
Progress on the State Explosion Problem in Model
Checking�

Edmund Clarke1, Orna Grumberg2, Somesh Jha3, Yuan Lu4, and Helmut Veith5

1 School of Computer Science, Carnegie Mellon University, USA
edmund.clarke@cs.cmu.edu

2 Computer Science Department, Technion, Haifa, Israel
orna@cs.technion.ac.il

3 Computer Sciences Department, University of Wisconsin, Madison, USA
jha@cs.wisc.edu

4 Network Switch Department, Broadcom Co, USA
ylu@broadcom.com

5 Institute of Information Systems, Vienna University of Technology, Austria
veith@dbai.tuwien.ac.at

Abstract. Model checking is an automatic verification technique for finite state
concurrent systems. In this approach to verification, temporal logic specifications
are checked by an exhaustive search of the state space of the concurrent sys-
tem. Since the size of the state space grows exponentially with the number of
processes, model checking techniques based on explicit state enumeration can
only handle relatively small examples. This phenomenon is commonly called the
”State Explosion Problem”. Over the past ten years considerable progress has
been made on this problem by (1) representing the state space symbolically us-
ing BDDs and by (2) using abstraction to reduce the size of the state space that
must be searched. As a result model checking has been used successfully to find
extremely subtle errors in hardware controllers and communication protocols. In
spite of these successes, however, additional research is needed to handle large
designs of industrial complexity. This aim of this paper is to give a succinct sur-
vey of symbolic model checking and to introduce the reader to recent advances
in abstraction.

1 Introduction

During the last two decades, temporal logic model checking [12,13] has become an
important application of logic in computer science. Temporal logic model checking is
a technique for verifying that a system satisfies its specification by (i) representing the

� This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294, the National Science Foundation (NSF) under Grant No. CCR-9505472, the
Defense Advanced Research Projects Agency (DARPA) under Air Force contract No. F33615-
00-C-1701, the Max Kade Foundation and the Austrian Science Fund Project N Z29-INF. Any
opinions, findings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of SRC, NSF, or the United States
Government.

R. Wilhelm (Ed.): Informatics. 10 Years Back. 10 Years Ahead, LNCS 2000, pp. 176–194, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Progress on the State Explosion Problem in Model Checking 177

system as a Kripke structure, (ii) writing the specification in a suitable temporal logic,
and (iii) algorithmically checking that the Kripke structure is a model of the specifi-
cation formula. Model checking has been successfully applied in hardware verifica-
tion, and is emerging as an industrial standard tool for hardware design. For extensive
overviews of model checking, please refer to [10,11].

Model checking has several important advantages over mechanical theorem provers
or proof checkers for verification of circuits and protocols. The most important is that
the procedure is completely automatic. Typically, the user provides a high level rep-
resentation of the model and the specification to be checked. The model checking al-
gorithm will either terminate with the answer true, indicating that the model satisfies
the specification, or give a counterexample execution that shows why the formula is
not satisfied. The counterexamples are particularly important in finding subtle errors
in complex transition systems. The procedure is also quite fast and often produces an
answer in a matter of minutes. Since partial specifications can be checked, it is unnec-
essary to specify the circuit completely before useful information about its correctness
can be obtained. Finally, the logics used for specifications can directly express many of
the properties that are needed for reasoning about concurrent systems.

The main technical challenge in model checking is the state explosion which can
occur if the system being verified has many components which make transitions in
parallel. A fundamental breakthrough was made in the fall of 1987 by Ken McMillan,
who was then a graduate student at Carnegie Mellon. He argued that larger systems
could be handled if transition relations were represented implicitly with ordered binary
decision diagrams (BDDs) [3]. By using the original model checking algorithm with
the new representation for transition relations, he was able to verify some examples that
had more than 1020 states [6,25]. He made this observation independently of the work
by Coudert et al [16] and Pixley [28,29,30] on using BDDs to check equivalence of
deterministic finite-state machines. Since then, various refinements of the BDD-based
techniques by other researchers have pushed the state count up to more than 10120 [5].
The widely used symbolic model checker SMV [25] is based on these ideas.

Despite the success of symbolic methods, the state explosion problem remains a
major hurdle in applying model checking to large industrial designs. Abstraction is
among the most important techniques for tackling this problem. In fact, abstraction
based methods have been essential for verifying designs of industrial complexity. Cur-
rently, abstraction is typically a manual process, often requiring considerable creativity.
In order for model checking to be used more widely in industry, automatic techniques
are needed for generating abstractions.

This paper is intended as an overview of a recently developed automatic abstrac-
tion technique [9] which extends the general framework of existential abstraction [14].
Existential abstraction computes an upper approximation of the original model. When
a specification in the temporal logic ACTL is true in the abstract model, it will also be
true in the concrete design. However, if the specification is false in the abstract model,
the counterexample may be the result of some behavior in the approximation which
is not present in the original model. When this happens, it is necessary to refine the
abstraction so that the behavior which caused the erroneous counterexample is elimi-
nated. The main contribution of [9] is an efficient automatic refinement technique which

178 Edmund Clarke et al.

uses information obtained from erroneous counterexamples. The refinement algorithm
keeps the size of the abstract state space small due to the use of abstraction functions
which distinguish many degrees of abstraction for each program variable. Practical ex-
periments including a large Fujitsu IP core design with about 500 latches and 10000
lines of SMV code demonstrate the utility of this approach. Although our current im-
plementation is based on NuSMV [8], it is in principle not limited to the input language
of SMV and can be applied to other languages.

