
M o d e l C h e c k i n g *

Edmund M. Clarke

Department of Computer Science
Carnegie Mellon, Pittsburgh

A B S T R A C T : Model checking is an automatic technique for verifying finite-state
reactive systems, such as sequential circuit designs and communication protocols. Speci-
fications are expressed in temporal logic, and the reactive system is modeled as a state-
transition graph. An efficient search procedure is used to determine whether or not the
state-transition graph satisfies the specifications.

We describe the basic model checking algorithm and show how it can be used with bi-
nary decision diagrams to verify properties of large state-transition graphs. We illustrate
the power of model checking to find subtle errors by verifying part of the Contingency
Guidance Requirements for the Space Shuttle.

Keywords : automatic verification, temporal logic, model checking, binary decision
diagrams

Model checking is an automatic technique for verifying finite-state reactive systems.
Specifications are expressed in a propositional temporal logic, and the reactive system
is modeled as a state-transition graph. An efficient search procedure is used to deter-
mine automatically if the specifications are satisfied by the state-transition graph. The
technique was originally developed in 1981 by Clarke and Emerson [10, 11]. Quielle and
Sifakis [18] independently discovered a similar verification technique shortly thereafter.
An alternative approach based on showing inclusion between w-automata was later de-
vised by Robert Kurshan at ATT Bell Laboratories [14, 15].

Model checking has a number of advantages over verification techniques based on au-
tomated theorem proving. The most important is that the procedure is highly automatic.
Typically, the user provides a high level representation of the model and the specification
to be checked. The model checker will either terminate with the answer true, indicat-
ing that the model satisfies the specification, or give a counterexample execution that
shows why the formula is not satisfied. The counterexamples are particularly important
in finding subtle errors in complex reactive systems.

The first model checkers were able to verify small examples ([1], [2], [3], [4], [11], [13],
[16]). However, they were unable to handle very large examples due to the state explosion
problem. Because of this limitation, many researchers in formal verification predicted that
model checking would never be useful in practice.

The possibility of verifying systems with realistic complexity changed dramatically in
the late 1980's with the discovery of how to represent transition relations using ordered
bin~yy decision diagrams (OBDDs) [5]. This discovery was made independently by three

This research is sponsored in part by the Wright Laboratory, Aeronautical Systems Center,
Air Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA)
under grant F33615-93-1-1330. and in part by the National Science foundation under Grant
No. CCR-9217549 and in part by the Semiconductor Research Corporation under Contract
92-DJ-294. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied
of the U.S. government.

55

research teams [8, 12, 17] and is basically quite simple. Assume that the behavior of
a reactive system is determined by n boolean state variables vl, v2,...,vn. Then the
transition relation of the system can be expressed as a boolean formula

represents the next where vl, v z , . . . , v, represents the current state and v~, v~, . . . , v,
state. By converting this formula to a BDD, a very concise representation of the transition
relation may be obtained.

The original model checking algorithm, together with the new representation for
transition relations, is called symbolic model checking [7, 8, 9]. By using this combination,
it is possible to verify extremely large reactive systems. In fact, some examples with more
than than 10 lz~ states have been verified [6, 9]. This is possible because the number of
nodes in the OBDDs that must be constructed no longer depends on the actual number of
states or the size of the transition relation. Because of this breakthrough it is now possible
to verify reactive systems with realistic complexity, and a number of major companies
including Intel, Motorola, Fujitsu, and A r T have started using symbolic model checkers
to verify actual circuits and protocols. In several cases, errors have been found that were
missed by extensive simulation.

We illustrate the power of model checking to find subtle errors by considering a
protocol used by the Space Shuttle. We discuss the verification of the Three-Engines-
Out Contingency Guidance Requirements using the SMV model checker. The example
describes what should be done in a situation where all of the three main engines of the
Space Shuttle fail during the ascent. The main task of the Space Shuttle Digital Autopilot
is to separate the shuttle from the external tank and dump extra fuel if necessary. The
task involves a large number of cases and has many different input parameters. Thus, it
is important to make sure that all possible cases and input values are taken into account
and that the tank will eventually separate.

