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Abstract. The verification process of reactive systems in local model checking
[2, 9, 28] and in explicit state model checking [14, 16] is on-the-fly. Therefore
only those states of a system have to be traversed that are necessary to prove
a property. In addition, if the property does not hold, than often only a small
subset of the state space has to be traversed to produce a counterexample. Global
model checking [8, 24] and, in particular, symbolic model checking [6, 23] can
utilize compact representations of the state space, e.g. BDDs [5], to handle much
larger designs than what is possible with local and explicit model checking. We
present a new model checking algorithm for LTL that combines both approaches.
In essence, it is a generalization of the tableau construction of [2] that enables the
use of BDDs but still is on-the-fly.

1 Introduction

Model Checking [8, 24] is a powerful technique for the verification of reactive sys-
tems. With the invention of symbolic model checking [6, 23] very large systems, with
more than 1020 states, could be verified. However, it is often observed, that explicit state
model checkers [11] outperform symbolic model checkers, especially in the application
domain of asynchronous systems and communication protocols [12]. We believe that
the main reasons are the following: First, symbolic model checkers traditionally use bi-
nary decision diagrams (BDDs) [5] as an underlying data structure. BDDs trade space
for time and often their sheer size explodes. Second, depth first search (DFS) is used
in explicit state model checking, while symbolic model checking usually traverses the
state space in breadth first search (BFS). DFS helps to reduce the space requirements
and is able to find counterexamples much faster. Finally, global model checking tra-
verses the state space backwards, and can, in general, not avoid visiting non reachable
states without a prior reachability analysis.
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In [3] a solution to the first problem, and partially to the second problem, was pre-
sented, by replacing BDDs by SAT (propositional satisfiability checking procedures).
In this paper we propose a solution to the second and third problems of symbolic model
checking. Our main contribution is a new model checking algorithm that generalizes
the tableau construction [2] of local model checking for LTL and enables the use of
BDDs. It is based on a mixed DFS and BFS strategy and traverses the state space in a
forward oriented manner.

Our research is motivated by the success of forward model checking [17, 18]. For-
ward model checking is a variant of symbolic model checking in which only forward
image computations are used. Thus it mimics the on-the-fly nature of explicit and local
model checking in visiting only reachable states. Note that [18] presented a technique
for the combination of the BFS, used in BDD based approaches, with the DFS of ex-
plicit state model checkers. It was shown that especially this feature enables forward
model checking to find counterexamples much faster. However, only a restricted class
of properties, i.e. path expressions, can be handled by the algorithms of [17, 18].

Henzinger et. al. in [15] partially filled this gap by proving that all properties spec-
ified by Büchi Automata, or equivalently all ω-regular properties, can be processed by
forward model checking. In particular, they define a forward oriented version of the
modal µ-calculus [20], called post-µ, and translate the model checking problem of a ω-
regular property into a post-µ model checking problem. Because LTL (linear temporal
logic) properties can be formulated as ω-regular properties [29], their result implies that
all LTL properties can be checked by forward model checking.

The fact, that LTL can be checked by forward model checking, can also be derived
by applying the techniques of [17] to the tableau construction of [7]. However, this
construction and also [15] do not allow the mixture of DFS and BFS, as in the layered
approach of [18]. In addition, DFS was identified as a major reason that explicit state
model checking is able to outperform symbolic model checking on certain examples.

The contribution of our paper is the following. First we present a new model check-
ing algorithm that operates directly on LTL formulae. For example [15] requires two
translations, from LTL to Büchi Automata and then to post-µ. A similar argument ap-
plies to [7, 10]. Second it connects the local model checking paradigm of [2] with
symbolic model checking in a natural way, thus combining BDD based with on-the-fly
model checking. For the modal µ-calculus this connection has already been made in [4].
However, a direct application of [4] to the tableau construction of [2], our multiple state
tableau construction, results in a tableau that is exponential in the size of the model.
Only the introduction of a split rule in combination with efficient splitting heuristics al-
lows us to keep the tableau linear in the size of the model. Finally our approach shows,
that the idea of mixing DFS with BFS can be lifted from path expressions [18] to LTL.

Our paper is organized as follows. In the next section our notation is introduced.
Section 3 presents a variation of the single state tableau construction of [2], on which
our multiple state tableau construction, introduced in Section 4, is based. The following
section discusses implementation details of the algorithm. In Section 6 we investigate
heuristics to generate small tableau. An important optimization is presented in Sec-
tion 7. The technical part ends with a discussion of the complexity and comparison
with related work in Section 8. Finally we address open issues.
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2 Preliminaries

A Kripke structure is a tuple K = (Σ,Σ0,δ, `) with Σ a finite set of states, Σ0 ⊆ Σ the
set of initial states, δ ⊆ Σ×Σ the transition relation between states, and `:Σ → IP(A)
the labeling of the states with atomic propositions A = {p, . . .}. For technical reasons
we assume that every state has at least one successor state. A path π = (s0,s1, . . .) is an
infinite sequence of states si ∈ Σ. Define π(i) = si as the i-th state in π. We also use the
notation πi = (π(i),π(i+1), . . .) for the suffix of π starting at π(i). The image operation
on a set of states S ⊆ Σ is defined as Img(S) := {t ∈ Σ | ∃s ∈ S. (s,t) ∈ δ}.