Organization of the Paper. The paper is organized as follows: Section 2 contains
an introduction to model checking, temporal logic and the state explosion problem. In
Sections 3 and 4, a succinct overview of symbolic verification, and a more detailed
overview of our recent counterexample-guided abstraction methodology [9] are given.
Directions for future research are outlined in Section 5.

2 Fundamentals of Model Checking

In this section, we outline important notions which are necessary to understand the
subsequent discussion of the state explosion problem. A more rigorous and detailed
introduction can be found in [10].

Kripke Structures. In model checking, the system to be verified is formally repre-
sented by a finite Kripke structure. Essentially, a Kripke structure is a directed graph
whose vertices are labeled by sets of atomic propositions. Vertices and edges are called
states and transitions respectively. One or more states are considered to be initial states.
Consider for example the Kripke structures in Figure 1 which represent traffic lights in
the US and Austria, respectively.

yellowred green yellow

greenyellow

red

Fig. 1. US and Austrian Traffic Lights as Kripke Structures

Thus, a Kripke structure over a set of atomic propositions A is a tuple K =
(S, R, L, I) where S is the set of states, R ⊆ S2 is the set of transitions, I ⊆ S is
the non-empty set of initial states, and L : S → 2A labels each state by a set of atomic
propositions. Note that more complicated definitions of Kripke structures are also used
in the literature. In particular, it is common to label the transitions of a Kripke struc-
ture by actions. As demonstrated by the traffic light example, a Kripke structure can be
viewed as a kind of automaton.

Progress on the State Explosion Problem in Model Checking 179

A path is an infinite sequence of states, π = s0, s1, . . . such that for i ≥ 0,
(si, si+1) ∈ R. Given a path π, πi denotes the infinite path si, si+1, . . . We assume that
the transition relation R is total, i.e., that all states have positive outdegree. Therefore,
each finite path can be extended into an infinite path. Figure 2 indicates how a Kripke
structure is unwound into an infinite tree such that the paths in the Kripke structure and
the infinite tree coincide.

Fig. 2. Unwinding a Kripke Structure. The incoming arrows indicate the initial states.

Computation Tree Logics. CTL� is an extension of propositional logic obtained by
adding path quantifiers and temporal operators.

1. Path quantifiers:
A “for every path”
E “there exists a path”

2. Temporal Operators:
Xp “p holds next time”
Fp “p holds sometime in the future”
Gp “p holds globally in the future”
pUq “p holds until q holds”

In the computation tree logic CTL each temporal operator must be immediately
preceded by a path quantifier. Thus, CTL can be viewed as a temporal logic based on
the compound operators AX,EX,AF,EF,AG,EG,AU,EU. Let s0 be a state in
K . The formal semantics of EX, EG and EU is defined as follows:

s0, K |= EXϕ iff there exists a path π = s0, s1, . . . such that K, s1 |= ϕ
s0, K |= EGϕ iff there exists a path π = s0, s1, . . . such that

for all i ≥ 0, K, si |= ϕ
s0, K |= EϕUψ iff there exists a path π = s0, s1, . . . and an i ≥ 0 such that

for all 0 ≤ j < i, K, sj |= ϕ, and K, si |= ψ.

The remaining CTL operators are defined by abbreviations as follows:

EFϕ ≡ E(trueUϕ) AGϕ ≡ ¬EF¬ϕ

AFϕ ≡ ¬EG¬ϕ AXϕ ≡ ¬EX¬ϕ

AϕUψ ≡ ¬E(¬ψU(¬ ϕ ∧ ¬ψ)) ∧ ¬EG¬ψ

180 Edmund Clarke et al.

Four important CTL operators are illustrated in Figure 3 by typical computation trees.
Each computation tree has s0 as its root.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

g

g

g g g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

g

.

.

.
.
.
.

.

.

.
.
.
.

g

.

.

.
.
.
.

.

.

.
.
.
.

g

g

M, s0 |= AG g M, s0 |= AF g M, s0 |= EF g M, s0 |= EG g

Fig. 3. Example of the most widely used CTL operators. The dark states are states where
g holds true.

Example 1. The following list contains some typical CTL formulas:

– EF(Started ∧ ¬Ready): it is possible to get to a state where Started holds but
Ready does not hold.

– AG(Req ⇒ AFAck): if a Request occurs, then it will be eventually Acknowledged.
– AG(AF DeviceEnabled): DeviceEnabled holds infinitely often on every compu-

tation path.
– AG(EF Restart): from any state it is possible to get to the Restart state.

ACTL is the fragment of CTL where only the operators involving A are used, and
negation is restricted to atomic formulas. An important feature of ACTL is the existence
of counterexamples. For example, the CTL specification AFp denotes ”On all paths, p
holds sometime in the future.” If the specification AFp is violated, then there exists an
infinite path where p never holds. This path is called a counterexample of AFp. In this
paper, we will focus on counterexamples which are finite or infinite paths.

For a formal definition of related temporal logics such as CTL� and LTL, please
refer to [10].

Explicit State Model Checking. Given a Kripke structure K = (S, R, I, L) and a
specification ϕ in a temporal logic such as CTL, the model checking problem is the
problem of finding all states s such that

K, s |= ϕ

and checking if the initial states are among these. An explicit state model checker is a
program which performs model checking directly on a Kripke structure.

Theorem 1. [13,15] Explicit state CTL model checking has time complexity
O(|K||ϕ|).

