
Program Compatibility Approaches

Edmund Clarke1, Natasha Sharygina1,2, and Nishant Sinha1

1 Carnegie Mellon University
2 Universita della Svizzera Italiana

Abstract. This paper is a survey of several techniques that have proven useful
in establishing compatibility among behaviorally similar programs (e.g., system
upgrades, object sub- and supertypes, system components produced by different
vendors, etc.). We give a comparative analysis of the techniques by evaluating
their applicability to various aspects of the compatibility problem1.

1 Introduction

Component-based development aims to facilitate the construction of large-scale appli-
cations by supporting the composition of simple building blocks into complex applica-
tions. The use of off-the-shelf components offers a great potential for: (1) significantly
reducing cost and time-to-market of large-scale and complex software systems, (2) im-
proving system maintainability and flexibility by allowing new components to replace
old ones, and (3) enhancing system quality by allowing components to be developed
by those who are specialized in the application area. Despite the advantages of the
component-based approach, the use of commercial off-the-shelf software–especially
when delivered as black-box components–has raised a number of technical issues. One
of the fundamental problems relates to guaranteeing the safety of replacement of older
components by their newer or upgraded counterparts. This problem is a particular in-
stance of a more general task of checking compatibility between behaviorally similar
program components. Among many approaches for component-based specification and
design developed over the years (see an excellent overview in [25]), assessment of com-
patibility between different components remains a challenging task.

A limited answer to the component compatibility problem can be given by traditional
type systems. It is well known [19], however, that type checking, while very useful,
captures only a small part of what it means for a program to be correct. Instead it is
necessary to establish a stronger requirement that ensures the behavioral correctness of
components.

This paper provides a selective overview of several techniques that ensure the re-
quirement of behavioral compatibility among components. The paper is organized as
follows. Section 2 gives an overview of the interface automata formalism and describes
the notions of compatiblity and substitutability as defined in this formalism. Section 3
presents a technique to check if upgrades to one or more components in a component

1 The work described in section on substitutability check is based on a 2005 Formal Methods
paper, Dynamic Component Substitutability, Lecture Notes in Computer Science 3582, 2005
by the same authors.

F.S. de Boer et al. (Eds.): FMCO 2005, LNCS 4111, pp. 243–258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 E. Clarke, N. Sharygina, and N. Sinha

assembly are compatible with the other components in the assembly. Section 4 outlines
ideas of behavioral subtyping which ensure that subtype objects preserve properties of
their supertypes. Section 5 presents an automated and compositional procedure to solve
the component substitutability problem in the context of evolving software systems.
Finally, Section 6 provides a comparative evaluation of the presented techniques.

2 Interface Automata Compatibility

Interface automata [10] were proposed by Alfaro et al. for capturing the temporal input-
output (I/O) behaviors of software component interfaces. Given a software component,
these automata model both input assumptions about the temporal order of inputs and
output guarantees about generation of outputs for the component. In contrast to similar
formalisms like I/O automata [20], the interface automata approach handles both com-
position and refinement of automata differently. Two automata are said to be compatible
if there exists some environment that can provide inputs so that the illegal states of the
product automaton are avoided. Composition of two interface automata is defined only
if they are mutually compatible. One interface automaton refines another if it has weaker
input assumptions and stronger output guarantees. Both concepts are formally defined
using game theory semantics. More specifically, they are defined in terms of a game
between Input and Output players, which model the environment and the component
interface automata, respectively.

The interface automata formalism relies on an optimistic approach to component
composition. Composing two interface automata could lead to error states where one
automaton generates an output that is an illegal input for the other automaton. However,
the optimistic composition approach steers clear of the error states by checking if there
exists a legal environment that does not lead the composed system to an error state. As
opposed to the I/O automata approach [20] which allows an arbitrary input environ-
ment (which may lead the composed system to an illegal state), the interface automata
assumes a helpful environment while computing the reachable states of the composed
automaton. Algorithmically, such a composition is obtained by solving a game between
the product automaton of the components (which attempts to get to an error state) and
the environment (which attempts to avoid error states).

The following provides formal description of the interface automata formalism and
the notions of the component composition and refinement.

An interface automaton is a tuple, P = 〈VP , V init
P , AI

P , AO
P , AH

P , TP 〉, where :

– VP is a set of states.
– V init

P ⊆ VP is a set of initial states, having at most one state.
– AI

P , AO
P , AH

P are mutually disjoint sets of input, output and internal actions. The
set of all actions AP = AI

P ∪ AO
P ∪ AH

P .
– TP ⊆ VP × AP × VP is a set of steps.

P is said to be closed if it has only internal actions, i.e., AI
P = AO

P = ∅, otherwise it is
said to be open. If (v, a, v′) ∈ TP , then action a is said to be enabled at state v. The set
AI

P (v) of enabled input actions specifies which inputs are accepted at the state v; the
other inputs in AI

P \ AI
P (v) are illegal inputs at that state.

Program Compatibility Approaches 245

2.1 Composition

Composition of two interface automata is defined only if their actions are disjoint,
except that an input action of one component may coincide with the output action of an-
other component, in which case it is called a shared action. Two automata synchronize
on shared actions, and asynchronously interleave on all other actions.

