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Abstract. The parameterized verification of concurrent algorithms and protocols
has been addressed by a variety of recent methods. Experience shows that there is
a trade-off between techniques which are widely applicable but depend on non-
trivial human guidance, and fully automated approaches which are tailored for
narrow classes of applications. In this spectrum, we propose a new framework
based on environment abstraction which exhibits a large degree of automation and
can be easily adjusted to different fields of application. Our approach is based on
two insights: First, we argue that natural abstractions for concurrent software are
derived from the “Ptolemaic” perspective of a human engineer who focuses on a
single reference process. For this class of abstractions, we demonstrate soundness
of abstraction under very general assumptions. Second, most protocols in given a
class of protocols — for instance, cache coherence protocols and mutual exclusion
protocols — can be modeled by small sets of compound statements. These two
insights allow to us efficiently build precise abstract models for given protocols
which can then be model checked. We demonstrate the power of our method by
applying it to various well known classes of protocols.

1 Introduction

In many areas of system engineering, distributed concurrent computation has become
an essential design principle. For instance, the controllers on an automobile have to be
necessarily distributed. Further, in fundamental areas like chip design, distributed com-
putation often offers the best way to increased performance. Protocols like cache coher-
ence protocols, mutual exclusion protocols, synchronization protocols form the bedrock
on which these distributed systems are built. Experience has shown however that de-
signing such protocols correctly is a non-trivial task for human engineers and should
be supported by computer-aided verification methods. Although non-rigorous verifica-
tion techniques such as testing are very effective in finding many obvious errors, they
cannot explore all interleaving behaviors, and may miss subtle errors. Consequently,
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rigorous formal verification techniques are indispensable in ensuring the correctness of
such protocols.

Important classes of distributed protocols are designed parametrically, i.e., for an
unlimited number of concurrent processes. For example, cache coherence protocols are
designed to be correct independently of the exact number of caches. Verifying a proto-
col parametrically is however difficult, and is known to be undecidable [24]]. Nonethe-
less, parameterized verification has received considerable attention in the recent years.
Parameterized verification of cache coherence protocols is a pressing problem for the
hardware industry and has been considered by [TTI17/6/4I12]. Another important class
of protocols that has been widely studied is mutual exclusion protocols [T8IT4/2/20].

The approaches by McMillan [17], Chou et al. [6]], which have been successfully ap-
plied to industrial-strength cache coherence protocols require significant human guid-
ance during verification. On the other hand, researchers have not been able to apply
largely automatic methods like the ones by Lahiri et al and Pnueli et al to
large protocols. Thus, while the ideal is to have a single automatic method to handle the
whole class of real life protocols, it has come to be accepted that any practically useful
tool will involve some human intervention. The goal then is to minimize the amount of
effort and ingenuity required to guide a verification tool successfully. In this paper, we
are proposing a framework that addresses this issue.

Our method is built around two insights which we describe in the following sub-
sections: (1) humans tend to reason about distributed systems from the “Ptolemaic”
viewpoint of an individual process, and (2) natural classes of protocols can be captured
by a small number of compound statements. Combined, these two insights lead to an
abstraction framework which accounts for the specifics of distributed systems and can
be easily adjusted to different classes of protocols.

Ptolemaic System Analysis. The success of the Ptolemaic system (where earth is the
center of the cosmos) over many centuries reveals an innate reasoning principle which
the human mind applies to complex systems: we tend to imagine complex systems with
the human observer in the center. Although this Ptolemaic intuition is wrong for many
systems we encounter in nature, it is naturally built into the systems we construct.

Let us look more closely at the case of concurrent systems. During the construction
of such a system, the programmer arguably imagines him/herself in the position of one
reference process, around which the other processes — which constitute the environment
—evolve. In fact, we usually consider a program to be well written when its correctness
can be intuitively understood from the Ptolemaic viewpoint of a single process. Thus,
an abstract model that reflects the viewpoint of a reference process is likely to con-
tain sufficient information for asserting system correctness. The goal of environment
abstraction is to put this intuition into a formal and practically useful framework.

