Predicate Abstraction with Minimum Predicates *

Sagar Chaki Edmund Clarke Alex Groce Ofer Strichman

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
chaki|emc|agroce|ofers@cs.cmu.edu

Abstract. Predicate abstraction is a popular abstraction technique employed in formal
software verification. A crucial requirement to make predicate abstraction effective is to use
as few predicates as possible, since the abstraction process is in the worst case exponential
(in both time and memory requirements) in the number of predicates involved. If a property
can be proven to hold or not hold based on a given finite set of predicates P, the procedure
we propose in this paper finds automatically a minimal subset of P that is sufficient for
the proof. We explain how our technique can be used for more efficient verification of C
programs. QOur experiments show that predicate minimization can result in a significant
reduction of both verification time and memory usage compared to earlier methods?.

1 Introduction

Predicate abstraction [16] is a commonly used abstraction technique in formal veri-
fication of software. Like other abstractions, when successful it can be used to prove
the correctness (or incorrectness) of a property with only partial information about
the reachable states of the system. This facilitates the verification of systems larger
than would otherwise be possible. Predicate abstraction has been used widely [12]
both for hardware [8] and software [2, 13] verification. In this article we focus on its
application to the verification of C programs.

Verification of programs typically concentrates on the control flow of the program
(e.g. checking if a particular control point is reachable), rather than on the data
manipulated by it (e.g. checking functional correctness). Predicate abstraction is a

* This research was sponsored by the Semiconductor Research Corporation (SRC) under
contract no. 99-TJ-684, the National Science Foundation (NSF) under grant no. CCR-
9803774, the Office of Naval Research (ONR), and the Naval Research Laboratory (NRL)
under contract no. N00014-01-1-0796. The views and conclusions contained in this doc-
ument are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of SRC, NSF, ONR, NRL, the U.S. government or
any other entity.

Note to the reviewers: An earlier version of this article was rejected from CAV’03. The
differences between this version and the earlier version are both in the text and the
experiments, following suggestions made by CAV reviewers. In the text, we extended the
discussion on the differences between our approach and the approach taken by BLAST,
and clarified several other technical points. In the experiments section, we (a) added a
new greedy technique (b) added a table to examine the influence of various parameters on
our optimality technique (c) improved the implementation. Due to (c) the experimental
results are now far more compelling.

-

common abstraction technique used in this context. Given a program IT and a set
of predicates P, verification with predicate abstraction consists of constructing and
analyzing an automaton A(II,P), an abstraction of IT relative to P.

We will describe in more detail predicate abstraction for verification of C programs
in section 2. For now let us just mention that the process of constructing A(I1,P)
is in the worst case exponential, both in time and space, in |P|. Therefore a crucial
point in deriving efficient algorithms based on predicate abstraction is the choice of a
small set of predicates. In other words, one of the main challenges in making predicate
abstraction effective is distinguishing a small set of predicates that are sufficient for
determining whether a property holds or not. In this article we present an automated
technique for finding the minimal such set from a given set of candidate predicates.

In the original article describing predicate abstraction [16] the process of selecting
predicates is done manually. An automatic method for choosing predicates was sug-
gested by Ball and Rajamani [2]. They follow a CounterExample Guided Abstraction
Refinement (CEGAR) loop, which we now describe. Let ¢ be the property that we
wish to verify over the program II. We denote by MC a model checking [5,10] algo-
rithm that takes both A(II,P) and ¢ as inputs and outputs TRUE if A(II,P) = ¢
and a counterexample 7 otherwise. We assume ¢ is a safety property, so that 7 is
a finite acyclic trace of A(I1,P). Since 7 is a trace of A(II,P), it is often called an
abstract trace. Let 7y be a trace concretization function that maps every abstract trace
to a sequence of instructions of II consistent with the control flow graph. In order
to check whether this sequence is a valid trace of IT, we define a Trace Checking
algorithm TC that takes IT and 7 as inputs and returns TRUE if v(7) is a valid trace
of IT and FALSE otherwise. In the latter case 7 is called a spurious counterexample.
Finally, if 7 is spurious, we need to eliminate it from the abstract model. We say that
a set of predicates P’ eliminates 7 iff for every trace 7' of A(IL,P"), v(7) # ~(7');
i.e. , the concretization of all traces in A(II, P') are different from (7). Given these
definitions, we now describe the four steps of the CEGAR loop (usually P = { ini-
tially):

1. Abstract. Construct A(I1,P).

2. Verify. If MC(A(II,P),¢) = TRUE, return property holds.
Otherwise let T be the counterexample.

Check. If TC(II,7) = TRUE return property does not hold.
4. Refine. Update P so as to eliminate 7. Go to step 1.

w

Step 4 is the crucial one, and also the subject of this article. In previous work [2,13]
the refinement is done by adding predicates that eliminate the new spurious coun-
terexample while maintaining the predicates that were found in previous iterations.
This guarantees that no spurious counterexample will be repeated. However, this
accumulative approach cannot guarantee a minimal set of predicates, because it de-
pends on the order in which the counterexamples are identified and the choice of
predicates at each step.