Progress on the State Explosion Problem in Model Checking 181

Besides linear time complexity, CTL has a number of other remarkable proper-
ties including decidability and the finite model property. Recent research in logic and
databases has generalized the favorable properties of CTL and other temporal logics to
fragments of first order and fixed point logics [1,20] and database query languages [18].

Model checking algorithms are usually fixed point algorithms which exploit the fact
that temporal formulas can be expressed by fixed point formulas. For example, the set
of states Y where the formula EFϕ holds, can be defined inductively as follows:

– If s |= ϕ, then s ∈ Y .
– If s ∈ Y and R(s′, s) then s′ ∈ Y .
– Nothing else is in Y .

This gives rise to the fixed point characterization

EFϕ ≡ µY.ϕ ∨ EX Y

where µ is the least fixed point operator. The fixed point extension of temporal logic is
called the µ-calculus, and has been studied extensively. It is easy to see that all CTL and
CTL� formulas can be expressed using only least fixed points, propositional logic, and
the temporal operator EX. Note that EX is also known as 3 in modal logic. Explicit
state model checking for the µ-calculus is known to be in NP ∩ coNP, but the existence
of a polynomial time algorithm is a famous open problem.

State Explosion. In practice, systems are described by programs in finite state lan-
guages such as SMV or VERILOG. These programs are then compiled into equivalent
Kripke structures.

Example 2. In the verification system SMV, the state space S of a Kripke structure
is given by the possible assignments to the system variables. Thus, a system with 3
variables x, y, reset and variable domains Dx = Dy = {0, 1, 2, 3} and Dreset =
{0, 1} has state space S = Dx × Dy × Dreset, and |S| = 32.

The binary transition relation R is defined by transition blocks which for each vari-
able define its possible next value in the next time cycle, as in the following example:

init(reset) := 0;
next(reset) := {0, 1};

init(x) := 0;
next(x) := case

reset = 1 : 0;
x < y : x + 1;
x = y : 0;
else : x;

esac;

init(y) := 1;
next(y) := case

reset = 1 : 0;
(x = y) ∧ ¬(y = 2) : y + 1;
(x = y) : 0;
else : y;

esac;

Here, next(reset) := {0, 1} means that the value of reset is chosen nondeterministi-
cally. Such situations occur frequently when reset is controlled by the environment, or
when the model of the system is too abstract to determine the values of reset. For de-
tails about the SMV input language, we refer the reader to [25]. Typical CTL properties
to be verified by the system include the following:

182 Edmund Clarke et al.

CTL Informal Semantics

AG EF reset = 1 ”From all reachable states, it is possible to reset the
system in the future.“

EF AG x = 1 “There exists a reachable state, after which x = 1 be-
comes an invariant.”

The main practical problem in model checking is the so-called state explosion
problem caused by the fact that the Kripke structure represents the state space of the
system under investigation, and thus it is of size exponential in the size of the system
description. Therefore, even for systems of relatively modest size, it is often impossible
to compute their Kripke structures.

In the rest of this paper, we will focus on two techniques, symbolic verification and
abstraction which alleviate the state explosion problem.

– Symbolic verification is a conservative approach where the Kripke structure is
represented by succinct data structures (in particular, Binary Decision Diagrams)
without losing information.

– Abstraction techniques in contrast employ knowledge about the structure and the
specification in order to model only relevant features in the Kripke structure.

3 Symbolic Model Checking

In symbolic verification, the transition relation of the Kripke structure is not explicitly
constructed, but instead a Boolean function is computed which represents the transition
relation. Similarly, sets of states are also represented by Boolean functions. Then, the
fixed point algorithms mentioned above are applied to the Boolean functions rather than
to the Kripke structure. Since in many practical situations the space requirements for
Boolean functions are exponentially smaller than for explicit representation, symbolic
verification is able to alleviate the state explosion problem in these situations.

In the remainder of this section, we introduce the main ingredients of symbolic
model checking, and discuss the theoretical limitations of BDD based methods.

Ordered Binary Decision Diagrams. Let A be a set of propositional variables, and
≺ a linear order on A. An ordered binary decision diagram (BDD) O over A is an
acyclic graph (V, E) whose non-terminal vertices (nodes) are labeled by variables from
A, and whose edges and terminal nodes are labeled by 0, 1. Each non-terminal node
v has out-degree 2, such that one of its outgoing edges is labeled 0 (the low edge or
else-edge), and the other is labeled 1 (the high edge or then-edge). If v has label ai and
the successors of v are labeled aj , ak, then ai ≺ aj and ai ≺ ak. In other words, for
each path, the sequence of labels along the path is strictly increasing with respect to ≺.

Each BDD node v represents a Boolean function Ov. The terminal nodes of O
represent the constant functions given by their labels. A non-terminal node v with label
ai whose successors at the high and low edges are u and w respectively, defines the
function Ov := (ai ∧ Ou) ∨ (¬ai ∧ Ow).

As the following example shows, BDDs are related to Boolean decision trees.

Progress on the State Explosion Problem in Model Checking 183

Example 3. The Boolean decision tree of Figure 4 represents the Boolean function x∧
(y ∨ z). The BDD in Figure 5 represents the same Boolean function in a more succinct
way. Note that the BDD can be obtained from the decision tree by merging isomorphic
subtrees, and removing redundant edges. The variable ordering is x ≺ y ≺ z.

y

z z z z

y

10

0 0 0 11100

100 1

x

Fig. 4. Decision
tree for x∧(y∨z).

x

y

z

0

1

0

1

0 1
0 1

Fig. 5. A BDD for func-
tion x ∧ (y ∨ z).

x

y

z

0

1

0

0 1
0 1

x

1

0

1

1 2

3

4

5 6

Fig. 6. A shared BDD.