Formally, two automata P and Q are composable if AI
P ∩ AI

Q = ∅, AO
P ∩ AO

Q = ∅,
AH

Q ∩AP = ∅ and AH
P ∩AP = ∅. The shared actions shared(P, Q) of the two automata

are given by the expression (AI
P ∩ AO

Q) ∪ (AO
P ∩ AI

Q). If P and Q are composable
interface automata, their product P ⊗ Q is the interface automaton defined by: VP⊗Q

= VP × VQ, VP⊗Q = V init
P × V init

Q , AI
P⊗Q = (AI

P ∪ AI
Q) \ shared(P, Q), AO

P⊗Q =
(AO

P ∪ AO
Q) \ shared(P, Q) and AH

P⊗Q = AH
P ∪ AH

Q ∪ shared(P, Q). The transitions
TP⊗Q are obtained by synchronizing P and Q on shared actions and asynchronously
interleaving all other action steps. A state (v, u) in P ⊗ Q is said to be illegal if there
exists a shared action a ∈ P ⊗Q, such that a is enabled in P at state v but is not enabled
in Q at state u or vice-versa.

Compatibility. If the product P ⊗Q is closed, then P and Q are compatible if no illegal
state of P ⊗Q is reachable from an initial state. When P ⊗Q is open, then P and Q can
be compatible if there exists a legal environment interface automaton E (composable
with P ⊗ Q) that can provide inputs to P ⊗ Q such that no illegal state is reachable
in the composition E ⊗ (P ⊗ Q). Alternatively, two interface automata P and Q are
compatible iff (a) they are composable and (b) their composition is non-empty. If P
and Q are compatible, then their composition can be computed by a polynomial time
algorithm [10]. Composition of compatible interface automata is associative and hence
can be computed in an iterative manner.

Intuitively, an interface automaton for a system component represents both assump-
tions about the environment and guarantees (or the observed outputs) of the specified
component. Two assumptions are made about the environment: (i) each output step of
the component must be accepted by the environment as an input and (ii) if an input
action is not enabled at a state of a component, then the environment does not provide
it as an input. The component guarantees consist of the behavior sequences and choices
of input, output and internal actions at each state of the automaton. A drawback of this
formalism is that one can construct trivial legal environments to show compatibility
of components; an environment that generates no inputs for P ⊗ Q can trivially avoid
the illegal states of P ⊗ Q. In other words, the formalism can not express the fact that
specific inputs must be present in the environment.

2.2 Refinement

The refinement relation formalizes the relation between abstract and concrete versions
of the same component. The usual approaches to check refinement are based on the
trace containment or simulation preorder relations. It is argued that the former notions
are only suitable for input-enabled systems, where all input actions at each state are
always enabled. In contrast, for non-input-enabled systems like interface automata, a
refinement check based on checking alternating simulation [10] is proposed. The key

246 E. Clarke, N. Sharygina, and N. Sinha

idea here is that, in the non-input-enabled setting, the implementation must allow more
legal inputs and exhibit fewer outputs, than the specification.

Intuitively, an interface automaton Q refines another interface automaton P (written
Q � P), if there exists an alternating simulation relation � between Q and P , i.e., all
input steps of P can be simulated by Q and all output steps of Q can be simulated by P .
Moreover, AI

P ⊆ AI
Q and AO

Q ⊆ AO
P . Note that both P and Q may also have internal

steps, which are independent from each other. Therefore, the definition of alternating
simulation is extended to handle internal steps. Given a state v of an interface automaton
P , ε − closureP (v) is defined to be the set of states (including v) that are reachable
from v in P via internal actions. Given a state u in Q, ε − closureQ(u) is defined
similarly. Let IP (v) and IQ(u) denote the set of input steps enabled at all states in
ε−closureP (v) and ε−closureQ(u), respectively. Similarly, let O(v) and O(u) denote
the set of output steps enabled at some state in ε − closureP (v) and ε − closureQ(u),
respectively. Also let SP (v, a) denote the set of all successors v′′ in P such that for
some v′ ∈ ε − closureP (v), (v′, a, v′′) ∈ TP . SQ(u, a) is defined similarly.

Now, a binary relation �⊆ VQ × VP is an alternating simulation from Q to P if for
all states v ∈ VP and u ∈ VQ such that u � v, the following conditions hold:

1. I(v) ⊆ I(u) and O(u) ⊆ O(v).
2. For all a ∈ I(v)∪O(u) and all states u′′ ∈ SQ(u, a), there is a state v′′ ∈ SP (v, a)

such that u′′ � v′′.

Finally, Q is said to refine P , if there exist states v ∈ V init
P and u ∈ V init

Q such that
u � v and both AI

P ⊆ AI
Q and AO

Q ⊆ AO
P hold. Refinement between interface automata

is a preorder, i.e., reflexive and transitive.
This notion of refinement has two useful properties:

– Substitutivity. If Q refines P and is connected to the environment by the same in-
puts, then we can always replace P by Q in a larger system. Note that Q must
have no more inputs than P since incompatibilities may occur when environment
presents those inputs to Q.

– Compositionality. In order to check if Q ‖ Q′ � P ‖ P ′ , it is sufficient to check
Q � P and Q′ � P ′, separately.