For example, consider a scenario where the first counterexample, 71, can be elim-
inated by either p; or ps, and the process chooses p;. Now it finds another coun-

terexample, 72, which can only be eliminated by the predicate ps. The process now
proceeds with both p; and po, although ps by itself is sufficient to eliminate both
71 and 7». The framework that we present in this article, on the other hand, finds a
minimal set of predicates that eliminate all the spurious counterexamples discovered
so far. This guarantees a minimal set of predicates throughout the process, which is
expected to reduce the overall verification time and required space. Our experimental
results show that indeed the number of predicates and consequently the amount of
memory required are significantly reduced.

Related work. Predicate abstraction was introduced by Graf and Saidi in [16]. It
was subsequently used with considerable success in both hardware and software ver-
ification [2,12,13]. The notion of CEGAR was originally introduced by Kurshan [14]
(originally termed localization) for model checking of finite state models. Both the
abstraction and refinement techniques for such systems, as applied in his and con-
sequent works, are essentially different than the predicate abstraction approach we
follow. For example, abstraction in localization reduction is done by assigning non-
deterministic values to selected sets of variables, while refinement corresponds to
gradually returning to the original definition of these variables. Several alternative
abstraction /refinement techniques were offered since then by, for example, Clarke et
al. [9]. More recently the CEGAR framework has also been successfully adapted for
verifying software [3, 13]. The problem of finding small sets of predicates is also being
investigated in the context of hardware designs in [6].

The rest of this article is structured as follows. In the next section we discuss in
more detail the CEGAR loop for predicate abstraction and how it is used for verifying
C programs. In section 3 we describe in detail the procedure for selecting a minimal
set of predicates. In section 4 we present the results of applying our technique to
several realistic examples and detail our conclusions.

2 Predicate Abstraction/Refinement for C Programs

In the introduction we discussed the overall structure of a CEGAR loop. In this
section we explain how this framework can be applied for verifying C programs. We
do so by describing how the various basic blocks of the CEGAR loop are implemented.
In particular, we discuss the construction of A(I1,P) in section 2.1, the notion of trace
concretization (vy) in section 2.2, the trace checking algorithm 7C in section 2.3, and a
method for checking whether a set of predicates eliminates a spurious counterexample
in section 2.4.

2.1 Constructing the abstract model

We begin with the process of constructing A(I1,P) given a C program II and an
initial set of predicates P. For the sake of simplicity, we assume that IT consists of
a single monolithic C main procedure obtained via inlining (we disallow function
pointers and recursion in order to make inlining effective). Without loss of general-
ity, we can assume that there are only four kinds of statements in II: assignments,
if-then-else branches, goto and return. We denote by Stmt the set of statements

of IT and by Ezp the set of all pure (side-effect free) C expressions over the variables
of IT. As a running example we use the following simple C program and the property
that label L4 is unreachable.

int x,y;
LO: x = 1;
Li: y = 1;
L2: if (x == y)
L3: y=1

L4: else y = 2;

Initial abstraction with control flow automata. The construction of A(I1,P)
begins with the construction of the control flow automaton (CFA) of IT. The states of
a CFA correspond to control points in the program. The transitions between states in
the CFA correspond to possible transitions between their associated control points in
the program, assuming that every branch in the program can be taken. Thus, a CFA
of a program is a conservative abstraction of the program’s control flow, i.e. it allows
a superset of the possible traces of the program.
Formally the CFA is a 4-tuple (Scr, Icr, Tor, L) where:

— SorF is a set of states.

— Icr € Scr is an initial state.

— Teor C Scr X Scr is a set of transitions.

— L:Scr \ {final} — Stmt is a labeling function.
Scr contains a distinguished final state which does not belong to the domain of
L. The transitions between states reflect the flow of control between their labeling
statements: £(Icp) is the initial statement of IT and (s1,s2) € Tep iff one of the
following conditions hold:

— L(s1) is an assignment or goto with £(s2) as its unique successor.

— L(s1) is a branch with £(s2) as its then or else successor.

— L(s1) is a return statement and sy = final.
The CFA is equivalent, as we will shortly see, to A(IT,).

Ezample 1. The CFA of our example program is shown in Figure 1(a), where every
state s is labeled with £(s). Henceforth we will refer to each CFA state by the
corresponding statement label. We will use final for the final state. Therefore the
states of the CFA in Figure 1(a) are LO ...L4 and final with LO being the initial
state. O

Predicate inference. The main challenge in predicate abstraction is to identify the
predicates that are necessary for proving the given property. In our framework we
require P to be a subset of the branch statements in I7. Therefore we sometimes refer
to P or subsets of P simply as a set of branches, where the actual meaning is the
predicates that serve as the guards in these branches. The construction of A(I1,P)
associates with each state s of the CFA a finite subset of Exp derived from P, denoted
by Ps. The process of constructing the Py’s from P is known as predicate inference
and is described by the algorithm PredInfer in Figure 2. Note that P, is always 0 if
s is either the final state or £(s) is a return statement.

Fig. 1. (a) The CFA for our example program, (b) The CFA labeled with inferred predicates
if P = {(z == y)}, i.e., it contains the only branch in the program, and (c) The abstract
automaton A(II, P), which proves that L4 is not reachable.

