions of
the variables that are in the cone of influence of the specification. This cone
of influence is simply constructed from the true support set of the transition
functions.

Computing the reachable states of the model proves useful in practice for en-
hancing the performance of symbolic model checking. We have devised a heuristic
based on the observation that a conservative approximation, or overestimation,
of the reachable states, can also be used to simplify the transition representation,
and consequently simplify the computation of the reachable states. We have de-
vised and implemented a heuristic to compute overestimations of the valid states
much faster than the valid states themselves. Indeed, an overestimation can be
simply and efficiently computed considering the valid states of the submachine
corresponding to a subset of the vector of transition functions.

To the best of our knowledge, these optimizations are unique for a VHDL-
based model checker. Our experience was that, for some examples, each of the
optimizations reduces the computation time by an order of magnitude and de-
creases the amount of space used. It is possible to handle significantly larger
examples when both optimizations are combined.

Therefore, given a specification, the model checker performs the following
steps:

1. Parse the specification file.
2. Load the corresponding VHDL library unit, and build its BDD-based model

using a boolean functional vector representation for the transitions.
3. Invoke dynamic variable reordering to reduce the size of the BDDs.
4. Compute overestimations of the reachable states and simplify transition rep-

resentations.
5. Compute the reachable states of the model, and use the result to further

reduce the BDDs representing the transitions.
6. Check the specification, using symbolic model checking techniques.
7. Report the results and generate counterexamples if necessary.
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6 Conclusion

In its current version, our system is already able to handle some realistic designs.
One of the most interesting examples is a model of the control logic of a com-
mercial RISC processor. The VHDL description counts 25 different processes,
and spans several hundred lines of code.

Building the BDD-based model of this description takes only about 5 sec-
onds. Then dynamic variable reordering is invoked to reduce the size of the
model. This step takes approximatively 75 seconds, and reduces the size of the
transition function to only about 5,000 BDD nodes, despite the fact that the
model has 157 variables. We then compute an approximation of the set of reach-
able states which further reduces this figure to 4,000 BDD nodes. The model has
about 1028 reachable states out of 1047 possible states. By using the optimiza-
tion that considers only the variables in the model that affect the specification,
a simple property can be checked in just 30 seconds. Without this optimization,
verification would take two orders of magnitude longer.

We are currently continuing the development of CV and expect further de-
velopments along two lines:

1. performance: automated abstraction, compositional reasoning, low-level im-
plementation improvements.

2. usability: extension of the VHDL subset (timing aspects, structural design),
design of a graphical user interface.
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