The size of a BDD is the number of nodes of the BDD. The size of a BDD in
general depends on the variable order ≺, and may be exponential in |A|. However, it is
well-known [3,4] that for every variable order ≺ and Boolean function f there exists
a unique minimal BDD O over A which represents the Boolean function f . Given any
BDD for f which respects ≺, O can be computed in polynomial time. Note that O
contains at most two non-terminal nodes, and no two nodes of O describe the same
Boolean function.

In practice, shared BDDs are used to represent several Boolean functions at once.
For example, in the BDD of Figure 6, the nodes 1, 2 and 3 represent the Boolean func-
tions x ∧ (y ∨ z), ¬x ∧ (y ∨ z) and y ∨ z respectively.

Effective algorithms for handling BDDs have been described in the literature [3]
and highly effective BDD libraries such as CUDD [31] have been developed.

Symbolic Verification Algorithms. A symbolic verification algorithm is an algorithm
whose variables denote not single states, but sets of states which are represented by
Boolean functions (usually as BDDs). Therefore, symbolic algorithms use only such
operations on sets which can be translated into BDD operations. For example, union and
intersection of sets correspond to disjunction and conjunction respectively. Binary De-
cision Diagrams have been a particularly useful data structure for representing Boolean
functions; despite their relative succinctness they provide canonical representations of
Boolean functions, and therefore expressions of the form S1 = S2, which are important
in fixed point computations, can be evaluated very efficiently.

Image computation is the task to compute for a given set Q of states the set of states

EX(Q) := {s : ∃s′.R(s, s′) ∧ s′ ∈ Q}.

184 Edmund Clarke et al.

Recall that CTL can be expressed in fixed point logic with a temporal operator EX.
Therefore, image computation is a central task in symbolic verification.

Image computation is one of the major bottlenecks in verification. Part of the reason
for this, ironically, is the fact that it is in general not feasible to construct a single BDD
for R. Instead, R is represented as the conjunction of several BDDs. The problem then
arises how to compute EX(Q) without actually computing R. In a recent series of
papers [7,26,27], improved algorithms for image computation have been investigated.

Theoretical Limitations of Symbolic Model Checking. Potentially, the BDD repre-
sentation of a Kripke structure may be exponentially more succinct than the explicit rep-
resentation. Practical experience with symbolic verification demonstrates that in many
cases BDDs indeed yield a significant space improvement.

A classic information theoretic argument shows that only a small fraction of all
finite Kripke structures can be exponentially compressed [23]. Of course, the general
limitation applies to compression by BDDs as well. On the other hand, we know that the
large Kripke structures encountered in model checking usually have small descriptions
in terms of hardware description languages. This indicates that BDDs or more advanced
data structures can in principle be used to obtain exponentially succinct representations
of Kripke structures, at least for those Kripke structures in which we are interested.

Practical experiments show that the performance of symbolic methods is highly un-
predictable. This phenomenon can be partially explained by complexity theoretic results
which state that BDD representation does not improve worst case complexity. In fact, it
has been shown [17,33] that representing a decision problem in terms of exponentially
smaller BDDs usually increases its worst case complexity exponentially. For example,
the problem of deciding EFp (reachability) is complete for nondeterministic logspace
NL, while in BDD representation it becomes complete for PSPACE. Similar results
can be shown for other Boolean formalisms and are closely tied to principal questions
in structural complexity theory [19,32,34]. We conclude that symbolic verification is a
very powerful method but needs to be complemented by more aggressive techniques.
The following section deals with abstraction, one such technique.

4 Abstraction

Existential Abstraction. Intuitively speaking, existential abstraction amounts to par-
titioning the states of a Kripke structure into clusters, and treating the clusters as new
abstract states, cf. Figure 7.

Formally, an abstraction function h is described by a surjection h : S → Ŝ where Ŝ
is the set of abstract states. The surjection h induces an equivalence relation ≡ on the
domain S in the following manner: let d, e be states in S, then

d ≡ e iff h(d) = h(e).

Since an abstraction can be represented either by a surjection h or by an equivalence
relation ≡, we sometimes switch between these representations.

The abstract Kripke structure M̂ = (Ŝ, Î, R̂, L̂) corresponding to the abstraction
function h is defined as follows:

Progress on the State Explosion Problem in Model Checking 185

cM

M

Fig. 7. Existential Abstraction. M is the original Kripke structure, and M̂ the abstracted
one. The dotted lines in M indicate how the states of M are clustered into abstract
states.

1. Î(d̂) iff ∃d(h(d) = d̂ ∧ I(d)).
2. R̂(d̂1, d̂2) iff ∃d1∃d2(h(d1) = d̂1 ∧ h(d2) = d̂2 ∧ R(d1, d2)).
3. L̂(d̂) =

⋃
h(d)=bd L(d).

An atomic formula f respects an abstraction function h if for all d and d′ in the do-
main S, (d ≡ d′) ⇒ (d |= f ⇔ d′ |= f). Let d̂ be an abstract state. L̂(d̂) is consistent,
if all concrete states corresponding to d̂ satisfy all labels in L̂(d̂), i.e., collapsing a set
of concrete states into an abstract state does not lead to contradictory labels.