The algorithm uses a procedure for computing the weakest precondition WP of
a predicate p relative to a given statement. We define WP in the same way as Ball
and Rajamani [2]. First, consider a C assignment statement a of the form v = e;.
Let ¢ be a pure C expression (p € Ezp). Then the weakest precondition of ¢ with
respect to a, denoted by WP(p, a) is obtained from ¢ by replacing every occurrence
of v in ¢ with e. A second case considers a C assignment statement a in which e is
assigned to a variable whose address is stored in v, i.e. a is of the form xv = e;. Let
{v1,...,v,} be the set of variables appearing in ¢ and for 1 < i < n let a; be the
assignment statement v; = e; WP(p,a) is then:

(i (v == &uv;) && WP(p, ai))) || (&&eiy ((v! = &vi)) &&)

Input: Set of branch statements P
Output: Set of P;’s associated with each CFA state
Initialize: Vs € Sor,Ps :=0
Forever do
For each s € Sgr do
If L(s) is an assignment statement and L£(s’) is its successor
For each p' € Py add WP(p',L(s)) to Ps
Else if L(s) is a branch statement with condition ¢
If L(s) €P add ¢ to P
If L£(s') is a ‘then’ or ‘else’ successor of L(s), Ps := PsU Py
Else If L(s) is a ‘goto’ statement with successor L(s'), Ps := PsU Py
If no P, was modified in the ‘for’ loop, exit

Fig. 2. Algorithm PredInfer for predicate inference.

The weakest precondition is clearly an element of Ezp as well. The purpose of
predicate inference is to create P,’s that lead to a very precise abstraction of the
program relative to the predicates in P. Intuitively, this is how it works. Let s,t € Scr
such that £(s) is an assignment statement and (s,t) € Tor. Suppose a predicate p;
gets inserted in P; at some point during the execution of PredInfer and suppose
ps = WP(ps, L(s)). Now consider any execution state of IT where the control has
reached L(t) after the execution of L(s). It is obvious that p; will be true in this state
iff ps was true before the execution of £(s). In terms of the CFA, this means that the
value of p; after a transition from s to ¢t can be determined precisely on the basis of
the value of ps; before the transition. This motivates the inclusion of ps in P,. The
cases in which £(s) is not an assignment statement can be explained analogously.

Note that PredInfer may not terminate in the presence of loops in the CFA.
However, this does not mean that our approach is incapable of handling C pro-
grams containing loops. In practice, we force termination of PredInfer by limiting
the maximum size of any P,. Using the resulting P,’s, we can compute the states
and transitions of the abstract model as described in the next section. Irrespective of
whether PredInfer was terminated forcefully or not, the resulting model is guaran-
teed to be a sound abstraction of IT. We have found this approach to be very effective
in practice. A similar algorithm was proposed by Dams and Namjoshi [11].

Example 2. Consider the CFA described in Example 1. Suppose P contains the only
branch (L2) in our example program. Then PredInfer begins with Pro = {(z == y)}.
From this it obtains Py = {WP((z == y),y = 1;)} = {(z == 1)} and then
Pro = {WP((x ==1),z =1;)} = {(1 == 1)}. As (1 == 1) is trivially true, we do
not include it in Pro. Thus Py = 0. Finally Prs = Pua = Ppina = 0. Figure 1(b)
shows the CFA with each state s labeled on the outside by Ps. O

The states and transitions of the abstract model. So far we have described a
method for computing the initial abstraction (the CFA) and a set of predicates asso-
ciated with each location in the program. The states of the abstract system A(I1,P)
correspond to the various possible valuations of the predicates in each location (this
is the reason why the abstract graph is exponential in the number of predicates).
Formally, for a CFA node s suppose Ps = {p1,...,pr}. Then a valuation of Ps is a
boolean vector vy, . .., vi. Let Vs be the set of all predicate valuations of Ps. Then the
predicate concretization function I'y : Vs — Ezp is defined as follows. Given a valua-
tion V ={v1,...,v5} € Vs, [(V) = /\f:1 pY where pRUE = p; and pfALSE = —p,.
As a special case, if Py = 0, then Vs = {1} and I';(L) = TRUE.

Ezample 3. Suppose P, = {(a == 0),(b > 5),(c < d)}, Vi = {0,1,1} and V> =
{1,0,1}. Then I;(V1) = (m(a == 0)) A (b >5) A (¢ <d) and I;(V2) = (a ==
0) A (=(b>5)) A (e<d).]

Computing the transitions between the states in A(II, P) requires a theorem prover.
We add a transition between two abstract states unless we can prove that there is
no transition between their corresponding concrete states. If we cannot prove this,
we say that the two states (or the two formulas representing them) are admissible.
This problem can be reduced to the problem of deciding whether —()1 A 1)2) is valid,

where 9, and - are arbitrary quantifier free first order logic formulas. In general
this problem is known to be undecidable. However for our purposes it is sufficient
that the theorem prover be sound and always terminate. Several publicly available
theorem provers (such as Simplify [15]) have this characteristic.

Given arbitrary formulas ¢y and vy, we say that the formulas are admissible if
the theorem prover returns FALSE or UNKNOWN on — (11 A 12). We denote this by
Adm(1)1,12). Otherwise the formulas are inadmissible, denoted by —Adm(11,-).