As temporal operators we consider, the next time operator X, the finally operator
F, the globally operator G, the until operator U, and its dual, the release operator R.
An LTL formula f is called an eventuality iff f = Fh or f = (g U h). In this case h
is called the body of f . We assume the formulae to be in negation normal form, as in
[2, 9, 10]. Thus negations only occur in front of atomic propositions. This restriction
does not lead to an exponential blow up because we have included the R operator that
fulfills the property ¬( f U g) ≡ ¬ f R ¬g.

An LTL formulae f holds on a path π, written π |= f , according to the following
definitions:

π |= p iff p ∈ `(π(0)) π |= ¬p iff p 6∈ `(π(0))

π |= g∧h iff π |= g and π |= h π |= g∨h iff π |= g or π |= h

π |= Gg iff ∀i. πi |= g π |= Fh iff ∃i. πi |= h

π |= Xg iff π1 |= g

π |= g U h iff ∃i. πi |= h and ∀ j < i. π j |= g

π |= g R h iff ∀i. πi |= h or ∃ j < i. π j |= g

Since we are only concerned with finding witnesses for LTL formulae, we define an
LTL formula f to hold at state s ∈ Σ (written s |= f ) iff there exists a path π in Σω

starting at π(0) = s with π |= f . In addition we define f to hold in a set of states S ⊆ Σ
(written S |= f ) iff there exists s ∈ S with s |= f .

3 Single State Tableaux

In this section we present a variation on a tableau construction for explicit state model
checking of LTL properties based on [2, 19]. The nodes in these hybrid tableaux also
contain states of the model under investigation and not just temporal formulae. The
main contribution of our paper is a symbolic extension to this tableau construction and
is introduced Section 4.

The LTL model checking algorithm of [19] is the dual to the tableau construction
of [2]. In [2] universal path quantifiers are considered, whereas [19] and our approach
solve the dual model checking problem for existential path quantifiers. A tableau in the
sense of [19] can be transformed into a tableau of [2] by replacing every literal by its
negation, every temporal operator by its dual, e.g. every occurrence of F by G, every
E by A, and every boolean operator by its dual as well, e.g. ∧ by ∨. In essence this
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transformation is just a negation of every formula in the tableau. The terminology of a
successful tableau has also to be revised, which can be found further down.

We call the type of tableau of [19] a single state tableau (S-Tableau), since every
node in the tableau only contains a single state. Our tableau construction, introduced in
section 4, allows a set of states at each tableau node. These tableaux are called multiple
state tableaux (M-Tableau). In the rest of this section we will present a slight modifica-
tion of the S-Tableau construction of [19] and note some facts that can be derived from
[2, 19].

RA+ :
s ` E(Φ, p)
s ` E(Φ)

p ∈ `(s), p ∈ A RA− :
s ` E(Φ,¬p)

s ` E(Φ)
p 6∈ `(s), p ∈ A

RU :
s ` E(Φ, f U g)

s ` E(Φ,g) s ` E(Φ, f ,X f U g)
R∧ :

s ` E(Φ, f ∧g)
s ` E(Φ, f ,g)

RR :
s ` E(Φ, f R g)

s ` E(Φ, f ,g) s ` E(Φ,g,X f R g)
R∨ :

s ` E(Φ, f ∨g)
s ` E(Φ, f ) s ` E(Φ,g)

RF :
s ` E(Φ,F f )

s ` E(Φ, f ) s ` E(Φ,XF f )
RG :

s ` E(Φ,G f )
s ` E(Φ, f ,XG f )

RX :
s ` E(XΦ1, . . . ,XΦn)

s1 ` E(Φ1, . . . ,Φn) . . . sm ` E(Φ1, . . . ,Φn)
{s1, . . . ,sm} = Img({s})

Rsplit :
s ` E(Φ)
s ` E(Φ)

Fig. 1. S-Rules: Single state tableau rules.

A single state sequent (S-Sequent) consists of a single state s and a list of LTL
formulae Φ = (Φ1, . . . ,Φn), written s ` E(Φ). The order of the formulae in the list is
not important. An S-Sequent s`E(Φ) holds in a Kripke structure K iff s |= Φ1∧·· ·∧Φn

in K. An S-Tableau is a finite directed graph of nodes labeled with S-Sequents that are
connected via the rules shown in figure 1. The application of a rule results in edges
between the premise and each conclusion. If not otherwise stated, we assume that a
tableau is fully expanded, i.e. no rule can generate new sequents or edges. For technical
reasons a sequent may occur several times in a tableau. In particular, we assume that
two nodes labeled with the same sequent are connected with an edge generated by
application of the split rule Rsplit. This assumption allows us to extract an S-Tableau
from an M-Tableau without shortening paths in the tableau. Refer to Lemma 6 for more
details. We further assume that the split rule is only applied finitely often which keeps
the tableau finite, since the number of different sequents is finite and nodes labeled with
identical sequents can only be introduced by the split rule.