Spurious Counterexamples. It is easy to see that M̂ contains less information than M .
Thus, model checking the structure M̂ potentially leads to wrong results. The following
theorem shows that at least for ACTL, specifications which are correct for M̂ are correct
for M as well.

Theorem 2. Let h be an abstraction and ϕ be an ACTL specification where the atomic
subformulas respect h. Then the following holds: (i) L̂(d̂) is consistent for all abstract
states d̂ in M̂ ; (ii) M̂ |= ϕ ⇒ M |= ϕ.

On the other hand, the following example shows that if the abstract model invali-
dates an ACTL specification, the actual model may still satisfy the specification.

Example 4. Assume that for a US traffic light controller (see Figure 8), we want to
prove ψ = AGAF(state = red) using the abstraction function h(red) = r̂ed and
h(green) = h(yellow) = ĝo. It is easy to see that M |= ψ while M̂ �|= ψ. There exists
an infinite abstract trace 〈r̂ed, ĝo, ĝo, . . . 〉 that invalidates the specification.

186 Edmund Clarke et al.

red green yellow dred cgo

Fig. 8. Abstraction of a US Traffic Light.

If an abstract counterexample does not correspond to some concrete counterexample,
we call it spurious. For example, 〈r̂ed, ĝo, ĝo, . . . 〉 in the above example is a spurious
counterexample.

The Fine Structure of Abstraction Functions. As Example 2 shows, the set of states
S of a Kripke structure is typically obtained as the product D1 × · · ·Dn of smaller
domains. In this situation, an abstraction function h can be described by surjections
hi : Di → D̂i, such that h(d1, . . . , dn) is equal to (h1(d1), . . . , hn(dn)), and Ŝ is equal
to D̂1×· · · D̂n. The equivalence relations≡i corresponding to the individual surjections
hi induce an equivalence relation ≡ over the entire domain S = D1 × · · · × Dn in the
obvious manner:

(d1, · · · , dn) ≡ (e1, · · · , en) iff d1 ≡1 e1 ∧ · · · ∧ dn ≡n en

4.1 Counterexample-Guided Abstraction

Recall that for a Kripke structure M , and an ACTL formula ϕ, our goal is to check
whether the Kripke structure M corresponding to P satisfies ϕ. Our methodology con-
sists of the following steps, cf. Figure 9.

1. Generate the initial abstraction: We generate an initial abstraction h by examining
the transition blocks corresponding to the variables of the program which describes
M , cf. Example 2. A detailed description of the initial abstraction is given in [9].

2. Model-check the abstract structure: Let M̂ be the abstract Kripke structure corre-
sponding to the abstraction h. We check whether M̂ |= ϕ. If the check is affir-
mative, then we can conclude that M |= ϕ (see Theorem 2). Suppose the check
reveals that there is a counterexample T̂ . We ascertain whether T̂ is an actual coun-
terexample, i.e., a counterexample in the unabstracted structure M . If T̂ turns out
to be an actual counterexample, we report it to the user, otherwise T̂ is a spurious
counterexample, and we proceed to step 3.

3. Refine the abstraction: We refine the abstraction function h by partitioning a sin-
gle equivalence class of ≡ so that after the refinement the abstract structure M̂
corresponding to the refined abstraction function no longer admits the spurious
counterexample T̂ . We will discuss partitioning algorithms for this purpose in Sec-
tion 4.3. After refining the abstraction function, we return to step 2.

Using counterexamples to refine abstract models has been investigated by a num-
ber of other researchers beginning with the localization reduction of Kurshan [21]. He

Progress on the State Explosion Problem in Model Checking 187

cM �|= ϕ

bT

cM

refinement

stop

generate initial
abstraction

model check

counterexample bT

bT is spurious

cM |= ϕ

is spurious
check whether bT

bT is not spurious

generate

M and ϕ

Fig. 9. Counterexample based refinement.

models a concurrent system as a composition of L-processes L1, . . . , Ln (L-processes
are described in detail in [21]). The localization reduction is an iterative technique that
starts with a small subset of relevant L-processes that are topologically close to the
specification in the variable dependency graph. All other program variables are ab-
stracted away with nondeterministic assignments. If the counterexample is found to be
spurious, additional variables are added to eliminate the counterexample. The heuristic
for selecting these variables also uses information from the variable dependency graph.
A similar approach has been described by Balarin in [2,22].

4.2 Model Checking the Abstract Model

We use standard symbolic model checking procedures to determine whether M̂ satisfies
the specification ϕ. If it does, then by Theorem 2 we can conclude that the original
Kripke structure also satisfies ϕ. Otherwise, assume that the model checker produces a
counterexample T̂ corresponding to the abstract model M̂ . In the rest of this section,
we will focus on counterexamples which are either finite paths or infinite paths (loops).

Identification of Spurious Finite Path Counterexamples First, we will tackle the
case when the counterexample T̂ is a finite path 〈ŝ1, · · · , ŝn〉. Given an abstract state
ŝ, the set of concrete states s such that h(s) = ŝ is denoted by h−1(ŝ), i.e., h−1(ŝ) =
{s|h(s) = ŝ}. We extend h−1 to sequences in the following way: h−1(T̂) is the set of
concrete finite paths given by the following expression

188 Edmund Clarke et al.

{〈s1, · · · , sn〉|
n∧

i=1

h(si) = ŝi ∧ I(s1) ∧
n−1∧
i=1

R(si, si+1)}.

We will occasionally write h−1
path to emphasize the fact that h−1 is applied to a sequence.