Our concrete models are concurrent parameterized systems, where the number of
processes is the parameter, and all processes execute the same program. We write P(K)
to denote a system with K > 1 processes. Thus, the formal verification question is

VK > 1.P(K) = Vz.p(x)

where Vzp(z) is an indexed temporal logic specification [3].
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Each abstract state in our framework can be described by a formula A(x) where x
stands for the process chosen to act as the reference process. The abstract state A(x)
will contain (i) a detailed description of the internal state of process x and (ii) a con-
cise abstract description of x’s environment consisting of other processes. The abstract
transition relation is defined by a new form of existential abstraction which quantifies
over the parameter K~ and the variable x: If some concrete system P(K) has a process p
and a transition from state s1 to sy such that A;(p) holds in state s1, and As(p) hols in
state s, then we include a transition from A (x) to Az () in the abstract model. Thus,
every abstract transition is induced by a concrete transition in some concrete model
P(K). Note that A; (x) and As(z) have to satisfy the same process p before and after
the transition, i.e., the Ptolemaic reference point does not change during a transition.

The main mathematical contribution of this paper is a soundness result which shows
that for a suitably chosen language of descriptions A(x), environment abstraction pre-
serves universally quantified indexed temporal logic specifications, see Section 4. The
requirements for choosing the A(x) are quite general: first, each concrete situation has
to be covered by at least one A(x) (coverage), and second, the A(x) have to be suffi-
ciently expressive to imply truth or falsity of atomic specifications (completeness). Our
soundness result naturally carries over to the case of multiple reference processes.

While this definition of the abstract model reflects our intuition about distributed
system design and ensures soundness of our approach, it is clearly not operational.
Since the parameter K is unbounded, it is often not possible to compute the abstract
transition relation exactly. It is here that our second insight comes into play.

Abstraction Templates for Compound Statements. The communication and co-
ordination mechanisms between the processes in a distributed system are usually con-
fined to a few basic patterns characteristic for each system type. Thus, when we focus
on a particular class of protocols like cache coherence protocols or mutual exclusion
protocols, the protocols in that class can be described in terms of a small number of
compound transactions or statements. For example, to describe cache coherence pro-
tocols we need at most six compound statements [23]], to describe mutex protocols we
need only two statements [8I23], and to describe semaphore based algorithms, we just
need a single statement, cf. Sections [l and 3

This insight allows us to approximate the abstract transition relation for a given
parameterized system in an efficient manner. We know that all transitions of the sys-
tem fall under a few compound statements. From the general construction principle for
Ptolemaic environment abstraction we also know the structure of the abstract domain.
Thus, for each of these compound statements, we can provide an abstraction template.
Technically, we describe this abstraction template in terms of an abstract transition in-
variant, i.e., a formula expressing the relationship between the variables for the current
abstract state and the next abstract state. Note that this invariant is given in a generic
fashion, independently of the protocol in which it is used. For each concrete statement,
we just have to plug in the specific parameters of that transition into the template in-
variant. Thus, the template invariants have to be written only once for each statement
type. Since there are only a small number of compound statements for each class of
protocols, writing the abstract template invariants is usually easy.
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Tool Flow of the Environment Abstraction Framework . Once the compound state-
ments for a protocol class are integrated in the framework, the tool flow is as follows:

1. The user describes P(K) as a program in terms of the compound statements.

2. The user writes an indexed specification Va.P(x).

3. The abstraction tool computes the abstract model P from the protocol description.
In our prototype implementation, this abstract model is an SMV model.

4. A model checker verifies PA |= ¢(x). Note that in P4, z is interpreted as the
reference process. If P = (), then V.o (2) holds for all P(K), K > 1. Otherwise,
the model checker outputs an abstract counterexample for further analysis.

Structure of the Paper. In Section 3] we describe the environment abstraction frame-
work in a rigorous and general way. In Section[d] we apply environment abstraction to
the semaphore based mutual exclusion algorithms by Courtois et al. [10]]; these proto-
cols were posed to us as a challenge problem by Peter O’Hearn. In Section[3] we survey
our experiences with other classes of protocols.