A procedure for constructing A(II,P). We now define A(I1,P). Formally, it
is a triple (S4,I4,T 1) where:
— S84 =Usesar{s} x Vs is the set of states.
— I4 = {Icr} X Vi, is the initial set of states.
— T4 C S4xS 4 is the transition relation, defined as follows: ((s1, V1), (s2,V2)) € T4
iff (s1,$2) € Tor and one of the following conditions hold:
1. L(s1) is an assignment statement and Adm (s, (V1), WP (s, (V2), L(51)))-
2. L(s1) is a branch statement with a branch condition ¢, £(s2) is its then
successor, Adm(Is, (V1), s, (V2)) and Adm([y, (V1),c).
3. L(s1) is a branch statement with a branch condition ¢, £(s2) is its else
successor, Adm (I, (V1), s, (V2)) and Adm([s, (V1), —c).
4. L(s1) is a goto statement and Adm([s, (V1), s, (V2)).
5. L(s1) is a return statement and s, is the final state.

Example 4. Recall the CFA from Example 1 and the predicates corresponding to
CFA nodes discussed in Example 2. The A(II,P) obtained in this case appears in
Figure 1(c). Let us see why there is a transition from (L0, L) to (L1, TRUE). Since
L(L0) is an assignment statement, by rule 1 above we compute the following expres-
sions:

— I1o(Ll) = TRUE

— I11(TRUE)= (z == 1).

— L(LO) = (z=1)

— WP(I11(TRUE), L(LO)) = WP((z == 1),z =1;) = (1 == 1) = TRUE

— Adm(TRUE,TRUE).
Thus, we add a transition from (L0, L) to (L1, TRUE). Examining a possible transi-
tion from (LO, L) to (L1, FALSE), we similarly compute I1;(FALSE) = (—(z == 1))
and WP((=(z == 1)),z = 1;) = (=(1 == 1)). Since ~Adm(TRUE, (=(1 == 1))),
there is no transition between these two abstract states. The presence or absence of
other transitions can be explained in a similar manner. As no state labeled by L4 is
reachable, we have proven that our example property holds. O

Clearly, if we do not limit the size of P, |S.4| is exponential in |P|. Hence so are the
worst case space and time complexities of constructing A(II, P).

2.2 Trace concretization

A trace of A(I1,P) is a finite sequence {(s1, V1),. .., (8n, V)) such that (i) for 1 <14 <
n, (54, Vi) € Sa, (ii) (s1,V1) € I4 and (iii) for 1 <i < n, ((s;, V3), (Si+1, Vit1)) € Ta.
Given such a trace 7 = ((s1,V1),-- -, (8n, Va)) of A(II,P), the concretization of 7 is

Input: A trace 7 of A(I,P) s.t. () = (S1,--.,5n)
Output: TRUE iff 7 is valid (can be simulated on the concrete system)
Variable: X of type formula
Initialize: X := TRUE
For 1 = n to 1
If s; is an assignment
X = WP(X,s:)
Else If s; is a branch with condition c
If (i < n)
If si+1 is the ‘then’ successor of s;, X := X Ac
else X := X A—c
If (X = FALSE) return FALSE
Return TRUE

Fig. 3. Algorithm 7C to check the validity of a trace of II.

defined as y(7) = (L(s1), ..., L(sn)). Thus, the concretization of an abstract trace is
a trace of IT: a sequence of statements that correspond to some trace in the control
flow graph of I1.

2.3 Trace checking

The T C algorithm, described in Figure 3, takes IT and a counterexample 7 as inputs
and returns TRUE if y(7) is a valid trace of IT. This is a backward traversal based
algorithm. There is an equivalent algorithm [3] that is forward traversal based and
uses strongest postconditions instead of weakest preconditions.

2.4 Checking trace elimination

Given a spurious counterexample 7 = {(s1,V1),..., (81, Va)) and a set of branches
P, we will need to determine if P eliminates 7. To do so we: (i) construct A(I1,P)
and (ii) determine if there exists a trace 7' of A(I1,P) such that v(7) = y(7'). The
algorithm, called TraceEliminate, is described in Figure 42.

3 Predicate Minimization

We now present the algorithm for discovering a minimal set of branches P of a
program 7 that will help us prove or disprove a safety property ¢.

3.1 The Sample-and-Eliminate algorithm

Algorithm Sample-and-FEliminate, described in Figure 5, is based on an abstraction
refinement loop that keeps the set of predicates minimal throughout the process. It is
modeled after the Sample-and-Separate algorithm [7], where it is used in a CEGAR
framework for hardware verification. At each step it finds a counterexample if one

2 Note that in practice this step can be carried out in an on-the-fly manner without con-
structing the full A(I1,P).

Input: Spurious trace 7 s.t. ¥(7) =(s1,...,8,) and a set of predicates P
Output: TRUE if 7 is eliminated by P and FALSE otherwise
Compute A(II,P) =(Sa,14,Ta)
Variable: X,Y of type subset of Sy
Initialize: X :={(s,V) € Sa|s=s1}
If (X =0) return TRUE
For i = 2 to n do
Y = {(s, V') e SA|(s =s)AT(s, V)€ X . ((5,V),(s,V)) € Ta}
If (Y =0) return TRUE
X =Y
Return FALSE

Fig. 4. Algorithm TraceEliminate to check if a spurious trace can be eliminated.

exists and checks whether it corresponds to a concrete counterexample, as usual.
Unlike previous approaches [3,13], however, it finds a minimal set of predicates that
eliminate all the concrete spurious traces that were found so far (in the last line
of the loop.) Our approach to solving this minimization problem is the subject of
Section 3.2.