Next, we give a symbolic algorithm to compute h−1(T̂). Let S1 = h−1(ŝ1) ∩ I and R
be the transition relation corresponding to the unabstracted Kripke structure M . For
1 < i ≤ n, we define Si in the following manner: Si := Img(Si−1) ∩ h−1(ŝi). Recall
that Img(Si−1) is the forward image of Si−1 with respect to the transition relation
R. The sequence of sets Si is computed symbolically using BDDs and the standard
image computation algorithm. The following lemma establishes the correctness of this
procedure.

Lemma 1. The following are equivalent:

(i) The finite path T̂ corresponds to a concrete counterexample.
(ii) The set of concrete finite paths h−1(T̂) is non-empty.
(iii) For all 1 ≤ i ≤ n, Si �= ∅.

��

��

��
��
��
��

�
�
�
�

������

��

���� ��

��
��
��
��

������

����
����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

������

���
���
���
���

����

����

����
����
����
����
����

����
����
����
����
����1

2

3

4 7

11

12

8

6

5

9

10

1̂ 2̂ 4̂3̂

Fig. 10. An abstract counterexample

Algorithm SplitPATH
S := h−1(bs1) ∩ I
j := 1
while (S �= ∅ and j < n) {

j := j + 1
Sprev := S
S := Img(S)∩ h−1(bsj) }

if S �= ∅ then output counterexample
else output j, Sprev

Fig. 11. SplitPATH checks spurious
finite paths.

Example 5. Consider a program with only one variable with domain S = {1, · · · , 12}.
Assume that the abstraction function h maps x ∈ S to �(x−1)/3�+1. There are four ab-
stract states corresponding to the equivalence classes {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and
{10, 11, 12}. We call these abstract states 1̂, 2̂, 3̂, and 4̂. The transitions between states
in the concrete model are indicated by the arrows in Figure 10; small dots denote non-
reachable states. Suppose that we obtain an abstract counterexample T̂ = 〈1̂, 2̂, 3̂, 4̂〉.
It is easy to see that T̂ is spurious. Using the terminology of Lemma 1, we have
S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, and S4 = ∅. Notice that S4 and there-
fore Img(S3) are both empty.

It follows from Lemma 1 that if h−1(T̂) is empty (i.e., if the counterexample T̂
is spurious), then there exists a minimal i (2 ≤ i ≤ n) such that Si = ∅. The sym-
bolic Algorithm SplitPATH in Figure 11 computes this number and the set of states
in Si−1. In this case, we proceed to the refinement step (see Section 4.3). On the other
hand, if the conditions stated in Lemma 1 are true, then SplitPATH will report a “real”
counterexample and we can stop.

Progress on the State Explosion Problem in Model Checking 189

Identification of Spurious Loop Counterexamples. Now we consider the case when
the counterexample T̂ includes a loop, which we write as 〈ŝ1, · · · , ŝi〉〈ŝi+1, · · · , ŝn〉ω.
The loop starts at the abstract state ŝi+1 and ends at ŝn. Since this case is more compli-
cated than the finite path counterexamples, we first present an example in which some
of the typical situations occur.

Example 6. We consider a loop 〈ŝ1〉〈ŝ2, ŝ3〉ω as shown in Figure 12. In order to find
out if the abstract loop corresponds to concrete loops, we unwind the counterexample
as demonstrated in the figure. There are two situations where cycles occur. In the figure,

��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��

�
�
�
�

���� ����

�
�
�
�

��
��
��
��

����

�����
�
�
�

��

�
�
�
�

�
�
�
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

�
�
�
�

����

����

��

����

����

�
�
�
�

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

����

�� �� ��

����

����

��
��
��
��

��
��
��
��

�
�
�
�

cs1 cs3cs2 S0
1 S0

2 S0
3 S1

2 S1
3 S2

2 S2
3

Fig. 12. A loop counterexample, and its unwinding.

for each of these situations, an example cycle (the first one occurring) is indicated by
a fat dashed arrow. We make the following important observations: (i) A given abstract
loop may correspond to several concrete loops of different size. (ii) Each of these loops
may start at different stages of the unwinding. (iii) The unwinding eventually becomes
periodic (in our case S0

3 = S2
3), but only after several stages of the unwinding. The size

of the period is the least common multiple of the size of the individual loops, and thus,
in general exponential.

We conclude from the example that a naive algorithm may have exponential time com-
plexity due to an exponential number of loop unwindings. However, it is shown in [9]
that a minor modification of the algorithm SplitPATH can be used to analyze abstract
loop counterexamples effectively. For easy reference we shall refer to this algorithm as
SplitLOOP.

4.3 Refining the Abstraction

In this section we explain how to refine an abstraction to eliminate the spurious coun-
terexample. Let us first consider the situation outlined in Figure 13. We see that the
abstract path does not have a corresponding concrete path. Whichever concrete path we
go, we will end up in state D, from which we cannot go further. Therefore, D is called
a deadend state. On the other hand, the bad state is state B, because it made us believe
that there is an outgoing transition. It is easy to see that the algorithm SplitPath of the
previous section will output the set of deadend states. The question now arises how to
partition the abstract state in such a way that the spurious counterexample is eliminated.

190 Edmund Clarke et al.

D

I B

cM

M

Fig. 13. The abstract path in M̂ (indicated by the thick arrows) is spurious. To eliminate
the spurious path, the abstraction has to be refined as indicated by the thick line in M .