2 Related Work

In previous work, we used a specific instance of environment abstraction for the veri-
fication of the Bakery procotol and Szymanski’s algorithm [8]]. Although our paper [8]]
contains several seminal ideas about environment abstraction, it is very different in
scope and generality. In particular, the methods in are tailored towards a specific
application and a hardwired set of specifications, without a general soundness result.

The method of counter abstraction [20] inspired our approach, and can be seen as
a specific, but limited form of environment abstraction. Invisible invariants pro-
vide another novel method for verifying parameterized systems. Both these methods
are restricted to systems without unbounded integer variables.

The Indexed Predicates method is similar to predicate abstraction with the
crucial difference that predicates can contain free index variables (variables that range
over process indices). These indexed predicates are used to construct complex (univer-
sally) quantified invariants for parameterized systems. The abstract descriptions used in
our abstraction are Indexed Predicates in that they contain free index variables. But the
similarity ends there. While we build an abstract transition relation over these descrip-
tions, in the Indexed Predicates method they don’t have an abstract transition relation.
They only have an abstract reachability relation, which specifies what set of abstract
states can one reach starting from another set of abstract states.

The series of papers by McMillan and Chou et al. introduced an impor-
tant and successful approach for parameterized verification. In this approach, which is
based on circular compositional reasoning, a model checker is used as a proof assistant
to carry out parameterized verification. The user however has the burden of coming up
with non-interference lemmas which can be non-trivial and require a deep under-
standing of the protocol under verification.

The TVLA method by Reps et al. [21] is a widely applicable abstract interpreta-
tion based approach for shape analysis, and also for verification of safety properties
of multi-threaded systems, cf. Yahav’s method [26]. TVLA’s canonical abstraction is a
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generalization of predicate abstraction similar in spirit to the description formulas in en-
vironment abstraction. To make verification of unbounded systems possible, TLVA uses
summarization, which is related to the idea of counting abstraction. Special predicates
called instrumentation predicates are used to focus on particular processes in detail.

In recent work, proposes a method to find network invariants using finite au-
tomata learning algorithms due to Angluin and Beirmann. The paper [9] uses a new
completion procedure to strengthen split invariants. While parameterized verification is
not their primary aim, the method is able to produce parameterized proofs for proto-
cols like the Bakery protocol. Other classical approaches to parameterized verification
include regular model checking [1l] and the WS1S based method [3]]. Early work on
parameterized verification was done by Clarke et al [3].

3 A Generic Framework for Environment Abstraction

3.1 System Model

We consider parameterized concurrent systems P(K), where the parameter K > 2
denotes the number of replicated processes. The processes are distinguished by unique
indices in {1,..., K} which serve as process id’s. Each process executes the same
program which has access to its process id. We do not make any specific assumptions
about the processes, in particular we do not require them to be finite state processes.

Consider a system P(K) with a set Sk of states. Each state s € Sk contains
the entire state information for each of the K concurrent processes, i.e., s is a vector
(s1,-..,8K). Technically, P(K) is a Kripke structure (Sk, I, Rk, Li) where I is
the set of initial states and R is the transition relation. We will discuss the labeling
L i for the states in S below.

It is easy to extend our framework to parameterized systems which contain one or
several non-replicated processes in addition. In this case, the states s will be vectors
(8153 8K,t1,- -, leconst) Where the ¢; are the states of the non-replicated processes.
In the following exposition, we will for simplicity omit this easy extension.

3.2 Ptolemaic Specifications

The change of focus brought upon by environment abstraction most visibly affects the
specification language: We use a variation of indexed ACTL* where the atomic formu-
las are able to express not only properties of individual processes, but also properties
of processes in the environment. In our practical examples, the following two atomic
formulas (where c is a constant value) have been most relevant:

Formula Meaning
pc[z] = ¢ the program counter of process x has value ¢
¢ € env(x) there is a process y # x with program counter value ¢
“The environment of x contains a process with program counter value c.”