An S-Path x is defined as the sequence of labels (sequents) of the nodes on a path
through an S-Tableau. Since a path through a tableau can be both, finite or infinite,
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the same applies to an S-path. A finite S-Path x is successful iff it ends with a sequent
s ` E(), where the list of formulae is empty. An S-Tableau is partially successful iff
the tableau contains a finite successful S-Path. It is partially unsuccessful iff no finite
S-Path is successful.

An eventuality f , contained in the list of formulae of x(i), is called fulfilled iff there
exists j with i ≤ j < |x| and the body of f is contained in x( j). This definition also
applies to infinite paths. An infinite S-Path x is called successful iff every eventuality in
x is fulfilled. Finally a tableau is successful iff it is partially successful or it contains an
infinite successful S-Path. With these definitions we can derive the following theorem
from [2, 19]:

Theorem 1. An S-Tableau with root s ` E( f ) is successful iff s |= f .

This theorem implies that s |= f iff every S-Tableau with root s ` E( f ) is successful.
Therefore completeness and correctness is independent of the order in which the rules
are applied. In the construction of the tableau no backtracking is required. The freedom
to choose a rule, if several are applicable, can be used to minimize the size of the
tableau, and thus the running time of the model checking algorithm (see Section 6 and
Section 7).

Finding successful paths seems to be an algorithmically complex problem. How-
ever, we will show that this problem can be reduced to the search for a successful
strongly connected component. A strongly connected component (SCC) of a directed
graph is a maximal subgraph in which every node can be reached from every other node
in the subgraph. Note that in our notation a single node, not contained in any cycle, is
not an SCC. We call an SCC of an S-Tableau successful iff every eventuality occurring
in the SCC is fulfilled in the SCC, i.e. with every eventuality the SCC also contains
its body. For an efficient implementation the following theorem is very important. As
a result the search for a successful infinite path can be replaced by the search for a
successful SCC, which is algorithmically much simpler.

Theorem 2. A partially unsuccessful S-Tableau is successful iff it contains a successful
SCC.

This theorem is an easy consequence of the following Lemma, which can be used for
the generation of an infinite witness, respectively counterexample, as explained below.

Lemma 3. An S-Tableau contains an infinite successful S-Path iff it contains a success-
ful SCC.

Proof. For the proof from left to right let x be an infinite successful S-Path. First note
that there has to be an SCC C in which a suffix of x is fully contained, since the S-
Tableau is finite. Further let σ be a sequent in C with an eventuality f on the right
hand side (RHS). We need to show that f is fulfilled in C. Since C is an SCC, there
exists a path segment connecting σ to the start of the suffix of x in C. If the body of f
occurs on this path segment then we are done. Otherwise, by the structure of the rules
for eventualities, the first sequent of the suffix of x in C reached by this segment still
contains f or X f . Since x is successful the body of f has to occur in the suffix of x
which is part of C.
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The other direction is proven by constructing a successful S-Path from a successful
SCC. This is easily done by generating a cyclic path segment through the SCC con-
taining every sequent in the SCC. From the start of the cycle we can find another path
segment back to the root of the tableau. Combining these two segments, repeating the
cyclic segment infinitely often, results in an infinite successful S-path. ut

If the tableau is unsuccessful then the root sequent can not hold. If the tableau is
successful then it contains a finite successful path or a successful SCC. In the first case
we can extract a finite witness for the root sequent by extracting a list of states from
the finite successful path. In the second case we extract the witness from the S-Path
generated in the second part of the proof for Lemma 3.

If we apply our approach to a universal model checking problem by using the nega-
tion of the universal property to be checked in the root of the tableau, then the procedure
described in the previous paragraph serves as an algorithm for generating counterexam-
ples.

To find the successful SCCs of an S-Tableau in linear time, a variation of the stan-
dard algorithm of Tarjan for the decomposition of a directed graph into its strongly
connected components can be used. In particular, whenever a new SCC in Tarjan’s
algorithm is found, we check on-the-fly if it is successful. Thus the model checking
problem can be solved in linear time in the size of the tableau as well. The size of the
tableau is bounded by the number of different S-Sequents. Note that the split rule is
never applied in this context. The number of different S-Sequents in a tableau with root
s ` E( f ) is in O(|Σ| ·2| f |), since the RHS of a sequent may contain an arbitrary subset
of subformulae of f . This gives an explicit state model checking algorithm with worst
case complexity linear in the size of the Kripke structure and exponential in the size of
the formula. For more details compare with [2].

A cyclic path is an infinite path of the form A ·Bω, that starts with a finite prefix
A and continues with a path segment B repeated infinitely often. Not all infinite paths
through a tableau are cyclic paths. However, the proof of Lemma 3 shows that it is
enough to consider cyclic paths only, when looking for successful paths to determine
whether a tableau is successful.