Since we know from the previous section that loop counterexamples can be treated
in a very similar way as finite path counterexamples, we will concentrate on finite path
counterexamples. Let us formally consider the case when the counterexample T̂ =
〈ŝ1, · · · , ŝn〉 is a finite path. Since T̂ does not correspond to a real counterexample, by
Lemma 1 (iii) there exists a set Si ⊆ h−1(ŝi) with 1 ≤ i < n such that Img(Si) ∩
h−1(ŝi+1) = ∅ and Si is reachable from initial state set h−1(ŝ1) ∩ I . Since there is
a transition from ŝi to ŝi+1 in the abstract model, there is at least one transition from
a state in h−1(ŝi) to a state in h−1(ŝi+1) even though there is no transition from Si

to h−1(ŝi+1). We partition h−1(ŝi) into three subsets Si,D , Si,B , and Si,I as follows
(compare Figure 14):

Deadend States Si,D = Si

Bad States Si,B = {s ∈ h−1(ŝi)|∃s′ ∈ h−1(ŝi+1).R(s, s′)}
Irrelevant States Si,I = h−1(ŝi) \ (Si,D ∪ Si,B).

Thus, we have partitioned the abstract state h−1(ŝi) according to the above discussion.
For illustration, consider again the example in Figure 10. Note that S1 = {1, 2, 3},
S2 = {4, 5, 6}, S3 = {9}, and S4 = ∅. The deadend state is S3,D = {9}, the bad state
is S3,B = {7}, and the irrelevant state is S3,I = {8}. Since Si,B is not empty, there
is a spurious transition ŝi → ŝi+1. This causes the spurious counterexample T̂ . Hence
in order to refine the abstraction h so that the new model does not allow T̂ , we need a
refined abstraction function which separates the two sets Si,D and Si,B , i.e., we need
an abstraction function, in which no abstract state simultaneously contains states from
Si,D and from Si,B . In Figure 13, such a refinement of the partition is indicated by a
thick line.

It is natural to describe the needed refinement in terms of equivalence relations: Re-
call from our discussion about the fine structure of abstraction functions that h−1(ŝ)
is an equivalence class of ≡ which has the form E1 × · · · × En, where each Ei is an

Progress on the State Explosion Problem in Model Checking 191

equivalence class of ≡i. Thus, the refinement ≡′ of ≡ is obtained by partitioning the
equivalence classes Ej into subclasses, which amounts to refining the equivalence rela-
tions ≡j . The size of the refinement is the number of new equivalence classes. Ideally,
we would like to find the coarsest refinement that separates the two sets, i.e., the separat-
ing refinement with the smallest size. We can show however that this is computationally
intractable.

Theorem 3. (i) The problem of finding the coarsest refinement is NP-hard; (ii) when
Si,I = ∅, the problem can be solved in polynomial time.

Thus, we conclude that it is the existence of the irrelevant states which makes the
problem hard. (Intuitively, the existence of irrelevant states increases the number of
possible solutions, and therefore, it is hard to identify the optimal one.)

The polynomial time symbolic algorithm PolyRefine corresponding to case (ii) of
Theorem 3 is described in Figure 15. The algorithm uses the following notation: Let
P+

j , P−
j be two projection functions, such that for s = (d1, . . . , dm), P+

j (s) = dj and
P−

j (s) = (d1, . . . , dj−1, dj+1, . . . , dm). Then proj(Si,D, j, a) denotes the projection
set {P−

j (s)|P+
j (s) = a, s ∈ Si,D}.

h−1(bsi) h−1(dsi+1)h−1(dsi−1)

Si,I

Si,B

Si,D

Fig. 14. Three sets Si,D, Si,B , and
Si,I

Algorithm PolyRefine
for j := 1 to m {

≡′
j := ≡j

for every a, b ∈ Ej {
if proj(Si,D, j, a) �= proj(Si,D, j, b)

then ≡′
j := ≡′

j \{(a, b)} }}

Fig. 15. The algorithm PolyRefine

In the implementation [9], we use the following heuristics: We merge the irrelevant
states in Si,I into Si,B , and use the algorithm Polyrefine to find the coarsest refinement
that separates the sets Si,D and Si,B ∪ Si,I . The equivalence relation computed by
PolyRefine in this manner is not optimal, but it is a correct refinement which separates
Si,D and Si,B , and eliminates the spurious counterexample. This heuristic has given
good results in our practical experiments.

Our procedure continues to refine the abstraction function by partitioning equiv-
alence classes until a real counterexample is found, or the ACTL property is verified.
The partitioning procedure is guaranteed to terminate since each equivalence class must
contain at least one element. Thus, our method is complete.

Theorem 4. Given a model M and an ACTL specification ϕ whose counterexample is
either a finite path or a loop, our algorithm will find a model M̂ such that M̂ |= ϕ ⇔
M |= ϕ.

192 Edmund Clarke et al.

5 Directions for Future Research

Despite the progress in model checking made during the last twenty years, additional
research is needed to realize the full potential of the method. Some particularly fertile
research directions are listed below:

– Investigate the use of abstraction, compositional reasoning, and symmetry to reduce
the state explosion problem.

– Develop methods for verifying parametrized systems, i.e., systems with arbitrarily
many identical components.

– Develop practical tools for real-time and hybrid systems. Such systems involve both
discrete variables and variables that change continuously with time.

– Investigate alternatives to BDDs for symbolic model checking, such as the use of
efficient SAT procedures like GRASP [24].

– Combine model checking with deductive verification, i.e., automated theorem prov-
ing.

– Extend current model checking techniques to software, in particular safety-critical
embedded systems that involve both hardware and software.