In this language, we can specify mutual exclusion

Va. AG (pc[z] =5 — —(5 € env(z)))
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and many other important properties with a single quantifier Vx that ranges over the
processes in the system. Intuitively, this is the reason why a single reference process
in the abstract model is able to assert correctness of the specification. Below we will
discuss what properties are expressible with a single quantifier.

3.3 Environment Abstraction

Our examples of atomic formulas motivate the construction of the abstract model: At
each state, we must be able to assert the truth or falsity of the atomic propositions
pe[z] = cand ¢ € env(x). Consequently, the expressions pc[z] = ¢ and ¢ € env(x)
are used as labels in the abstract model. We will write L to denote the finite set of
atomic formulas, and will call them labels further on. Note that L can contain formulas
different from the two examples mentioned above.

The states of the abstract model are formulas A(x) (called “descriptions”) which
describe properties of process x and its environment. Similar to the atomic labels, the
A(x) also have a free variable referring to the reference process. In contrast to the
atomic labels, however, the descriptions will usually be relatively large and intricate
formulas which give a quite detailed picture of the global system state from the point of
view of reference process x. Intuitively, an abstract state A(x) represents all concrete
system states where some process p satisfies A(p). In our running example, the simplest
natural choice for the abstract states are descriptions of the form

pele] = A (J\ Iy #zpely) =) A (J\ 23y # 2pely] =
; ~ h ~
ied i€env(x) ieb —(t€env(x))

)

2
~

where ¢ is a program counter position, and AUB is a partition of all program counter
positions. (Note that this simple base case is a form of counter abstraction; the descrip-
tions we use in applications are often much richer — depending on the complexity of the
problem.) Intuitively, this description says that “the reference process x is in program
counter location c, and the set of program counter locations of the other processes in
the system is A”. Since these formulas all belong to a simple syntactic class, it is easy to
identify A(z) with a tuple, as usually in predicate abstraction, for instance (¢, 4, B). In
the logical framework of this section, it is more natural to view descriptions as formulas.
In the applications, however, we will usually prefer an appropriate tuple notation.

In the rest of this section, we will assume that we have a fixed finite set of descriptions
D which constitute the abstract state space.

Soundness Requirements for Labels and Descriptions. Given a label or description
p(x), we write s = ¢(c) to express that in state s, process ¢ has property . We next
describe two requirements on the set D of descriptions and the set L of labels to make
them useful as building blocks for the abstract model.

1. Coverage. For each system P(K), each state s in Sk and each process c there is
some description A(x) € D which describes the properties of ¢, i.e.,

s = A).

In other words, every concrete situation is reflected by some abstract state.
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2. Completeness. For each description A(x) € D and each label I(z) € L it holds
that either
Ax) — I(x) or Az) — —l(x).

In other words, the descriptions in D contain enough information about a process
to conclude whether a label holds true for this process or not. The completeness
property enables us to give natural labels to each state of the abstract system: An
abstract state A(z) has label I(z) if A(x) — I(x).

Description of the Abstract System P“. Given two sets D and L of descriptions and
labels which satisfy the two criteria coverage and completeness, the abstract system P4
is a Kripke structure

(D, 14, R*, L)
where each A(z) € D has alabel I(x) € Lif A(z) — I(2), i.e., LA(A(z)) = {l(z) :
A(z) — I(c)}. Before we describe 14 and R#, we state the following lemma about
preservation of labels which motivates our definition of the abstraction function below:

Lemma 1. Suppose that s = A(c). Then the concrete state s has label I(c) iff the
abstract state A(x) has label I(x).

Definition 1. Given a concrete state s and a process c, the abstraction of s with refer-
ence process c is given by the set a.(s) = {A(x) € D : s |= A(c)}.

Remark 1. (i) The coverage requirement guarantees that a..(s) is always non-empty. (ii)
If the A(x) are mutually exclusive, then a.(s) always contains exactly one description
A(x). (iii) Two processes ¢, d of the same state s will in general give rise to different
abstractions, i.e., a.(s) = aq($) is, in general, not true.