Input: Program II, safety property ¢
Output: TRUE if proved that II |= ¢, FALSE if proved II |~ ¢, and UNKNOWN
otherwise.
Variable: T set of spurious counterexamples, P set of predicates
Initialize: T:=0, P:=0
Forever do
If MC(A(II,P),$) = TRUE return TRUE
Else let 7 be the abstract counterexample
If 7C(T) = TRUE return FALSE
If P is the set of all branches in II then return UNKNOWN
T:=TU{r}

P := minimal set of branches of II that eliminates all elements of T

Fig. 5. Algorithm Sample-and-Eliminate uses a minimal set of predicates taken from a
program’s branches to prove or disprove II |= ¢, if such a proof is possible.

3.2 Minimizing the eliminating set

The last line of Sample-and-Eliminate presents the following problem: given a set of
spurious counterexamples T" and a set of candidate predicates P (all the branches of IT
in our case), find a minimal set p C P which eliminates all the traces in T. We present
a three step algorithm for solving this problem. First, find a mapping T + 22"
between each trace in 7' and the set of sets of predicates in P that eliminate it. This
can be achieved by iterating through every p C P and 7 € T, using TraceEliminate
to determine if p can eliminate 7. This approach is exponential in |P| but below we
list several ways to reduce the number of attempted combinations:

— Limit the size or number of attempted combinations to a small constant, e.g. 5,
assuming that most traces can be eliminated by a small set of predicates.
— Stop after reaching a certain size of combinations if any eliminating solutions
have been found.
— Break up the control flow graph into blocks and only consider combinations of
predicates within blocks (keeping combinations in other blocks fixed).
— Use data flow analysis to only consider combinations of related predicates.
— For any 7 € T, if a set p eliminates 7, ignore all supersets of p with respect to 7
(as we are seeking a minimal solution).
Second, encode each predicate p; € P with a new Boolean variable p?. We use
the terms ‘predicate’ and ‘the Boolean encoding of the predicate’ interchangeably.
Third, derive a Boolean formula o, based on the predicate encoding, that represents
all the possible combinations of predicates that eliminate the elements of T'. We use
the following notation in the description of o. Let 7 € T be a trace:
— k; denotes the number of sets of predicates that eliminate 7 (1 < k; < 2P ‘).
— s(7,1) denotes the i-th set (1 < < k,) of predicates that eliminates 7. We use
the same notation for the conjunction of the predicates in this set.
The formula o is defined as follows:

kr
e A Vi) (1)

T7€T i=1
For any satisfying assignment to o, the predicates whose Boolean encodings are
assigned TRUE are sufficient for eliminating all elements of 7.

From the various possible satisfying assignments to o, we look for the one with
the smallest number of positive assignments. This assignment represents the minimal
number of predicates that are sufficient for eliminating T'. Since ¢ includes disjunc-
tions, it cannot be solved directly with a 0-1 ILP solver. We therefore use PBS [1], a
solver for Pseudo Boolean Formulas.

A pseudo-Boolean formula is of the form E?:l ¢; - by > k, where b; is a Boolean
variable and c¢; is a rational constant for 1 < 4 < n. k is a rational constant and
> represents one of the inequality or equality relations ({<, <,>,>,=}). Each such
constraint can be expanded to a CNF formula (hence the name pseudo-Boolean),
but this expansion can be exponential in n. PBS does not perform this expansion,
but rather uses an algorithm designed in the spirit of the Davis-Putnam-Loveland
algorithm that handles these constraints directly. PBS accepts as input standard CNF
formulas augmented with pseudo-Boolean constraints. Given an objective function
in the form of pseudo-Boolean formula, PBS finds an optimal solution by repeatedly
tightening the constraint over the value of this function until it becomes unsatisfiable.
That is, it first finds a satisfying solution and calculates the value of the objective
function according to this solution. It then adds a constraint that the value of the
objective function should be smaller by one. This process is repeated until the
formula becomes unsatisfiable. The objective function in our case is to minimize the
number of chosen predicates (by minimizing the number of variables that are assigned
TRUE):

n
miny" 5! @)
i=1

Ezample 5. Suppose that the trace 7 is eliminated by either {p1,ps,ps} or {p2,ps}
and that the trace 75 can be eliminated by either {p2,p3} or {ps}. The objective
function is min 2?21 p? and is subject to the constraint:

o= ((ph AP A DY)V (05 A pE))A
(B3 Ap3) v ()

The minimal satisfying assignment in this case is p§ = p? = p} = TRUE. O

Other techniques for solving this optimization problem are possible, including
minimal hitting sets and logic minimization. The PBS step, however, has not been a
bottleneck in any of our experiments.

4 Experiments and Conclusions

We implemented our technique inside the MAGIC [4] tool. MAGIC was designed
to check weak simulation of properties of labeled transition systems (LTSs) derived
from C programs. We experimented with MAGIC with and without predicate op-
timization. We also performed experiments with a greedy predicate minimization
strategy implemented on top of MAGIC. In each iteration, this strategy first adds
predicates sufficient to eliminate the spurious counterexample to the predicate set
P. Then it attempts the reduce the size of the resulting P by using the algorithm
described in Figure 6. The advantage of this approach is that it requires only a small
overhead (polynomial) compared to Sample-and-Eliminate, but on the other hand
it does not guarantee an optimal result. Further, we performed experiments with
Berkeley’s BLAST [13] tool. BLAST also takes C programs as input, and uses a
variation of the standard CEGAR loop based on lazy abstraction, but without mini-
mization. Lazy abstraction refines an abstract model while allowing different degrees
of abstraction in different parts of a program, without requiring recomputation of the
entire abstract model in each iteration. Laziness and predicate minimization are, for
the most part, orthogonal techniques. In principle a combination of the two might
produce better results than either in isolation.