4 Multiple State Tableaux

In this section we extend the tableau construction of the last section to handle multiple
states in one sequent. In combination with a symbolic representation, such as BDDs,
this extension potentially leads to an exponential reduction in tableau size. The idea
of handling set of states on the left hand side (LHS) of sequents already occurred in
[4] as an extension of local model checking for the modal µ-calculus [28]. The tableau
construction in this section extends the LTL model checking algorithm of [2] in a similar
way.

A multiple state sequent (M-Sequent) consists of a set of states S and a list of LTL
formulae Φ = (Φ1, . . . ,Φn), written S ` E(Φ). We use the same symbol ‘`’ to separate
left and right hand side of S-Sequents and M-Sequents, but capital letters, e.g. S, for set
of states on the LHS of M-Sequents and lower case letters, e.g. s, for S-Sequents. An
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RA+ :
S ` E(Φ, p)
S+

p ` E(Φ)
RA− :

S ` E(Φ,¬p)
S−p ` E(Φ)

RU :
S ` E(Φ, f U g)

S ` E(Φ,g) S ` E(Φ, f ,X f U g)
R∧ :

S ` E(Φ, f ∧g)
S ` E(Φ, f ,g)

RR :
S ` E(Φ, f R g)

S ` E(Φ, f ,g) S ` E(Φ,g,X f R g)
R∨ :

S ` E(Φ, f ∨g)
S ` E(Φ, f ) S ` E(Φ,g)

RF :
S ` E(Φ,F f )

S ` E(Φ, f ) S ` E(Φ,XF f )
RG :

S ` E(Φ,G f )
S ` E(Φ, f ,XG f )

Rsplit :
S ` E(Φ)

S1 ` E(Φ) · · · Sk ` E(Φ)
S = S1

·∪ · · · ·∪ Sk, Si 6= {}, for i = 1 . . .k

RX :
S ` E(XΦ1, . . . ,XΦn)

T ` E(Φ1, . . . ,Φn)
T = Img(S)

Fig. 2. M-Rules: Multiple state tableau rules (‘S+
p ’ and ‘S−p ’ are defined in the text).

M-Sequent holds in a Kripke structure K iff S |= Φ1 ∧·· ·∧Φn, i.e. there exists a path π
in K with π(0)∈ S and π |= Φ1∧·· ·∧Φn. An M-Tableau is a rooted finite directed graph
of nodes labeled with M-Sequents that are connected via the rules shown in figure 2,
where we define the following short hand for p ∈ A :

S+
p := {s ∈ S | p ∈ `(s)}, S−p := {s ∈ S | p 6∈ `(s)}

In the split rule Rsplit the set of states S on the LHS is partitioned into a nonempty
pairwise disjunctive list of sets S1, . . . ,Sk that cover S. For M-Tableaux we require every
node to be labeled with a unique M-Sequent. M-Paths, successful M-Path, and SCC are
defined exactly as in the single state case of the last section. The only exception is a
finite M-Path ending with an M-Sequent {} ` E(Φ), with an empty set of states on
the left side. By definition, such an M-Path is always unsuccessful even if the list of
formulae Φ is empty.

To lift Theorem 1, Theorem 2, and in particular Lemma 3 to M-Tableaux we first
note that the definitions of successful paths, SCCs, and successful tableau do only de-
pend on the RHS of the sequents, in both cases, for S-Tableaux and M-Tableaux. As an
immediate consequence we have:

Theorem 4. A partially unsuccessful M-Tableau is successful iff it contains a success-
ful SCC.

Lemma 5. An M-Tableau contains an infinite successful M-Path iff it contains a suc-
cessful SCC.

The second step is to map an M-Tableau to a set of S-Tableau, where the M-Tableau is
successful iff one S-Tableau is successful. The mapping Ψ0 is defined along the graph
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structure of the M-Tableau. If σ = ({r1, . . . ,rn} ` E(Φ)) is the root sequent of the M-
Tableau, the result of the mapping will be n S-Tableaux with roots σi = (ri ` E(Φ)) for
i = 1 . . .n. Now we apply the rule that has been applied to the root M-sequent to each
individual root S-sequent as well, obtaining valid successor sequents in the S-Tableau.
Then the newly generated nodes are extended by applying the same rule as in the M-
Tableau. This process is repeated until the constructed tableau can not be extended
anymore.

Let T be an M-Tableau with root σ, as above, then Ψ0(T ) is defined as the set of S-
Tableaux {Ψ(T ,σ,σ1), . . . ,Ψ(T ,σ,σn)}, where Ψ is defined along the graph structure
of T starting with the root sequent σ, as defined below. Note that Ψ returns a single
S-Tableau while Ψ0 returns a set of S-Tableaux.