Now we define the transition relation of the abstract system by a variation of existential
abstraction: R contains a transition between A () and Ay (z) if there exist a concrete
system P(K), two states s1, s2 and a process 7 such that

1. Ai(x) € ar(s1) [or, equivalently, s1 = Aq(r) ]
2. Ag(x) € ar(s2)  [or, equivalently ,so = Ag(r) ]
3. there is a transition from s; to so in P(K), i.e., (s1,$2) € Rk.

We note three important properties of this definition:

(a) We existentially quantify over K, s1, so, and r. This is different from standard
existential abstraction where we only quantify over sy, so. For fixed K and r, our
definition is essentially equivalent to existential abstraction. The only difference is
the obvious change in the labels: the concrete structure has labels of the form I(c),
while the abstract structure has labels of the form I ().

(b) Since Aq(x) € a,(s1) and Ag(x) € «..(s2), both abstractions A; and As use
the same process r. Thus, the Ptolemaic viewpoint of the reference process is not
changed in the transition.

(c) The process which is active in the transition from s; to sp can be any process in
P(K), it does not have to be 7.

Finally, the set I A of abstract initial states is the union of the abstractions of concrete
states, i.e., A(z) € I if there exists a system P (K ) with state s € I and process 7
such that A(z) € «,.(s).
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For environment abstractions that satisfy coverage and completeness we have the
following general soundness theorem.

Theorem 1 (Soundness of Environment Abstraction). Let P(K) be a parameterized
system and P* be its abstraction as described above. Then for single indexed ACT L*
specifications Vx.(x), the following holds:

PA = o(x) implies VK.P(K) = Va.o(x).

The reader is referred to the full version of this paper [7]] for a proof; the full version
also contains the formal generalization of environment abstraction to multiple reference
processes.

3.4 Trade-Off between Expressivity of Labels and Number of Index Variables

In this section, we discuss how a well-chosen set of labels L often makes it possible to
use a single index variable. The Ptolemaic system view explains why we seldom find
more than fwo indices in practical specifications: When we specify a system, we tend
to track properties our process has in relation to other processes in the system, one at a
time. Thus, double-indexed specifications of the form Va # y.¢(x,y) often suffice to
express the specifications of interest. Properties involving three or more processes at a
time are rare, as they consider triangles of processes and their relationships. (Note how-
ever that our method can, in principle, handle an arbitrary number of index variables,
cf. [7].) Let us return to our example specification. Mathematically, we can write this
formula in three ways:

(D) Va,y.x #y — AG (pcz] = 5) — (pcly] #5)

(2) V2.AG (pclz] = 5) — ~(3y # z.pcly] = 5)

(3) V2.AG (pc[z] =5) — (5 € env(x))

Going from (1) to (3) we see that the universal quantifier is distributed over AG and
hidden inside the label 5 € env(z). The Ptolemaic viewpoint again explains why such
situations are likely to happen: In many specifications, we consider our process along
the time axis, but only at each individual time point, we evaluate its relationship to other
processes; thus, a quantification scope inside the temporal operator suffices.

Formally, it is easy to see that the translation from (1) to (3) depends on the dis-
tributivity of conjunction over AG(a — (3) with respect to f3, i.e., AG(a — (¢ A
1)) is equivalent to AG(av — ¢) A AG(aw — ). We give a syntactic characteri-
zation of formulas with this property in [7]. Our characterization relies on previous
work in the context of temporal logic query languages.

4 Verification of the Reader and Writer Algorithms

In this section we apply our framework to two classical semaphore based distributed
algorithms by Courtois et al. [10]. The algorithms ensure mutual exclusion of multiple
concurrent readers and writers. To our knowledge, these algorithms — which were posed
as challenge problems to us by Peter O’Hearn — have not been verified parametrically.
Figure[lshows the code for a reader process in the simpler of the two algorithms.
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L1: P(mutex) L6: P(mutex)
L2: readcount := readcount + 1 L7: readcount := readcount - 1
L3: if readcount = 1 then P(w) LS8: if readcount = 0 then V(w)
L4: V(mutex) L9: V(mutex)

L5: *** reading is performed **%*%*

Fig. 1. The Reader Algorithm

We first give a single compound statement that suffices to describe the semaphore based
algorithms. Then we introduce an appropriate abstract template invariant, and show how
to verify the two algorithms in practice. This example should illustrate all the ingredients
that go into our method and demonstrate the ease of application.