Input: Set of predicates P
Output: Subset of P that eliminates all spurious counterexamples so far
Variable: X of type set of predicates
LOOP: Create a random ordering (pi,...,px) of P
For ¢ = 1 to k do
X =P\ {p}
If X can eliminate every spurious counterexample seen so far
P=X
Goto LOOP
Return P

Fig. 6. Greedy predicate minimization algorithm.

Benchmarks. We used two kinds of benchmarks. A small set of relatively simple
benchmarks were derived from the examples supplied with the BLAST distribution
and regression tests for MAGIC. The difficult benchmarks were derived from the
C source code of openss1-0.9.6c, several thousand lines of code implementing the
SSL protocol used for secure transfer of information over the Internet. A critical
component of this protocol is the initial handshake between a server and a client. We
verified different properties of the main routines that implement the handshake. The
names of benchmarks that are derived from the server routine and client routine begin
with ssl-srvr and ssl-clnt respectively. In all our benchmarks, the properties are
satisfied by the implementation. The server and client routines have roughly 350 lines

each but, as our results indicate, are non-trivial to verify.

BLAST MAGIC MAGIC + GREEDY MAGIC + MINIMIZE

Program Time |Iter| Pred [Mem||Time [Iter Pred Mem|| Time |Iter| Pred |Mem||Time|lter| Pred [Mem
funcall-nested|| 1 3 13/10 X 5 2 10/9/1 X 6 2 [10/9/1] X 5 2 [10/9/1] X
fun_lock 5 7 7/7 X 5 4 8/3/3 X 5 5 8/3/3 X 6 4 | 8/3/3 X
driver.c 1 4 3/2 X 6 5 6/2/4 X 5 5 6/2/4 X 5 5] 6/2/4 X
read.c 6 11| 20/11 X 5 2 15/5/2 X 6 3 [15/5/1] X 5 2 [15/5/1] X
socket-y-01 5 [13] 16/6 X 5 3 | 12/4/2 X 5 3 [12/4/2] x 6 [3]12/4/2] x
opttest.c 7499 [38| 37/37 [231][145] 5 7/7/8 63 150 5 4/4/4 | 63 [[247 [25] 4/4/4 | 63
ssl-srvr-1 2398 | 16 33/8 175 || 250 [12| 56/5/22 | 43 * 103]16/3/5| 51 [[226 | 14| 5/4/2 | 38
ssl-srvr-2 691 | 13 68/8 60 752 [16| 72/6/30 | 72 2106 | 62 | 8/4/3 | 34 [[216 14| 5/4/2 | 38
ssl-srvr-3 1162 | 14 32/7 103 || 331 [12| 56/5/22 | 47 * 100 [22/3/7] 53 [[200[12| 5/4/2 | 38
ssl-srvr-4 284 | 11 27/5 44 677 | 14| 63/6/26 | 72 8465 | 69 [14/4/5| 56 [[170]| 9 | 5/4/2 | 38
ssl-srvr-5 1804 | 19 52/5 71 71 5 22/4/8 24 * 117123/5/9 | 56 || 205 [13| 5/4/2 | 36
ssl-srvr-6 * 39| 90/10 | 805 [[11840] 23 [105/11/44[1187 * 84 [22/4/8 337][359] 14 8/4/3 | 89
ssl-srvr-7 3569 |11 76/9 37 [[2575[20] 94/7/38 | 192 * 99 [19/3/6 | 62 |[196] 11 [5/4/2 S| 38
ssl-srvr-8 * 25 35/5 266 || 130 | 8 | 32/5/14 | 58 * 97 [19/4/7 142][211 10| 8/4/3 | 40
ssl-srvr-9 337 | 10 76/9 36 [[2621 15| 65/8/28 [183 || 8133 [99 [11/4/4| 69 || 316 |20 | 11/4/4] 38
ssl-srvr-10 8289 | 20 35/8 148 || 561 [16 | 75/6/30 | 73 * 97 [12/3/4| 77 [[241 14| 8/4/3 | 38
ssl-srvr-11 547 [11] 78/11 51 [[4014[19] 89/8/36 | 287 * 87 [26/4/9 | 65 [[356]24] 8/4/3 | 38
ssl-srvr-12 2434 | 21 80/8 120 [[7627 [22 [102/9/42 | 536 * 122 [23/4/8 1180 [[301 |17 | 8/4/3 42
ssl-srvr-13 608 [12] 79/12 54 [[312717] 75/9/32 | 498 * 106 [19/4/7] 69 [[436 |29 [11/4/4] 38
ssl-srvr-14 [[10444| 27 [84/10 | 278 [| 7317 [22 [102/9/42 | 721 * 115]18/3/6 | 254 [| 406 | 20 | 8/4/3 | 52
ssl-srvr-15 * 31 38/5 436 || 615 [15| 81/28/5 [188 || 2112 | 37 | 8/4/3 [118 [[179 7 | 8/4/3 | 40
ssl-srvr-16 * 33| 87/10 [480 [[3413 |21 | 98/8/40 [557 * 103 [22/3/7 | 405 || 356 | 17 | 8/4/3 | 58
ssl-clnt-1 348 | 16 28/5 43 110 [10 | 43/4/18 | 25 225 27 | 5/4/2 | 20 156 [12| 5/4/2 | 31
ssl-clnt-2 523 | 15 28/4 52 156 [11 [53/5/20 | 31 1393 | 63 | 5/4/2 | 23 185 [18 | 5/4/2 | 29
ssl-clnt-3 469 | 14 29/5 49 421 [13| 52/7/24 | 58 * 136 [29/4/10] 28 [[195 [21| 5/4/2 | 29
ssl-clnt-4 380 | 13 27/4 45 125 | 10 | 35/5/18 | 27 152 29 | 5/4/2 | 20 191 {19 | 5/4/2 | 29
TOTAL 81794[447]1178/221[3584[[46904[322] 1428/185 [4942[163163[1775]381/102[2182][5375[356]191/107| 880