To define Ψ we map every instance of an M-Rule in the M-Tableau to an application
of the corresponding S-Rule in the S-Tableau using the fact that in an M-Tableaux every
node can be identified uniquely by its label. Let σM = (S ` E(ΦM)) be an M-Sequent of
T and σS = (s ` E(ΦS)) be an S-Sequent. Then Ψ(T ,σM,σS) is only defined iff s ∈ S
and Φ = ΦS = ΦM . Now let RΛ be the M-Rule that is applied in T to σM:

RΛ:
S ` E(Φ)

S1 ` E(Φ1) · · · Sk ` E(Φk)

By definition of the rules, if Λ ∈ {U,R,F,G,∧,∨}, then RΛ is applicable to σS as an
S-Rule and yields:

RΛ:
s ` E(Φ)

s ` E(Φ1) · · · s ` E(Φk)

In this case s ∈ S = S1 = · · · = Sk and we continue our construction by expanding the
S-Sequent s ` E(Φi) by Ψ(T ,S ` E(Φi),s ` E(Φi)) for i = 1 . . .k. If Λ = split, then
there exists an j with s ∈ S j, since the partition covers S. Therefore we can apply the
S-Rule Rsplit on σS which yields a new node labeled with σS again. This new node is
expanded by Ψ(T ,S j ` E(Φ),σS).

Regarding the rules for atomic propositions we only consider the positive case RA+ .
The definition of Ψ for RA− is similar. If RA+ is applicable to σS then we proceed as
above. Otherwise the construction of the S-Tableau is terminated with an unsuccessful
finite path and Ψ(T ,σM,σS) consists of a single node labeled with σS. Finally con-
sider the RX rule that involves the image operator. Let T = Img(S), Ts = Img({s}) =
{t1, . . . ,tm} ⊆ T , A = (Φ1 . . . ,Φl), and XA = (XΦ1, . . . ,XΦl).

RX :
S ` E(XA)
T ` E(A)

RX :
s ` E(XA)

t1 ` E(A) · · · tm ` E(A)

And again we expand the nodes labeled ti ` E(A) with Ψ(T ,T ` E(A),ti ` E(A)). This
simple recursive definition of Ψ may result in an infinite S-Tableau. We can keep the
result finite if we exit the recursion by introducing a loop as soon as the same arguments
to Ψ occur the second time, as in the following example for mapping an M-Tableau into
its corresponding S-Tableaux.

Consider the Kripke structure K with two states 0 and 1, both initial states, and two
transitions from state 0 to state 1 and from state 1 to state 0. Both states are labeled with
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p, the only atomic proposition. An M-Tableau for checking EGp looks as follows

{0,1} ` E(Gp)
{0,1} ` E(p,XGp)
{0,1} ` E(XGp)

0 1

pp

and the application of RX to the leaf sequent leads back to the root sequent. The tableau
represents one successful M-Path that contains only one image calculation. The given
M-Tableau is mapped into the following two S-Tableaux:

0 ` E(Gp)
0 ` E(p,XGp)
0 ` E(XGp)
1 ` E(Gp)
1 ` E(p,XGp)
1 ` E(XGp)

1 ` E(Gp)
1 ` E(p,XGp)
1 ` E(XGp)
0 ` E(Gp)
0 ` E(p,XGp)
0 ` E(XGp)

Again the application of RX to the leaf nodes yields the root. In general, mapping an
M-Tableau may produce larger tableaux.

For each generated S-Tableau it is easy to construct a graph homomorphism λ that
maps nodes and edges of the S-Tableau to the nodes, respectively edges, of the M-
Tableau, with the following property: If λ(nS) = nM , where nS is a node of the S-
Tableau, labeled with the S-Sequent s ` E(ΦS), and nM is a node in the M-Tableau,
labeled with an M-Sequent S ` E(ΦM), then s ∈ S and ΦM = ΦS. Further every edge,
that was generated by the application of an S-Rule RΛ is mapped into an edge of the
M-Tableau that was generated by the M-Rule RΛ.

Let TM be an M-Tableau and TS be an S-Tableau with TS ∈ Ψ0(TM). Then we say
that TS matches TM . We call an S-Path x a matching path to an M-Path X iff the S-
Tableau in which x occurs matches the M-Tableau of X and λ(x) = X for the corre-
sponding graph homomorphism λ.

Lemma 6. Let X be a successful finite or cyclic M-Path in an M-Tableau TM. Then
there exists an S-Tableau TS that matches TM and contains an successful S-Path x
matching X.

Proof. First let X be a finite successful path. Then X ends with a sequent S ` E()
with S 6= {}. We pick an arbitrary state s ∈ S and traverse X backward until the root
is reached. At X(i) we generate the S-Sequent x(i) starting with s ` E().

Let X(i) = (Si ` E(Φi)), then we generate x(i) = (si ` E(Φi)) with si ∈ Si and the
following restriction. As long as no RX rule is applied to X(i) we define the LHS of x(i)
to be the state on the LHS of x(i + 1). If RX is applied to X(i) then we define si as an
arbitrary predecessor of si+1 in Si.

Second let X = Y ·Zω be a cyclic successful path. The generated x will also be of
the form x = y · zω, where y matches Y and z matches Zn for some n > 0. We start with
an arbitrary s ∈ Z(m) where m = |Z|−1 and traverse Z backward until Z(0) is reached,
generating S-Sequents as in the finite case. After we have reached Z(0) we continue at
Z(m). This process is repeated until the same S-Sequent was generated twice during the
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visit of Z(0). Termination is guaranteed because the set of states in Z(0) is finite. Then
z is defined as the path segment from the last occurrence of the same S-Sequent to the
first. From z(0) we can find a finite prefix y to the root as in the finite case.