Compound Statement for Semaphore Based Algorithms. A semaphore is a low-
level hardware or OS construct for ensuring mutual exclusion. By design, a semaphore
variable can be accessed by only one process at any given time. The basic operations
on a semaphore variable w are P(w), which acquires the semaphore, and R(w), which
releases the semaphore.

We model a semaphore w as a boolean variable b,, that can be accessed by all pro-
cesses. The acquire and release actions P(w) and R(w) are modeled by setting by, to 1
and O respectively. A semaphore based algorithm has /N identical local processes corre-
sponding to the readers and writers. Readers and writers do not have the same code but
we can create a union of the two syntactically to obtain a single larger process with two
possible start states; depending on which state is chosen as the start state the compound
process either acts as a reader or as a writer. The state space of each local process is
finite. Instead of having multiple local variables, we will assume for simplicity there is
only one local variable pc per process.

In addition to the local processes there is one central process C'. The central pro-
cess essentially consists of the shared variables, including the boolean variables used to
model the semaphores. As with the local processes, we roll up all the variables of the
central process into a single variable st..,, for the sake of simplicity. Note that st can
be an unbounded variable. We will denote the parameterized system by P(N).

The reader and writer algorithms of [10] have three different types of transitions:

1. A simple transition by a local process. For example, the transition at L5 in Figure[Il
2. A local transition conditioned on acquiring or releasing a semaphore, e.g. L1, L4.
3. A transition in which a process modifies a shared variable, e.g., L2, L7.

All three types of transitions can be guarded by a condition on the central variables.
The three types of transitions can be modeled using the compound statement

pc= Ly : if $teen = C1 then goto steen = f(Steen) A pc = Lo
else goto steen = g(Steen) A pc = L.

The semantics of this statement is intuitive: if the local process is in control location L,
it checks if the central process is in state C. In this case, it modifies the central process
to a new state f(steen) (Where f is a function, see below) and goes to Lo. Otherwise,
the central process is modified to g(stcen) and the local process goes to Ls.
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In the semaphore algorithms we consider, the functions f, g are simple linear func-
tions. For instance, in the transition L2 : readcount := readcount + 1 of Figure[I] the
new value for the central variable readcount is a linear function of the previous value.

In the longer version of this paper [7] we present the two algorithms from in
our input language. For example, the semaphore acquire action at L1 in Figure[lcan be
modelled as

pc = L1 : if byyyter = 0 then goto b,,,yte. = 1 A pcl = Lo else goto pc = Ly

Abstract Domain. Our description formulas A(z) are very similar to the example of
Section 3] except for an additional conjunct Acey:

pclz] = pe A (/\ Ay # z.pcly] =) A (/\ —Jy # z.pcly] =1) N Acen
i€A i€B

Here, A, is a predicate which describes properties of the central process, analogous
to classical predicate abstraction. Since the central process does not depend on the ref-
erence process x, the formula A, does not contain the free variable x.

The structure of A, is automatically extracted from the program code. For instance,
for the program of Figure[[l A..,, describes the semaphore variables w, mutex and the
two predicates readcount = 0 and readcount = 1. Thus, Ay has the form

[]w A [F)mutex A [—](readcount = 0) A [=](readcount = 1).

Here, [—] stands for a possibly negated subformula. We write D, to denote the set of
all these A¢q, formulas; in our example, D, has 24 = 16 elements.

As argued above, it is more convenient in the applications to describe an abstract
state A(z) as a tuple. Specifically, we will use the tuple

<pc7 €ly...,En, Acen)

to describe an abstract state A(x). Intuitively, pc refers to the control location of the
reference process, and A, is the predicate abstraction for the central process. The bits
e; describe the presence of an environment process in control location ¢, i.e., ; is 1 if
i € A. (Equivalently, e; is 1 if A(z) — i € env(x).)