– Develop tool interfaces suitable for system designers. Temporal logic may not be
the most perspicuous specification language for engineers.

Many of these topics, along with appropriate references, are discussed in [10].

References

1. H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of
predicate logic. Journal of Philosophical Logic, 27:217–274, 1998.

2. F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative approach to language containment.
In Computer-Aided Verification, volume 697 of LNCS, pages 29–40, 1993.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transaction
on Computers, pages 35(8):677–691, 1986.

4. R. E. Bryant. On the complexity of VLSI implementations and graph representations of
boolean functions with application to integer multiplication. IEEE Transaction on Comput-
ers, pages 40:205–213, 1991.

5. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned transi-
tion relations. In A. Halaas and P. B. Denyer, editors, Proceedings of the 1991 International
Conference on Very Large Scale Integration, Aug. 1991. Winner of the Sidney Michaelson
Best Paper Award.

6. J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98:142–170, 1992.

7. P. Chauhan, E. Clarke, S. Jha, and H. Veith. Efficient image computation. Manuscript, 2000.
8. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model

checker. Software Tools for Technology Transfer, 1998.
9. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement. In Computer-Aided Verification (CAV) 2000, volume 1855 of LNCS. Springer,
2000. Full version available as Technical Report CMU-CS-00-103, Carnegie Mellon Uni-
versity.

10. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Publishers, 1999.

Progress on the State Explosion Problem in Model Checking 193

11. E. Clarke and H. Schlingloff. Model checking. In J. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning. Elsevier, 2000. to appear.

12. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs: Workshop, LNCS, 1981.

13. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concur-
rent system using temporal logic. In Proceedings of the Tenth Annual ACM Symposium on
Principles of Programming Languages (POPL), January 1983.

14. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Trans-
actions on Programming Languages and System (TOPLAS), 16(5):1512–1542, September
1994.

15. E. M. Clarke Jr., E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM TOPLAS, 8(2):244–263, Apr.
1986.

16. O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines
based on symbolic execution. In J. Sifakis, editor, Proceedings of the 1989 International
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble, France,
volume 407 of Lecture Notes in Computer Science. Springer-Verlag, June 1989.

17. J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan. Complexity of problems on
graphs represented as OBDDs. Chicago Journal of Theoretical Computer Science, 1999.

18. G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: a deductive query language with linear
time model checking. ACM Transactions on Computational Logic (TOCL), 2001. Accepted
for publication.

19. G. Gottlob, N. Leone, and H. Veith. Succinctness as a source of complexity in logical for-
malisms. Annals of Pure and Applied Logic, 97(1–3):231–260, 1999.

20. E. Grädel and I. Walukiewicz. Guarded fixed point logic. In G. Longo, editor, Proc. 14th
IEEE Symp. on Logic in Computer Science, pages 45–54, 1999.

21. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton University
Press, 1994.

22. Y. Lakhnech. personal communication. 2000.
23. M. Li and P. Vitányi. An introduction to Kolmogorov Complexity and its applications. Sp-

inger Verlag, New York, 1993.
24. J. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for propositional satisfi-

ability. IEEE Transactions on Computers, 48(5):506–521, 1999.
25. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
26. I. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: The question in image

computation. In Proceedings of the 37th Design Automation Conference (DAC’00), pages
26–28, Los Angeles, June 2000.

27. I. Moon and F. Somenzi. Border-block triangular form and conjunction schedule in im-
age computation. In Proceedings of the Formal Methods in Computer Aided Design (FM-
CAD’00), November 2000. To appear.

28. C. Pixley. A computational theory and implementation of sequential hardware equivalence.
In R. Kurshan and E. Clarke, editors, Proc. CAV Workshop (also DIMACS Tech. Report 90-
31), Rutgers University, NJ, June 1990.

29. C. Pixley, G. Beihl, and E. Pacas-Skewes. Automatic derivation of FSM specification to
implementation encoding. In Proceedings of the International Conference on Computer
Desgin, pages 245–249, Cambridge, MA, Oct. 1991.

30. C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchronization sequences
based on binary decision diagrams. In Proceedings of the 29th Design Automation Confer-
ence, pages 620–623, June 1992.

31. F. Somenzi. CUDD: CU decision diagram package. http://vlsi.colorado.edu/ fabio/.

194 Edmund Clarke et al.

32. H. Veith. Languages represented by boolean formulas. Information Processing Letters,
63:251–256, 1997.

33. H. Veith. How to encode a logical structure as an OBDD. In Proc. 13th Annual IEEE
Conference on Computational Complexity (CCC), pages 122–131. IEEE Computer Society,
1998.

34. H. Veith. Succinct representation, leaf languages and projection reductions. Information and
Computation, 142(2):207–236, 1998.

	Progress on the State Explosion Problem in Model Checking
	Introduction
	Organization of the Paper.

	Fundamentals of Model Checking
	Kripke Structures.
	Computation Tree Logics.
	Explicit State Model Checking.
	State Explosion.

	Symbolic Model Checking
	Ordered Binary Decision Diagrams.
	Symbolic Verification Algorithms.
	Theoretical Limitations of Symbolic Model Checking.

	Abstraction
	Existential Abstraction.
	Spurious Counterexamples.
	The Fine Structure of Abstraction Functions.
	Counterexample-Guided Abstraction
	Model Checking the Abstract Model
	Identification of Spurious Finite Path Counterexamples
	Identification of Spurious Loop Counterexamples.

	Refining the Abstraction

	Directions for Future Research
	References