Interface automata, as defined above, execute asynchronously. The formalism has
been extended to synchronous interfaces [6]. A general formalism relating compo-
nents and their interface models has been developed [11] using the notion of interface
automata.

3 Checking Compatibility of Upgrades

McCamant and Ernst present a technique [21] to check if upgrades to one or more com-
ponents in a component assembly (also referred to as an application) are compatible
with the other components in the assembly. More precisely, their work seeks to identify
unanticipated interactions among software components as a result of an upgrade, be-
fore the older components are replaced by the upgraded ones. Their approach is based
on computing a summary (a set of pre- and post-condition pairs on interface variables)

Program Compatibility Approaches 247

of the observed behavior of the old and new components as well as a summary of the
environment components that interact with the old component. An upgrade is permitted
only if these summaries for the old and new components are compatible; otherwise, a
warning is issued together with a witness that illustrates the incompatibility. The tech-
nique uses a large number of input test sequences and valid executions of components to
compute the summary of the input/output behavior of a component and its environment.
The compatibility check procedure crucially depends on the computed summaries and
the authors have used it successfully to detect incompatibilities during upgrade of the
Linux C library.

3.1 Single Component Upgrade

We now describe their approach for the case of a single component upgrade in an ap-
plication. It is assumed that the application is observed to function properly with some
version of the component and the verification task is to validate that the application will
function correctly after upgrading the component to a new version. The upgrade com-
patibility check technique first computes an operational abstraction (summary) of the
behaviors of the old component that are used by the rest of the system. The summary
is computed using the tool Daikon [14] for automatically inferring program invariants
from a representative set of program behaviors and consists of pre- and post-condition
tuples for the component. The new component vendor also computes this observation
summary for the new component, based on the test suite for the component and pro-
vides the summary to the compatibility check procedure. The procedure then compares
the old and the new operational abstractions to test if the new abstraction is stronger
than the older one. More precisely, the procedure checks if the new abstraction is able
to accept as many inputs and produces no more outputs than the old abstraction. This
check is performed using the Simplify theorem prover [12].

If the test succeeds, then the new component can be safely used in all situations
where the old component was used. Otherwise, the check provides feedback about the
incompatibility in terms of specific procedure pre- and post-conditions. In spite of an
incompatibility being present, it may still be the case that the new component is accept-
able. The final decision is made by examining the feedback manually.

3.2 Multiple Component Upgrades

Handling upgrades for components with persistent state (e.g., due to variables in object-
oriented programs) or callbacks is more difficult. Similarly, handling simultaneous up-
grades for multiple components requires more sophisticated analysis. For this analysis,
an application is sub-divided into modules with the assumption that any upgrade affects
one or more complete modules. Now, the upgrade compatibility check technique not
only computes an observational summary of each upgraded module in the context of
its environment modules, but also computes a summary of the behavior of environment
modules, as observed by that module.

The observational summaries consist of three types of relations. (1) Call and re-
turn relations represent the procedure call dependencies between modules. (2) Internal

248 E. Clarke, N. Sharygina, and N. Sinha

data-flow relations represent how the output of a module depends on the module’s in-
puts. This relation is stored as logical formula on input and output variables of a module
and generalizes upon the observed behaviors of the module during testing. (3) Exter-
nal summary relations represent how each input to the module might depend on the
behavior of the rest of the system and any previous outputs of the module. These re-
lations may be considered to be dual of the internal data-flow relations and represent
assumptions about how the module is used in the application.

In the event of an upgrade of multiple modules, it is assumed that each upgraded
module is accompanied by sets of new data-flow and external summary relations. The
compatibility check is then performed by checking if the new summary relations obey
the old relations. This check is performed using the notion of a feasible subgraph [21]
for a summary relation, which captures a subset of system executions over which the
summary relation should hold. An upgrade is considered to be safe if it allows each sum-
mary relation to hold over every corresponding feasible subgraph. Several optimizations
are presented aimed at reducing the number of feasible subgraphs to be re-validated for
each summary relation.

As an example, consider an application with two modules, U and C, where C is
supplied by a vendor and provides a procedure f and U calls f. The calls and returns
to f are denoted by f and f ′, respectively. The summary relation associated with C
consists of two parts: (i) the preconditions of f (assumptions on external components)
represented by C(f) and (ii) a data-flow relation C(f |f ′) describing the postconditions
of f. Both these relations are based on the vendor’s testing of C. Similarly, the relations
associated with U are as follows: U(f) consists of a set of preconditions describing how
U calls f and U(f |f ′) describes the postconditions U expects from the call. In order to
verify that the new component C may be safely substituted for the old one in the above
application, the following checks are performed:

U(f) =⇒ C(f) (U(f) ∧ C(f ′|f)) =⇒ U(f ′|f)
Here, the first check makes sure that all preconditions C(f) of f in C are met by post-
conditions U(f) of U and the second check ensures that the return values from call to
f satisfy the expectation of the module U . This procedure has been extended to han-
dle upgrades for modules with internal state and callbacks and also for simultaneous
upgrades of multiple modules.