We note that the abstract descriptions A(x) and the corresponding tuples can be
constructed automatically and syntactically from the protocol code. Since our labels of
interest are of the form pe[z] = ¢ and ¢ € env(x), it is easy to see that the coverage
and completeness properties are satisfied by construction.

Abstraction Template Invariants. To describe the abstract template invariant, we will
consider two cases: (i) the executing process is the reference process and (ii) the exe-
cuting process is an environment process. For both cases, we will describe a suitable
abstract invariant, and take their disjunction. Recall the general form

pe = Ly : if steen = C1 then goto steen = f(Steen) A pc = Lo
else goto steen = g(Steen) A pc = Ls.

of the compound statement. We will give an invariant for the abstract transition

(pc,e1,. .-, en, Acon) to (pc’ ey, ... el Al
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Case 1: Reference Process Executing. The invariant I,.¢ in this case is

pc=1Li A (1)
[(Cl = Acen A A::en € f(Acen) A pc’ = L) \/ (2)
(Ch B~ Acen) N Alen € 8(Acen) APE’ = LS)] (3

Condition (1) says that the reference process is at control location L;. Condition (2)
corresponds to the then branch: it says that the central process is approximated to be
in state C; in the next state, the reference process is in control location Lo and the
new approximation of the central process is non-deterministically picked from the set
f(Acen). As usually in predicate abstraction, f is an over-approximation of function f:

f(Acen) = {ALsy € Deen | Isteen- Steen = Acen and f(steen) E ALy}

Usually the operations on variables in a protocol are not more complicated than simple

linear operations; consequently, the predicates involved in our environment abstraction

are simple, too. Therefore, computing f is trivial with standard decision procedures.
Condition (3), which corresponds to the else branch, is similar to condition (2).

Case 2: Environment Process Executing. The invariant I, in this case is
er, =1A 4)
[(C1 | Acen A Aty € £(Acen) Ae, = 1) \/ )
(C1 - Acen) N Apen € B(Acen) Nl =1)] (©)

Condition (4) says that some environment process is in control location L;). Condition
(5) is similar to Condition (2) of Case I above, with the exception that e’L2 = 1 forces
a process in the environment to go to location Lo. Condition (6) is analogous to (5).

The invariant I for the compound statement is the disjunction I = Iyef V Iepny Of the
invariants in the two cases. Given a protocol with compound statements cs1, ..., CSp,
we first find invariants (cs1), ..., I(cs,,) by plugging in the concrete parameters of
each statement into the template invariant /. The disjunction of these individual invari-
ants gives us the abstract transition relation.

We denote the abstract system obtained from the template invariant as P’ and the
abstract system obtained from the definition of environment abstraction by P+. Our
construction is a natural over-approximation of P:

1
1

Fact 1. Every state transition from A(x) to A'(z) in PA also occurs in P

Practical Application. For our experiments, we already had a prototype implemen-
tation of environment abstraction to deal with cache coherence and mutual exclusion
protocols. We added new procedures to allow our tool to read in protocols using the
new compound statement and to perform automatic abstraction of the protocol, as de-
scribed in the previous section.

The procedure to compute next values for Acey, i.e., f(Acen), was handled by an
internal decision procedure. (This is a carry over from our previous work with environ-
ment abstraction. In hindsight, calling an external decision procedure is a better option).
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Our tool, written in Java, takes less than a second to find the abstract models given the
concrete protocol descriptions. We use Cadence SMV to verify the abstract model.
For both algorithms in [10], we verified the safety property

Vo # y.AG(pclz] € {LR,LW} — —LW € env(x))

where LR and LW are the program locations for reading and writing respectively.