/559 /129 /67
AVERAGE |[[3146 | 17 45/9 171 [1804 [12 | 55/7/22 | 235 6276 | 68 |15/4/5 [104 [[207 |14 | 7/4/3 42

Fig. 7. Results for BLAST and MAGIC with different refinement strategies. ‘*’ indicate

run-time longer than 3 hours.

¢

x’ indicate negligible values. Best results are emphasized.

Results. Figure 7 summarizes our results. Time for all experiments is given in
seconds. The column Iter reports the number of iterations through the CEGAR loop
necessary to complete the proof. Predicates are listed differently for the two tools.
For BLAST, the first number is the total number of predicates discovered and used
and the second number is the number of predicates active at any one point in the

program (due to lazy abstraction this may be smaller). In order to force termination
we imposed a limit of three hours on the running time. We denote by ‘*’ in the Time
column examples that could not be solved in this time limit. In these cases the other
columns indicate relevant measurements made at the point of forceful termination.

For MAGIC, the first number is the total number of expressions used to prove
the property, i.e. |Usesqp Ps|- The number of predicates (the second number) may be
smaller, as MAGIC combines multiple mutually exclusive expressions (e.g. x == 1,
z < 1, and z > 1) into a single, possibly non-binary predicate, having a number of
values equal to the number of expressions (plus one, if the expressions do not cover all
possibilities.) The final number for MAGIC is the size of the final P. For experiments
in which memory usage was large enough to be a measure of state space size rather
than overhead, we also report memory usage (in megabytes).

The first MAGIC results are for the MAGIC tool operating in the standard re-
finement manner: in each iteration, predicates sufficient to eliminate the spurious
counterexample are added to the predicate set. The second MAGIC results are for
the greedy predicate minimization strategy. The last MAGIC results are for predicate
minimization. Rather than solving the full optimization problem, we simplified the
problem as described in section 3. In particular, for each trace we only considered
the first 1,000 combinations and only generated 20 eliminating combinations. The
combinations were considered in increasing order of size. After all combinations of
a particular size had been tried, we checked whether at least one eliminating com-
bination had been found. If so, no further combinations were tried. In the smaller
examples we observed no loss of optimality due to these restrictions. We also studied
the effect of altering these restrictions on the larger benchmarks and we report on
our findings later.

For the smaller benchmarks, the various abstraction refinement strategies do not
differ markedly. However, for our larger examples, taken from the SSL source code,
the refinement strategy is of considerable importance. Predicate minimization, in
general, reduced verification time (though there were a few exceptions to this rule,
the average running time was considerably lower than for the other techniques, even
with the cutoff on the running time). Moreover, predicate minimization reduced the
memory needed for verification, which is an even more important bottleneck. Given
that the memory was cutoff in some cases for other techniques before verification was
complete, the results are even more compelling.

The greedy approach kept memory use fairly low, but almost always failed to find
near-optimal predicate sets and converged much slower than the usual monotonic
refinement or predicate minimization approaches. Further, it is not clear how much
final memory usage would be improved by the greedy strategy if it were allowed to run
to completion. Another major drawback of the greedy approach is its unpredictability.
We observed that on any particular example, the greedy strategy might or might not
complete within the time limit in different executions. Clearly, the order in which this
strategy tries to eliminate predicates in each iteration is very critical to its success.
Given that the strategy performs poorly on most of our benchmarks using a random
ordering, more sophisticated ordering techniques may perform better. We leave this
issue for future research.

ssl-srvr-4 ssl-srvr-15 ssl-clnt-1
ELM[SUB|[|Time[It]|P][Mem|TG[MG]| Time[It [| P|[Mem|TG[MG||Time| It || P|[Mem|TG|[MG
50 [250 (| 656 |8 2 | 64 [34| 1 |[1170(15] 3 | 72 [86| 1 [[1089[13| 2 | 67 [66] 1
100 [250 || 656 (8] 2 | 64 [34]| 1 [[1169]15] 3 | 72 |86 | 1 |[1089([13]| 2 | 67 |66 1
150 [250 || 657 [8] 2 | 64 [34] 1 [[1169]|15] 3 | 72 |86 | 1 |[1090(13| 2 | 67 |66 1
200 (250 (| 656 |8 2 | 64 |34 | 1 |[1170(15| 3 | 72 |86 | 1 |[1089(13| 2 | 67 |66 | 1
250 (250 || 656 |8 2 | 64 |34 | 1 |[1168|15| 3 | 72 |86 | 1 [[1090(13| 2 | 67 [66| 1

Fig. 8. Results for optimality. ELM = MAXELM, SUB = MAXSUB, It is the number of
iterations, TG is the total number of eliminating subsets generated, and MG is the maximum
size of any eliminating subset generated.