3.3 Case Studies

The authors evaluate their technique on upgrades of the GNU C library distributed
with Linux systems. The library provides the C standard library functions and wrappers
around the low-level system calls and is used by a large number of commonplace appli-
cations on Linux. It contains multiple versions of some procedures in order to maintain
backward compatibility and the linker is responsible for compiling the correct versions
together. The authors subverted the version compatibility checks and checked if the
procedures marked as incompatible can be used without error by the client applications
and whether differences between procedures marked with the same version can cause
errors. Binary versions of the applications and the C library were used together with
a wrapper around the C library, which keeps track of the arguments to and from each
function call in the library.

Program Compatibility Approaches 249

The authors compare two versions of the C library and used the set of common
Linux applications as a ”test suite” for constructing the observational summaries. Of the
selected 76 procedures in the library, the tool correctly warns of 10 behavioral differ-
ences and approves 57 upgrades as compatible. For the remaining 9 procedures, an
(spurious) incompatibility is detected with respect to summaries computed with one
or more test applications. A different experiment examined two incompatible upgrades
of another set of procedures from the C library, where the tool was able to detect the
incompatibilities.

4 Preservation of Program Properties by Behavioral Subtyping

The problem of behavioral consistency among various versions of programs is also ad-
dressed in the work of Liskov and Wing [19]. This work explores ideas of behavioral
subtyping using invariants and constraints. It defines the subtype relation that ensures
that subtype objects preserve properties of their supertypes. The properties are the for-
mal specifications of the sub- and supertypes.

Liskov and Wing define an object’s type not only by the object’s legal values (as
in traditional type checking) but also by its interface with environment (by means of
the object’s methods). Therefore, the properties of the subtype relations are both the
supertype’s values and its methods. Thus, altogether, the behavioral subtyping is defined
to preserve the behavior of supertype methods and also all invariant properties of its
supertype.

4.1 Subtype Relation

The formalization of the subtype relation is given in Figure 1. It uses the model of
a type that is defined as a triple, 〈O, V, M〉, where O is a set of objects, V is a set of
values for an object, and M is a set of methods that provide the means to manipulate the
object. A computation, i.e., program execution, is a sequence of alternating states and
transitions starting in some initial state. The formalization of types uses type invariants
and constraints (for example, type σ can refer to its invariant Iσ and constraint, Cσ).
Methods of each type are denoted by m (for example, methods of type τ are denoted
as mτ .

Subtyping is enforced by the invariant checking that is essentially established as an
abstraction function. Additionally, a renaming map is defined. The rest of the section
provides the formalization of this approach as presented in [19].

The subtype relation relates two types σ and τ . Each type’s specifications preserve
their invariants, Iσ and Iτ , and satisfy their constraints, Cσ and Cτ , respectively. In
the rules, since x is an object of type σ, its value (xpre or xpost) is a member of S
(set of values of type σ) and therefore cannot be used directly in the predicates about
objects of the supertype τ (which are in terms of values in T). Therefore, an abstraction
function A is used to translate these values using the system predicates from subtype to
supertype values. This approach requires that an abstraction function be defined for all
legal values of the subtype (although it need not be defined for values that do not satisfy
the subtype invariant). Moreover, it must map legal values of the subtype to legal values
of the supertype.

250 E. Clarke, N. Sharygina, and N. Sinha

The first clause (cf. Figure 1) addresses the need to relate inherited methods of the
subtype to those of the supertype. The first two signature rules are the standard con-
tra/covariance rules [4,3]. The exception rule says that mσ may not throw more ex-
ceptions (the exceptions concept is taken from object-oriented programming) than mτ ,
since a caller of a method on a supertype object should not expect to handle an un-
known exception. The pre- and post-condition rules are the intuitive counterparts to the
contravariant and covariant rules for method signatures. The pre-condition rule ensures
the subtype’s method can be called in any state required by the supertype. The post-
condition rule says that the subtype method’s post-condition can be stronger than the
supertype method’s post-condition; hence, any property that can be proved based on
the supertype method’s post-condition also follows from the subtype’s method’s post-
condition.

The second clause addresses preserving program-independent properties. The invari-
ant rule and the assumption that the type specification preserves the invariant suffices
to argue that invariant properties of a supertype are preserved by the subtype. This ap-
proach does not include the invariant in the methods (or constraint) rule directly.

Definition of the subtype relation, �: σ = 〈Oσ, S, M〉 is a subtype of τ = 〈Oτ , T, N〉 if
∃A : S → T , and a renaming map, R : M → N , such that:

1. Subtype methods preserve the supertype methods’ behavior. If mτ of τ is the corresponding
renamed method mσ of σ, the following rules must hold:

Signature Rule.

− Contravariance of arguments. mτ and mσ have the same number of arguments. If the list of
argument types of mτ is α and that of mσ is β, then ∀i.αi � βi.
− Covariance of result. Either both mτ and mσ have a result or neither has. If there is a result,
let mτ ’s result type be α and and mσ’s be β. Then β � α.
− Exception rule. The exceptions thrown during execution of mσ are contained in the set of
exceptions thrown during execution of mτ .

