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A B S T R A C T :  Model checking is an automatic technique for verifying finite-state 
reactive systems, such as sequential circuit designs and communication protocols. Speci- 
fications are expressed in temporal logic, and the reactive system is modeled as a state- 
transition graph. An efficient search procedure is used to determine whether or not the 
state-transition graph satisfies the specifications. 

We describe the basic model checking algorithm and show how it can be used with bi- 
nary decision diagrams to verify properties of large state-transition graphs. We illustrate 
the power of model checking to find subtle errors by verifying part of the Contingency 
Guidance Requirements for the Space Shuttle. 
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Model checking is an automatic technique for verifying finite-state reactive systems. 
Specifications are expressed in a propositional temporal logic, and the reactive system 
is modeled as a state-transition graph. An efficient search procedure is used to deter- 
mine automatically if the specifications are satisfied by the state-transition graph. The 
technique was originally developed in 1981 by Clarke and Emerson [10, 11]. Quielle and 
Sifakis [18] independently discovered a similar verification technique shortly thereafter. 
An alternative approach based on showing inclusion between w-automata was later de- 
vised by Robert Kurshan at ATT Bell Laboratories [14, 15]. 

Model checking has a number of advantages over verification techniques based on au- 
tomated theorem proving. The most important  is that the procedure is highly automatic. 
Typically, the user provides a high level representation of the model and the specification 
to be checked. The model checker will either terminate with the answer true, indicat- 
ing that the model satisfies the specification, or give a counterexample execution that 
shows why the formula is not satisfied. The counterexamples are particularly important 
in finding subtle errors in complex reactive systems. 

The first model checkers were able to verify small examples ([1], [2], [3], [4], [11], [13], 
[16]). However, they were unable to handle very large examples due to the state explosion 
problem. Because of this limitation, many researchers in formal verification predicted that 
model checking would never be useful in practice. 

The possibility of verifying systems with realistic complexity changed dramatically in 
the late 1980's with the discovery of how to represent transition relations using ordered 
bin~yy decision diagrams (OBDDs) [5]. This discovery was made independently by three 
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research teams [8, 12, 17] and is basically quite simple. Assume that  the behavior of 
a reactive system is determined by n boolean state variables vl, v2,...,vn. Then the 
transition relation of the system can be expressed as a boolean formula 

represents the next where vl, v z , . . . ,  v,  represents the current state and v~, v~, . . . ,  v,  
state. By converting this formula to a BDD, a very concise representation of the transition 
relation may be obtained. 

The original model checking algorithm, together with the new representation for 
transition relations, is called symbolic model checking [7, 8, 9]. By using this combination, 
it is possible to verify extremely large reactive systems. In fact, some examples with more 
than than 10 lz~ states have been verified [6, 9]. This is possible because the number of 
nodes in the OBDDs that  must be constructed no longer depends on the actual number of 
states or the size of the transition relation. Because of this breakthrough it is now possible 
to verify reactive systems with realistic complexity, and a number of major companies 
including Intel, Motorola, Fujitsu, and A r T  have started using symbolic model checkers 
to verify actual circuits and protocols. In several cases, errors have been found that were 
missed by extensive simulation. 

We illustrate the power of model checking to find subtle errors by considering a 
protocol used by the Space Shuttle. We discuss the verification of the Three-Engines- 
Out Contingency Guidance Requirements using the SMV model checker. The example 
describes what should be done in a situation where all of the three main engines of the 
Space Shuttle fail during the ascent. The main task of the Space Shuttle Digital Autopilot 
is to separate the shuttle from the external tank and dump extra fuel if necessary. The 
task involves a large number of cases and has many different input parameters. Thus, it  
is important to make sure that  all possible cases and input values are taken into account 
and that the tank will eventually separate. 

The Digital Autopilot chooses one of the six contingency regions depending on the 
current flight conditions. Each region uses different maneuvers for separating from the 
external tank. This involves computing a guidance quaternion. Usually, the region is 
chosen once at the beginning of the contingency and is maintained until separation oc- 
curs. However, under certain conditions a change of region is allowed. In this case, it 
is necessary to recompute the quaternion and certain other output values. Using SMV 
we were able to find a counterexample in the program for this task. We discovered that  
when a transition between regions occurs, the autopilot system may fail to recompute the 
quaternion and cause the wrong maneuver to be made. The guidance program consists 
of about 1200 lines of SMV code. The number of reachable states is 2- 1014, and it takes 
60 seconds to verify 40 CTL formulas. 
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