Optimality. We experimented with two of the parameters that affect the optimal-
ity of our predicate minimization algorithm: (i) the maximum number of examined
subsets (MAXSUB) and (ii) the maximum number of eliminating subsets generated
(MAXELM) (that is, the procedure stops the search if MAXELM eliminating sub-
sets were found, even if less than MAXSUB combinations were tried). We first kept
MAXSUB fixed and took measurements for different values of MAXELM on a sub-
set of our benchmarks viz. ssl-srvr-4, ssl-srvr-15 and ssl-clnt-1. Our results,
shown in Figure 8, clearly indicate that the optimality is practically unaffected by
the value of MAXELM.

ssl-srvr-4 ssl-srvr-15 ssl-clnt-1
SUB|| Time [It]|P]|[Mem|TG[MT|MG|| Time [It [| P|[Mem|TG|MT|MG]|| Time [It|[[P|[Mem|TG[MT[MG
100 262 (8| 2 44 (34| 2 1 396 |12| 3 50 |62 2 1 310 11| 2 40 |58 | 2 1
200 || 474 [7] 2| 57 [27] 2 | 1 917 [14] 3| 65 [81] 2 | 1 683 [12[2] 51 [63] 2 [1
400 [[1039 (9] 2 | 71 [38] 2 [1 [[1110[8[3| 76 [45] 2 | 1 2731 [13] 220867 3 | 1
800 || 2182 7| 2 [165 25| 2 | 1 |[2797]|9]| 3 | 148 |51 2 | 1 5843 14| 2 |296 |75 3 | 1
1600(| 6718 {9 2 | 410 {35 3 | 1 [|10361|11| 3 [410 76| 3 | 1 13169 (12| 2 [633 61| 3 | 1
3200({13656|9| 2 | 461 |40 | 3 | 1 |[14780{9| 3 | 436 |50 3 | 1 36155 (12| 2 [1155(67 | 4 | 1
6400((26203|9| 2 [947 |31 | 3 | 1 |[33781(10| 3 | 792 |51 | 3 | 1 ||[>57528{4 | 1 [2110(22| 4 | 1

Fig. 9. Results for optimality. SUB = MAXSUB, It is the number of iterations, TG is the
total number of eliminating subsets generated, MT is the maximum size of subsets tried,
and MG is the maximum size of eliminating subsets generated.

Next we experimented with different values of MAXSUB (the value of MAXELM
was set equal to MAXSUB). The results we obtained are summarized in Figure 9.
It appears that, at least for our benchmarks, increasing MAXSUB leads only to
increased execution time without reduced memory consumption or number of predi-
cates. The additional number of combinations attempted or constraints allowed does
not lead to improved optimality. The most probable reason is that, as shown by our
results, even though we are trying more combinations, the actual number or max-
imum size of eliminating combinations generated does not increase significantly. It
would be interesting to investigate whether this is a feature of most real-life pro-
grams. If so, it would allow us, in most cases, to achieve near optimality by trying
out only a small number of combinations or only combinations of small size.

Acknowledgments We thank Rupak Majumdar and Ranjit Jhala for their help
with BLAST.

References

1.

10.
11.

12.

13.

14.

15.
16.

F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search pseudo
Boolean solver. In Symposium on the theory and applications os satisfiability testing
(SAT), pages 346-353, 2002.

T. Ball and S. Rajamani. Automatically validating temporal safety properties of inter-
faces. Lecture Notes in Computer Science, 2057, 2001.

T. Ball and S. K. Rajamani. Generating abstract explanations of spurious counterexam-
ples in C programs. Technical Report MSR-TR-2002-09, Microsoft Research, Redmond,
January 2002.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software
components in C. In International Conference on Software Engineering (ICSE), To
appear, 2003.

E. Clarke and A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In In Logic of Programs: Workshop, Yorktown Heights, volume 131 of
Lecture Notes in Computer Science, pages 52-71. Springer-Verlag, 1981.

E. Clarke, O. Grumberg, M. Talupur, and D. Wang. Making predicate abstraction
efficient: eliminating redundant predicates. In To appear in CAV’03.

E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction - refinement
using ILP and machine learning techniques. In E. Brinksma and K. Larsen, editors,
Proc. 14" Intl. Conference on Computer Aided Verification (CAV’02), volume 2404 of
LNCS, pages 265-279, Copenhagen, Denmark, July 2002. Springer-Verlag.

E. Clarke, M. Talupur, and D. Wang. SAT based Predicate Abstraction for Hardware
Verification. Technical Report CMU-ECE-CSSI 02-45, Carnegie Mellon University, ECE
Department, 2002.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification, pages 154-169, 2000.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

D. Dams and K. S. Namjoshi. Shape analysis through predicate abstraction and model
checking. In VMCAI, 2003.

S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In Computer
Aided Verification, pages 160-171, 1999.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Symposium
on Principles of Programming Languages, pages 58-70, 2002.

R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1995.

G. Nelson. Techniques for Program Verification. PhD thesis, Stanford University, 1980.
S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In O. Grumberg,
editor, Computer Aided Verification, volume 1254, pages 72-83. Springer Verlag, 1997.