By construction TS = Ψ(TM,X(0),x(0)) is defined, matches TM, contains the suc-
cessful S-Path x, and x matches X . ut

Z

12

3 45

6

Y

B A

Fig. 3. Extracting an S-Path from an M-Path.

Consider the example of figure 3 where each ellipsis depicts the LHS of a sequent on
which the RX rule is applied. The small filled circles represent single states of the Kripke
structure. The arrows between those circles are transitions of the Kripke structure. Thus
the picture visualizes a sequence Y ·Zω of set of states with Y (1) = Img(Y (0)) and

Z(0) = Img(Y (1)), Z(1) = Img(Z(0)), Z(2) = Img(Z(1)), Z(0) = Img(Z(2))

Our goal is to extract a sequence of single states from Y ·Zω. We start with 1, transition
to 2 and pick 3 as predecessor of 2. The next transition, from 3 to 4, brings us back to
the last sequent of Z but no cycle can be closed yet. We continue with 5 and reach 3
again with 6. From there we find a prefix (B,A), that leads from the initial state B to
the start of the cycle at 6. The resulting witness is (B,A) · (6,5,4)ω.

Lemma 6 allows us to derive the following completeness and correctness result for
M-Tableau. Recall that S |= f iff there exists s ∈ S with s |= f .

Theorem 7. An M-Tableau with root S ` E( f ) is successful iff S |= f .

Proof. If an M-Tableau TM is successful then it contains a successful path. Using
Lemma 6 we can construct a matching successful path in a matching S-Tableau TS

with root sequent s ` E( f ) and s ∈ S. The correctness of the S-Tableaux construction
(one part of Theorem 1) proves s |= f which in turn implies S |= f .

Now let TM be unsuccessful. Then for every s ∈ S every matching S-Tableau TS

with root s ` E( f ) is unsuccessful as well. With Theorem 1 we conclude s 6|= f for all
s ∈ S. ut
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The algorithm described in the proof of Lemma 6 can be used to construct a witness
for the root sequent from a successful M-Tableau, or a counterexample for the negation
of the root sequent. First a matching path is constructed. Then a witness, a finite or
cyclic path of states, can easily be extracted.

5 Algorithm

A more detailed description of the tableau construction follows in this section. The
overall approach expands open branches in DFS manner and stops when a successful
finite path has been generated, a successful SCC has been found, or finally no rule can
be applied without regenerating an edge that already exists in the tableau. In the first
two cases a witness for the root sequent can be generated. In the last case it is shown
that the root sequent can not hold.

Finite successful paths are easy to detect. To detect and not to miss any successful
SCC we use a modified version of Tarjan’s algorithm for decomposing a directed graph
into its strongly connected components. It is the same algorithm as used for S-Tableau
in Section 3.

During the construction we have to remember the sequents that already occurred
in the tableau. This can be accomplished by a partial function mapping a sequent to a
node. To implement this we can sort the sequents in the tableau, use a hash table, or
simply an array. In practice a hash table is the best solution.

Up to this point the algorithm is identical for both, single and multiple state tableaux.
Our intention, of course, is to represent set of states with BDDs. We associate with each
formula E(Φ) the list of sequents in the tableau that have E(Φ) on the RHS. To check
if a sequent σ ≡ (S ` E(Φ) already occurred, we just go through the list of sequents
associated with E(Φ) and check whether the BDD representing the set of states on the
LHS of one of the sequents in the list is the same as the BDD representing S.

6 Heuristics

The rule Rsplit is not really necessary for the completeness but it helps to reduce the
search space, i.e. the size of the generated tableau. For instance consider the construc-
tion of a tableau for the formula EFp. This formula is the negation of a simple safety
property. In this case a good heuristics is to build the tableau by expanding the left suc-
cessor of the rule RF first. Only if the left branch does not yield a successful path, then
the right successor is tried. If during this process a sequent σ′ = S′ ` E(F f ) is found
and a sequent σ′′ = S′′ ` E(F f ) occurs on the path from the root to σ′ and S′′ ⊆ S′ then
we can remove the set S′′ from S′ by applying Rsplit with S1 = S′′ and S2 = S′ −S′′. The
left successor immediately leads to an unsuccessful infinite path and we can continue
with the right successor.

A successful path in a tableau for EFp is a counterexample for the dual safety prop-
erty AG¬p. Thus applying the heuristic of the last paragraph essentially implements
an algorithm that computes the set of reachable states in a BFS manner while checking
on-the-fly for states violating the safety property (as the early evaluation technique in
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[1]). An example of this technique is shown in figure 4 using the Kripke structure of
figure 5.