Methods Rule. For all (x : σ), the following holds:

− Pre-condition rule. mτ .pre[A(xpre)/xpre] ⇒ mσ.pre.
− Post-condition rule. mσ.post ⇒ mτ .post[A(xpre)/xpre, A(xpost)/xpost]

2. Subtypes preserve supertype properties. For all computations c, and all states ρ and ψ in c
such that ρ precedes ψ, and for all (x : σ), the following holds :

−Invariant Rule. Subtype invariants ensure supertype invariants. Iσ ⇒ Iτ [A(xρ)/xρ]
−Constraint Rule. Subtype constraints ensure supertype constraints.
Cσ ⇒ Cτ [A(xρ)/xρ, [A(xψ)/xψ]

Fig. 1. Definition of the subtype relation [19]

Program Compatibility Approaches 251

4.2 Pragmatics of the Subtype Relation Approach

The definition of the subtype relation by Liskov and Wing captures the intuition of
programmers for designing type hierarchies in object-oriented languages. The major
contribution is that it provides precise definitions to capture it. As a result systems be-
come amenable to formal analysis of ensuring behavioral compatibility between super-
and subtype objects. Liskov and Wing report a number of successful examples where
the subtype relation was useful in validating several benchmarks.

5 Substitutability Check

Our own earlier work [5] gives an automated and compositional procedure to solve the
substitutability problem in the context of evolving software systems. Checking substi-
tutability is defined as verifying whether (i) any updated portion of software continues
to provide all services provided by it earlier counterpart, and (ii) all previously es-
tablished system correctness properties remain valid after the upgrades. A component
is essentially a C program communicating with other components via blocking mes-
sage passing. A component assembly consists of collection of such concurrent compo-
nents. In the following, I denotes the set of indices of the upgraded components in the
assembly.

The procedure consists of two phases, namely, containment and compatibility. The
containment phase checks locally if any useful behavior has been lost during upgrade
of a component in the assembly and relies on simultaneous use of over- and under-
approximations of the evolved software component. The compatibility phase checks if
the added behaviors of the upgraded component violate any global safety specifications.
This phase uses a dynamic assume-guarantee reasoning algorithm, wherein previously
generated assumptions before upgrades are reused efficiently to re-validate the new as-
sembly. The framework uses iterative abstraction/refinement paradigm [2,8,17] for both
containment and compatibility phases. This approach enabled extraction of relatively
simple finite-state models from complex C code. State-event automata (finite automata
with both state and edges labeled) are used to represent these abstractions. Moreover,
simultaneous upgrade of multiple components are allowed in this framework.

5.1 Containment Check

The containment step verifies for each i ∈ I, that Ci
 C
′

i , i.e., every behavior of Ci

is also a behavior of C
′

i . If Ci �
 C
′

i , we also generate a counterexample behavior in
Behv (Ci) \ Behv (C

′

i) which will be subsequently provided as feedback. This contain-
ment check is performed iteratively and component-wise as depicted in Figure 2 (CE
refers to the counterexample generated during the verification phase). For each i ∈ I,
the containment check proceeds as follows:

1. Abstraction. Construct finite models M and M ′ such that the following conditions
C1 and C2 hold:

(C1) Ci
 M (C2) M ′
 C
′

i

252 E. Clarke, N. Sharygina, and N. Sinha

Here M is an over-approximation of Ci and can be constructed by standard predicate
abstraction [15]. M ′ is constructed from C

′

i via a modified predicate abstraction which
produces an under-approximation of its input C component. We now describe the details
of the abstraction steps.

Suppose that Ci comprises of a set of C statements Stmt = {st1, . . . , stk}. Let V be
the set of variables in the Ci. A valuation of all the variables in a program corresponds
to a concrete state of the given program. We denote it by v̄.

Predicates are functions that map a concrete state v̄ ∈ S into a Boolean value. Let
P = {π1, . . . , πk} be the set of predicates over the given program. On evaluating the
set of predicates in P in a particular concrete state v̄, we obtain a vector of boolean
values b̄, where bi = πi(v̄). The boolean vector b̄ represents an abstract state and we
denote this operation by an abstraction function α: b̄ = α(v̄).

True

No All behaviors are preserved

No

Over−approximate Under−approximate

False + CE

Yes

M′
iMi

C′
iCi

Check: CE �∈ C′
i

Check: CE ∈ CiVALIDATION1

VALIDATION2

Check: Mi
 M′
iVERIFICATION

ABSTRACTION

Yes ⇒CE ∈ Ci \C′
i

Refine Enlarge

Fig. 2. The containment phase of the substitutability framework

May Predicate Abstraction: Over-approximation. This step corresponds to the standard
predicate abstraction. Each statement (or basic block) St in Ci is associated with a
transition relation T (v̄, v̄′). Here, v̄ and v̄′ represent a concrete state before and after
execution of St, respectively. Given the set of predicates P and associated vector of
Boolean variables b̄ as before, we compute an abstract transition relation T̂ (b̄, b̄′) as
follows:

T̂ (b̄, b̄′) = ∃v̄, v̄′ : T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′) (1)

T̂ is an existential abstraction of T and is also referred to as its may abstraction
T̂may [24]. We compute this abstraction using the weakest precondition (WP) trans-
former [13,18] on predicates in P along with an automated theorem prover [15].