The Digital Autopilot chooses one of the six contingency regions depending on the
current flight conditions. Each region uses different maneuvers for separating from the
external tank. This involves computing a guidance quaternion. Usually, the region is
chosen once at the beginning of the contingency and is maintained until separation oc-
curs. However, under certain conditions a change of region is allowed. In this case, it
is necessary to recompute the quaternion and certain other output values. Using SMV
we were able to find a counterexample in the program for this task. We discovered that
when a transition between regions occurs, the autopilot system may fail to recompute the
quaternion and cause the wrong maneuver to be made. The guidance program consists
of about 1200 lines of SMV code. The number of reachable states is 2- 1014, and it takes
60 seconds to verify 40 CTL formulas.

References

1. M. C. Browne and E. M. Clarke. Smh A high level language for the design and verification
of finite state machines. In IFIP WG I0.~ International Working Conference from HDL
Descriptions to Guaranteed Correct Circuit Designs, Grenoble, France. IFIP, September
1986.

2. M. C. Browne, E. M. Clarke, and D. Dill. Checking the correctness of sequential circuits. In
Proceedings of the 1985 International Conference on Computer Design, Port Chester, New
York, October 1985. IEEE.

56

3. M. C. Browne, E. M. Clarke, and D. Dill. Automatic circuit verification using temporal
logic: Two new examples. In Formal Aspects of VLSI Design. Elsevier Science Publishers
(North Holland), 1986.

4. M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification of sequential
circuits using temporal logic. IEEE Transactions on Computers, C-35(12):1035-1044, 1986.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8), 1986.

6. J.R. Butch, E.M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P. B. Denyer, editors, Proceedings of the 1991 Inter-
national Conference on Very Large Scale Integration, August 1991. Winner of the Sidney
Michaelson Best Paper Award.

7. J. R. Butch, E. M. Clarke, K. L. McMillan~ and D. L. Dill. Sequential circuit verification
using symbolic model checking. In Proceedings of the $Tth A CM/IEEE Design Automation
Conference. IEEE Computer Society Press, June 1990.

8. J. R. Butch, E.M. Clarke, K. L. McMillan, D.L. Dill, and J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proceedings of the Fifth Annual Symposium on Logic
in Computer Science. IEEE Computer Society Press, June 1990.

9. Jerry R. Butch, Edmund M. Clarke, David E. Long, Kenneth L. MeMillan, and David L.
Dill. Symbolic model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 13(4):401-424, April 1994.

10. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981, volume
131 of Lecture Notes in Computer Science. Springer-Verlag, 1981.

11. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, 1986.

12. O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequeutial machines
based on symbolic execution. In J. Sifakis, editor, Proceedings of the 1989 International
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble, France,
volume 407 of Lecture Notes in Computer Science. Springer-Verlag, June 1989.

13. D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits using temporal
logic. IEE Proceedings, Part E 133(5), 1986.

14. Z. Har'El and R. P. Kurshan. Software for analytical development of communications pro-
tocols. AT~T Technical Journal, 69(1):45-59, Jan.-Feb. 1990.

15. R. P. Kurshan. Analysis of discrete event coordination. In J.W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop on Stepwise Re-
finement of Distributed Systems, Models, Formalisms, Correctness, volume 430 of Lecture
Notes in Computer Science. Springer-Verlag, May 1989.

16. B. Mislara and E.M. Clarke. Hierarchical verification of asynchronous circuits using tempo-
ral logic. Theoretical Computer Science, 38:269--291, 1985.

17. C. Pixley. A computational theory and implementation of sequential hardware equivalence.
In R. Kurshan and E. Clarke, editors, Proc. CAV Workshop (also DIMACS Tech. Report
90-31), Rutgers University, N J, June 1990.

18. J.P. Quielle and J. Sifaki.~. Specification and verification of concurrent systems in CESAR.
In Proceedings of the Fifth International Symposium in Programming, 1981.