{1} ` E(Fp)
RF
{1} ` E(p)
{} ` E(p)

{1} ` E(XFp)
{1,2} ` E(Fp)

Rsplit
{1} ` E(Fp)

-

{2} ` E(Fp)
RF

{2} ` E(p)
{} ` E(p)

{2} ` E(XFp)
{2,3} ` E(Fp)

Rsplit
{2} ` E(Fp){3} ` E(Fp)

�

RF
{3} ` E(p)
{} ` E(p)

{3} ` E(XFp)
{1,2} ` E(Fp)

Rsplit
{1} ` E(Fp) {2} ` E(Fp)

Fig. 4. Example tableau for on-the-fly model checking of safety properties.

2 3

p¬
p¬

p¬

1

Fig. 5. Example Kripke structure for on-the-fly checking of safety properties.

Similar heuristics can be used for liveness properties. Consider the Kripke structure
in figure 6 and the property EGp. If we split a sequent as soon it LHS contains a state
that already occurred in a sequent with the same RHS, then the following tableau finds
a witness for EGp with just one image computation:

{1} ` E(Gp)
RG{1} ` E(p,XGp)
RA+{1} ` E(XGp)
RX{1,2} ` E(Gp)

Rsplit{1} ` E(Gp) {2} ` E(Gp)
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¬ppp p

9991 2 1000

Fig. 6. Example Kripke structure for on-the-fly model checking of liveness properties.

The left sequent that results from the application of the split rule is the same as the root
sequent. Thus a successful infinite path has been found and the right branch does not
need to be expanded. A model checking algorithm based on standard fixpoint calcula-
tions requires 1000 image computations, i.e. traverses the whole state space, before the
witness can be found.

Another heuristic is to avoid splitting the tableau as long as possible. In particular,
if several rules are applicable to a sequent, then, if possible, a rule is chosen that does
not result in multiple branches. For example if both RG and RF are applicable, then RG
is always preferred. This is one of the heuristics proposed in [27] for the construction of
small tableau as an intermediate step of translating LTL into the modal µ-calculus with
the algorithm of [10]. In general, these heuristics are also applicable to our approach.

7 Optimization

In an M-Tableau the number of different LHS of sequents is exponential in |Σ|, the
number of states of the Kripke structure. In this section we present an optimization that
reduces the maximal number of different LHS with the same RHS to 2 · |Σ|. In particular,
with this optimization the size of an M-Tableau becomes linear in the number of states.
Without this optimization the tableau construction would not be feasible at all, even in
combination with BDDs.

Note that the size of the tableau may still be exponential in the size of the formula,
since the RHS of a sequent is an arbitrary set of subformulae of the original property.
In practice the size of the properties to be checked is usually small, but the size of the
models we deal with can be arbitrary large. Thus it is much more important to have an
algorithm that is linear in the size of the model.

The basic idea is to maintain the following invariant by applying the split rule: Let
S1 ` E(Φ) and S2 ` E(Φ) be two M-Sequents in the M-Tableau. Then S1 ∩ S2 = {},
S1 ⊆ S2, or S2 ⊆ S1.

Lemma 8. Let P ⊆ IP(S) be a set of nonempty subsets of a finite set S 6= {}. If for all
S1,S2 ∈ P either S1 ∩S2 = {}, S1 ⊆ S2 or S2 ⊆ S1 holds, then |P| < 2 · |S|.

Proof (Induction over |S|). In the base case let |P| ≤ 1, which implies |P| < 2 ≤ 2 · |S|.
In the induction step, we assume |P| > 1. The sets contained in P are partially ordered
by set inclusion and contain at least one maximal set S1. By defining S2 := S\S1 we
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partition S = S1 ∪ S2 into two mutually exclusive sets, S1 and S2. If S2 = {}, i.e. S1 is
the only maximal set in P, then we define

P′ := P\{S1} and S′ :=
[

T∈P′
T

and with 0 < |S′| < |S1| ≤ |S| the induction hypothesis shows

|P| = 1 + |P′| < 1 + 2 · |S′| < 2 · (|S′|+ 1)≤ 2 · |S1| ≤ 2 · |S|

Now we assume S2 6= {}, which implies S1 6= S, and induces a partition on P with

P = P1 ∪P2 and Pi := {T ∈ P | T ⊆ Si} for i = 1,2

Finally the induction hypothesis applied to S1 and S2 results in

|P| ≤ |P1|+ |P2| < 2 · |S1|+ 2 · |S2| = 2 · (|S1|+ |S2|) = 2 · |S|

ut

Since the LHS of a sequent can also be an empty set, Lemma 8 shows that the
number of sequents with the same RHS is bounded by 2 · |S| if the invariant is main-
tained. This is also the best bound that we can get, as the following example shows.
Let Si = {0, . . . ,2i − 1}. Then we associate a balanced binary tree of height i with
each Pi ⊆ IP(Si). We label each node in the tree by exactly one element of Pi, which
implies |Pi| = 2i+1 − 1 = 2 · |Si| − 1. The i leaves are labeled with the singleton sets
{0}, . . . ,{2i − 1}. Each inner node of the binary tree is labeled with the union of the
labels of its children.