Must Predicate Abstraction: Under-approximation. The modified predicate abstrac-
tion constructs an under-approximation of the concrete system via universal or must

Program Compatibility Approaches 253

abstraction. Given a statement St in the modified component C
′

i and its associated
transition relation T (v̄, v̄′) as before, we compute its must abstraction with respect to
predicates P as follows:

T̂ (b̄, b̄′) = ∀v̄, ∃v̄′ : T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′) (2)

We use T̂must to denote the above relation. Note that T̂must contains a transition from
an abstract state b̄ to b̄′ iff for every concrete state v̄ corresponding to b̄, there exists a
concrete transition to a state v̄′ corresponding to b̄′ [24]. Further, it has been shown [24]
that the concrete transition relation T simulates the abstract transition relation T̂must.
Hence, T̂must is an under-approximation of T . Again, we compute T̂must using the WP
transformer on the predicates together with a theorem prover. At the end of this phase,
we obtain M as an over-approximation of Ci and M ′ as an under-approximation of C

′

i .

2. Verification. Verify if M
 M ′ (or alternatively M \ B
 M ′ if the upgrade
involved some bug fix and the bug was defined as a SE automata B). If so then from
(C1) and (C2) (cf. Abstraction) above we know that Ci
 C

′

i and we terminate with
success. Otherwise we obtain a counterexample CE .

3. Validation 1. Check if CE is a real behavior of Ci. To do this we first compute the
set S of concrete states of Ci that are reachable by simulating CE on Ci. This is done
via symbolic simulation and the result is a formula φ that represents S. Then CE is a
real behavior of Ci iff S �= ∅, i.e., iff φ is satisfiable. If CE is a real behavior of Ci,
we proceed to the next step. Otherwise we refine model M (remove spurious CE) by
constructing a new set of predicates P ′ and repeat from Step 2.

4. Validation 2. Check if CE is not a real behavior of C
′

i . To do this we first sym-
bolically simulate CE on C

′

i to compute the reachable set S′ of concrete states of C
′

i .
This is done as in the previous validation step and the result is again a formula φ that
represents S′. Then CE is not a real behavior of C

′

i iff S′ = ∅, i.e., iff φ is unsatisfiable.
If CE is not a real behavior of C

′

i , we know that CE ∈ Behv (Ci)\Behv (C
′

i). We add
CE to the feedback step and stop. Otherwise we enlarge M ′ (add CE) by constructing
a new set of predicates P ′ and repeat from Step 2. This step is an antithesis of standard
abstraction-refinement since it adds the valid behavior CE back to M ′. However it is
conceptually similar to standard abstraction-refinement and we omit its details in this
article.

Figure 2 depicts the individual steps of this containment check. The check is either
successful (all behaviors of Ci are verified to be present in C

′

i) or returns an actual
diagnostic behavior CE as a feedback to the developers.

5.2 Compatibility Check

The compatibility check ensures that the upgraded system satisfies global safety speci-
fication. The check relies on an automated assume-guarantee reasoning procedure [9],
where the key idea is to generate an environment assumption for a component automat-
ically and then verify if the rest of the system satisfies the assumption. An algorithm

254 E. Clarke, N. Sharygina, and N. Sinha

for learning regular sets, L∗ [1,23], is used to automatically generate these assump-
tions assisted by a modelchecker [7]. It is assumed that appropriate assumptions have
been generated by performing automated A-G reasoning over the assembly before an
upgrade occurs. Upon an upgrade, the compatibility check procedure reuses the previ-
ously generated assumptions and locally modifies them in order to re-validate the up-
graded component assembly. Similar to the containment phase, this check is performed
on finite-state state-event (SE) automaton abstractions from the C components.

Automated Assume-Guarantee Reasoning. Assume-guarantee (A-G) based reason-
ing [22] is a well-known compositional verification technique. The essential idea here
is to model-check each component independently by making an assumption about its
environment, and then discharge the assumption on the collection of the rest of the com-
ponents. Given a set of component SE automata M1, . . . , Mn obtained after abstraction
and a specification SE automata ϕ, consider the following non-circular A-G rule (called
AG-NC) for n components:

M1 ‖ A1
 ϕ
M2 ‖ · · · ‖ Mn
 A1

M1 ‖ · · · ‖ Mn
 ϕ

In the above, A1 is a deterministic SE automata representing the assumption about the
environment under which M1 is expected to operate correctly. The second premise is
itself an instance of the top-level proof-obligation with n − 1 component SE automata.
Therefore, AG-NC can be recursively applied to the rest of the components so that every
rule premise contains exactly one component automaton. The assumptions are gener-
ated using L∗ together with a model checker for SE automata in an iterative fashion, in
a manner similar to the technique proposed by Cobleigh et al. [9]. In order to show that
a component satisfies a global property, the technique first iteratively learns an assump-
tion automaton that must be satisfied by its environment components. However, this
initial assumption may be too strong to hold on its environment. Therefore, the assump-
tion is gradually weakened by model checking it alternately against the component and
its environment, and using the counterexamples generated.

The compatibility check makes use of AG-NC in the above form to first generate
n − 1 assumptions and then perform re-validation of upgrades. This re-validation may
involve modifying several previously generated assumptions. The compatibility check
avoids re-generating all such assumptions from scratch by proposing a technique to
effectively reuse the previous assumptions by re-validating them first. A dynamic L∗

algorithm is proposed that first re-validates the previously stored set of samples with
respect to the upgraded assembly and then continues to learn in the usual fashion. This
gives rise to a dynamic procedure for A-G reasoning over component assemblies across
upgrades, also called as dynamic A-G.