Note that the image rule RX and the atomic rules RA+ and RA− are the only rules,
except the split rule Rsplit, that actually manipulate the LHS. All other rules only gener-
ate sequents that contain the same set of states as their parents. The application of these
rules can not violate the invariant. To maintain the invariant in the case of RX, RA+

and RA− as well we have to apply the split rule in combination with these rules: After
each image calculation or application of an atomic rule the sequent is split to fulfill the
invariant. For instance if the application of RX yields:

RX :
· · ·

{1,2,3,4} ` E(Φ)

and the tableau already contains the two sequents:

{1,2} ` E(Φ) and {4,5} ` E(Φ)

Then the split rule is applied as follows. For every non empty intersection of {1,2,3,4}
with the LHS of an already existing sequent a new sequent is generated:

Rsplit :
{1,2,3,4} ` E(Φ)

{1,2} ` E(Φ) {3} ` E(Φ) {4} ` E(Φ)
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where the first sequent is not actually generated since it already exists in the tableau.
We have to combine the Rsplit rule with the image and atomic rules to technically

avoid introducing an intermediate sequent, {1,2,3,4}`E(Φ) in the example, that might
violate the invariant. The correctness and completeness results can be proven for this
modification as well. Without combining these rules each application of RX, RA+ or
RA− could potentially need an additional application of Rsplit. This could potentially
double the number of sequents and the number of sequents with the same RHS can
only be bounded by 4 · |Σ|, which is still linear in the number of states.

8 Complexity and Related Work

In this section we discuss the complexity of our new algorithm based on M-Tableaux
and compare it with other local and global techniques for LTL model checking.

The size of a tableau with root Σ0 ` E( f ), not using the optimization of the last sec-
tion, is in O(2|Σ| ·2| f |). The time taken is polynomial in the size of the tableau. Thus the
time complexity is (roughly) the same as the space complexity. With the optimization
of the last section the size of the tableau is reduced to O(|Σ| · 2| f |). As a consequence
the time complexity of our algorithm is at most polynomial in the number of states,
with a small degree polynomial, and exponential in the size of the formula. The explicit
state model checking algorithms of [2, 16, 21] are linear in the number of states and the
number of transitions. Note that the number of transitions may be quadratic in the num-
ber of states. If an explicit state representation is used, we conjecture that our tableau
construction can be implemented with the same linear time complexity. However, with
our approach we are able to use compact data structures, such as BDDs, to represent
sets of states symbolically and thus can hope to achieve exponentially smaller tableaux
and exponentially smaller running times for certain examples.

The method of [10] translates an LTL formula into a tableau similar to the tableaux
in our approach. In [10] the nodes contain only formulae and no states. The size of
the tableau can be exponential in the size of the LTL formula. The second step is a
translation of the generated tableau into a µ-calculus formula that is again exponential
in the size of the tableau. Additionally, the alternation depth of the µ-calculus formula
can not be restricted. With [13, 22] this results in a model checking algorithm with time
and space complexity that is double exponential in the size of the formula and single
exponential in the size of the model K.

In [15] an ELTL formula is translated to a Büchi automata with the method of [29].
This leads to an exponential blow up in the worst case. But see [14] for an argument
why this explosion might not happen in practice, which also applies to our approach.
The resulting Büchi automata is translated to post-µ, a forward version of the standard
modal µ-calculus, for which similar complexity results for model checking as in [13, 22]
can be derived. This translation produces a µ-calculus formula of alternation depth 2
which results in an algorithm with an at least quadratic running time in |Σ|.

The LTL model checking algorithm of [15] is also forward oriented. A forward
state space traversal potentially avoids searching through non reachable states, as it is
usually the case with simple backward approaches. However, it is not clear how DFS
can be incorporated into symbolic µ-calculus model checking.
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The method of [7] translates an LTL model checking problem into a FairCTL model
checking problem. With the result of [13] this leads to a model checking algorithm that
is linear in the size of the model and exponential in the size of the formula. Again, these
complexity results are only valid for explicit state model checking. The algorithms of
[7, 15] are based on BFS and it is not clear how to implement them depth first.

The work by Iwashita [17, 18] does not handle full LTL and no complexity analysis
is given. But if we restrict our algorithm to the path expressions of [17, 18], then our
algorithm subsumes the algorithms of [17, 18], even for the layered approach of [18].

In [4] an M-Tableau construction for the modal µ-calculus was presented. The main
motivation in [4] for using set of states in sequents was to be able to handle infinite state
systems. Therefore no complexity results were given. In addition, the modal µ-calculus,
as already discussed above, can not represent LTL properties directly without a prior
translation [10, 29].

Our tableau construction is on-the-fly (see liveness example in Section 6) and only
needs O(|Σ|) image computations. Previous symbolic model checking algorithms for
LTL [7, 15], based on fixpoint calculations, require O(|Σ|2) image computations.

9 Conclusion

Although our technique clearly extends the work of [17, 18] and bridges the gap be-
tween local and global model checking, we still need to show that it works in practice.
We are currently working on proving the conjecture that our tableau construction can be
implemented with linear complexity. We also want to investigate heuristics for applying
the split rule. The approximation techniques of [25, 26] are a good starting point.
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