Compatibility check with Dynamic A-G. The central idea in the compatibility check
algorithm is to use dynamic L∗ for learning assumptions as opposed to the original L∗

algorithm. This allows the check to fully reuse the previous verification results, and in
particular, contributes to its locally efficient nature.

Program Compatibility Approaches 255

Suppose we have a component assembly C consisting of n components and a given
index set I, identifying the upgraded components. We assume that a set of n − 1 as-
sumptions are available from a compatibility check before the upgrade took place. Now,
suppose that the component assembly goes through an upgrade and the behaviors of
one or more SE automata Mi (1 ≤ i ≤ n) change. Note that the previous compat-
ibility check provides us with a set of assumptions Aj (1 ≤ j < n). The dynamic
compatibility check procedure DynamicCheck learns new assumptions required for
the verification of the upgraded assembly while reusing the previous set of assumptions
Aj by first re-validating them, if necessary.

We present an overview of the algorithm DynamicCheck for two SE automata. The
complete details of the generalization of the algorithm to an arbitrary collection of SE
automata can be found in [5]. Suppose we have two old SE automata M1, M2 and a
property SE automaton ϕ. We assume that we previously verified M1 ‖ M2
 ϕ using
DynamicCheck. The algorithm DynamicCheck uses dynamic L∗ to learn appropriate
assumptions that can discharge the premises of AG-NC. In particular suppose that while
trying to verify M1 ‖ M2
 ϕ, DynamicCheck generated an assumption A, with an
observation table T .

Now suppose we have new versions M ′
1, M

′
2 for M1, M2 where at least one of the

Mi is different from M ′
i . DynamicCheck will now reuse T and invoke the dynamic L∗

algorithm to automatically learn an assumption A′ such that: (i) M ′
1 ‖ A′
 ϕ and (ii)

M ′
2
 A′. More precisely, DynamicCheck proceeds iteratively as follows:

1. It checks if M1 = M ′
1. If this holds, then it follows from the definition of AG-

NC that the corresponding assumption language remains the same. Therefore, the
algorithm starts learning from the previous table T itself, i.e., it sets T ′ := T .
Otherwise it re-validates T against M ′

1 to obtain a new table T ′.
2. The algorithm then derives a conjecture A′ from T ′ and checks if M ′

2
 A′. If this
check passes, then the procedure terminates with TRUE and a new assumption A′.
Otherwise, a counterexample CE is obtained.

3. The counterexample CE is analyzed to see if CE corresponds to a real counterex-
ample to M ′

1 ‖ M ′
2
 ϕ (same as a membership query with M ′

1). If so, the algo-
rithm constructs such a counterexample and terminates with FALSE. Otherwise it
updates T ′ using CE .

4. T ′ is closed by making membership queries and the algorithm repeats from Step 2.

5.3 Case Studies

The compatibility check phase for checking component substitutability was imple-
mented in the COMFORT [16] framework. COMFORT extracts abstract component
SE models from C programs using predicate abstraction and performs automated A-G
reasoning on them. If the compatibility check returns a counterexample, the counterex-
ample validation and abstraction-refinement modules of COMFORT are employed to
check for spuriousness and perform refinement, if necessary. The evaluation bench-
marks consist of an assembly having seven components, which implement an inter-
process communication (IPC) protocol.

256 E. Clarke, N. Sharygina, and N. Sinha

Both single and simultaneous upgrades of the write-queue and the ipc-queue compo-
nents in the IPC assembly were used. The upgrades had both missing and extra behav-
iors as compared to the original system. A set of properties describing behaviors of the
verified portion of the IPC protocol were used. It was observed that the compatibility
check required much less time for re-validation (due to reuse of previously generated
assumptions) as compared to time for compositional verification of the original system.

6 Comparative Analysis

We have presented four techniques each of which addresses a problem of behavioral con-
sistency among programs. While the techniques address similar problems of the program
compatibility, they differ greatly in the specification formalisms and algorithmic ap-
proaches. This makes it difficult to conduct comparative analysis among the techniques.
To overcome this difficulty, we chose one of the techniques as a reference point against
which we compared the other three approaches. Specifically, we compared the automata
interface approach, the observation summary approach of McCamant and Ernst, and the
behavioral subtyping technique to our own work on component substitutability.

6.1 Interface Automata Formalism

In the interface automata formalism, substitution check corresponds to a refinement
check, which ensures that the newer component exhibits fewer outputs and accepts
more inputs than the old component. Our approach, however, differentiates between the
refinement and substitution checks. We believe that the refinement check is too strong
to be used as a substitution check since it is not adequate to check substitution locally
without taking into account the exact behaviors of the environment components.

Given two interface automata M and N , checking alternating refinement [10] be-
tween M and N (N � M , cf. Section 2) is an effective way to locally check for
substitution of M by N . However, this refinement check assumes that the environment
components remain the same, i.e., they continue to stimulate all inputs of M and are
capable of responding to no more than the present outputs of M . Note that in case of
multiple component upgrades, it is possible that the new environment for the compo-
nent is more supportive, i.e., on one hand, it does not stimulate all inputs of M and on
the other it is able to respond to even more outputs from M . If the new environment
is more supportive, then it is possible that N �� M but is still substitutable. In other
words, even though some inputs of N may be absent in M , M may still substitute N
since the absent inputs are no longer stimulated by the new environment. Therefore a
substitutability check must take account of the new environment precisely rather than
identifying it on basis of input and output behaviors of the previous component M .
These criteria becomes even more important if multiple components in an assembly
are upgraded and as a consequence, the environment for several components changes
simultaneously.

6.2 Observation-Based Compatibility of Upgrades

McCamant et al. [21] suggest a technique for checking compatibility of multi-
component upgrades. They derive consistency criteria by focusing on input/output

Program Compatibility Approaches 257

component behavior only and abstract away the temporal information. Even though
they state that their abstractions are unsound in general, they report success in detect-
ing important errors on GNU C library upgrades. In contrast, our work on component
substitutability uses abstractions that preserve temporal information about component
behavior and are always sound. Moreover, they need to recompute the external ob-
servational summaries for each upgrade from scratch while our compatibility check
procedure is able to reuse the previous verification proofs to re-validate the upgraded
system.

6.3 Behavioral Subtype Checking

Conceptually, the subtype relation-based approach is similar to our work not only in
that it is based on establishing the behavioral consistency among system components,
but also in that it handles changes among versions of programs. The subtype check
approach handles mutable objects and allows subtypes to have more methods than their
supertypes. The component substitutability approach allows removal and addition of
behaviors to the upgraded component as compared to its earlier counterpart.

The subtype relation is established as an invariant check. It requires defining an
abstraction function that is a restricted form of the simulation relation between the sub-
type and supertype objects. Our work, uses the language containment approach and thus
is more expensive computationally. However, our framework allows checking general
safety properties, while work of Liskov and Wing handles only a restricted set of safety
properties.

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. In Information and
Computation, volume 75(2), pages 87–106, November 1987.

2. T. Ball and S. Rajamani. Boolean programs: A model and process for software analysis.
TR-2000-14, 2000.

3. A. Black, A. Hutchinson, N. Jul, E. Levy, and L. Carter. Distribution and abstract types in
emerald. IEEE TSE, 13(1):65–76, 1987.

4. L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138–164,
1988.

5. Sagar Chaki, Edmund Clarke Natasha Sharygina, and Nishant Sinha. Dynamic component
substitutability analysis. In Proc. of Conf. on Formal Methods, volume 3582 of Lecture Notes
in Computer Science, pages 512–528. Springer Verlag, 2005.

6. Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. Syn-
chronous and bidirectional component interfaces. In CAV, pages 414–427, 2002.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, December 1999.
8. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In E. Allen Emerson and A. Prasad Sistla,
editors, Proceedings of the 12th International Conference on Computer Aided Verification
(CAV ’00), volume 1855 of Lecture Notes in Computer Science, pages 154–169. Springer-
Verlag, July 2000.

258 E. Clarke, N. Sharygina, and N. Sinha

9. J. M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning assumptions
for compositional verification. In Hubert Garavel and John Hatcliff, editors, Proceedings of
the 9th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’03), volume 2619 of Lecture Notes in Computer Science, pages 331–346.
Springer-Verlag, April 2003.

10. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE, 2001.
11. Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design.

In EMSOFT, pages 148–165, 2001.
12. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program

checking. J. ACM, 52(3):365–473, 2005.
13. Edsger Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
14. M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering likely

program invariants to support program evolution. In International Conference on Software
Engineering (ICSE’99), pages 213–224, 1999.

15. Susanne Graf and Hassen Saı̈di. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor, Proceedings of the 9th International Conference on Computer Aided Ver-
ification (CAV ’97), volume 1254 of Lecture Notes in Computer Science, pages 72–83.
Springer-Verlag, June 1997.

16. James Ivers and Natasha Sharygina. Overview of ComFoRT: A model checking reasoning
framework. CMU/SEI-2004-TN-018, 2004.

17. Robert Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1994.

18. K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–288,
2005.

19. B. Liskov and J. Wing. Behavioral subtyping using invariants and constraints. Formal Meth-
ods for Distributed Processing, an Object Oriented Approach, pages 254–280, 2001.

20. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. 1987.
21. Stephen McCamant and Michael D. Ernst. Early identification of incompatibilities in multi-

component upgrades. In ECOOP Conference, Olso, Norway, 2004.
22. A. Pnueli. In transition from global to modular temporal reasoning about programs. In Logics

and models of concurrent systems. Springer-Verlag New York, Inc., 1985.
23. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-

quences. In Information and Computation, volume 103(2), pages 299–347, 1993.
24. Sharon Shoham and Orna Grumberg. Monotonic abstraction-refinement for CTL. In TACAS,

pages 546–560, 2004.
25. Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software - Beyond

Object-Oriented Programming. Addison-Wesley, ACM Press, 2002.

	Introduction
	Interface Automata Compatibility
	Composition
	Refinement

	Checking Compatibility of Upgrades
	Single Component Upgrade
	Multiple Component Upgrades
	Case Studies

	Preservation of Program Properties by Behavioral Subtyping
	Subtype Relation
	Pragmatics of the Subtype Relation Approach

	Substitutability Check
	Containment Check
	Compatibility Check
	Case Studies

	Comparative Analysis
	Interface Automata Formalism
	Observation-Based Compatibility of Upgrades
	Behavioral Subtype Checking

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