Our first attempt to verify the protocol produced a spurious counterexample. To un-
derstand the reason for this counterexample, consider the protocol shown in Figure 1l
Each time a reader enters the section between lines L3 and L7, readcount is incre-
mented. When a reader exits the section, readcount is decremented. The semaphore w,
which controls a writer’s access to the critical section, is released only when readcount =
0 and this happens only when no reader is between lines L3 and L7. Our abstract model
tracks only the predicate readcount = 0. The decrement operation on readcount in line
L7 is abstracted to a non-deterministic choice over {0, 1} for the value of the predicate
(readcount = 0). Thus, the predicate can become true (i.e., take value 1) even when
there are readers between lines L3 and L7 and this leads to the spurious counter exam-
ple. To eliminate this spurious counterexample we make use of the invariant

pelz] € [L3..L7] — readcount # 0

This invariants essentially says that for a process between lines L3 and L7, readcount
has to be non-zero. We abstract this invariant into two invariants

pc € [L3..L7] — —(readcount = 0) and ( \/ .er,) — —(readcount = 0).
LE[L3..L7]

for the reference process and the environment respectively. Constraining the abstract
model with these two invariants, we are able to prove the safety property. The model
checking time is less than a minute for both semaphore algorithms.

There still remains an important question: How do we know that the invariant added
to the abstract model is true? First, we note that the invariant is a local invariant in
that it refers only to one process and it is quite easy to convince ourselves that it holds.
To prove formally that the invariant holds, we proceed as follows: Running the model
checker on the original abstract model establishes pc € [L3..L7]-(— readcount =
0). From Theorem [I] we can conclude that Vz.pc|x] € [L3..L7] — readcount # 0,
and thus we are justified in using this invariant as assumption in proving the safety
property. Note that this approach is close in spirit to adding non-interference lemmas,
as described by McMillan and Chou et al. [17/6].

5 Survey of Other Environment Abstraction Applications

In this section, we survey other, more involved applications of the environment abstrac-
tion principle. For a more detailed discussion of these applications, we refer the reader
to Talupur’s thesis [23]], and our predecessor paper [8]].

Mutual Exclusion Protocols. In [8], we have shown how to verify mutual exclu-
sion protocols such as the Bakery protocol and Szymanski’s algorithm. We need two
compound statements which are more complex than in Section [
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Guarded Transition

pc = L : if Votr # x.G(x, otr) then goto pc = Lo else goto pc = L3

Semantics: In control location L1, the process evaluates the guard and changes to control loca-
tion L2 or L3 accordingly.

Update Transition

pc= Ly : forall otr # z if 7 (x, otr) then uy := p(otr) goto pc = Lo

Semantics: At location L1, the process scans over all other processes otr to check if formula
T (x,otr) is true. In this case, the process changes the value of its data variable us according to
ug, := ¢(otr). Finally, the process changes to location Lo.

The abstract domain is also more complex, because each process can have unbounded
data variables. To account for these variables, the A(x) include inter-predicates
IPj(x,y), ie., predicates that span multiple processes. Thus, the A(x) have the form

pefx] =c A /\Ely # x.pcly] =1 AN IPj(z,y) A /\—Ely # x.pcly] =i AN IPj(z,y)
(i,4)€A (i,)€B

for suitable A and B. The inter-predicates are automatically picked from the program
code. For example, a typical inter-predicate for Bakery is t[z] > t[y], which says that
the ticket variable of process x is greater than the ticket variable of process y.

The abstraction templates for this language are quite involved, providing a quite
precise abstract semantics which is necessary for this protocol class. While [8]] assumed
that the compound statements are atomic, we later improved the abstraction to verify
the mutex property of Bakery without this assumption. We defer a full discussion of
these results to a future publication, and refer the reader to [23].

Cache Coherence Protocols. For cache coherence protocols we require six compound
statements. Like semaphore based protocols, cache coherence systems also have a cen-
tral process. The replicated processes, i.e., the caches, have very simple behaviors, and
essentially move from one control location to another. This is modeled by the trivial
local transition pc = Ly : goto pc = Ls. Unlike semaphore based protocols, the di-
rectory (central process) can exhibit complex behaviors, as it has pointer variables and
set variables referring to caches. The compound statement for the directory has the form

guard : do actions A1, Ao, .., Ax

where Ay, ..., Ay are basic actions and guard is a condition on the directory’s control
location and its pointer and set variables. The basic actions comprise goto, assign, add,
remove, pick and remote actions, cf. [7]].

The descriptions A(x) used for cache coherence are similar to those of Section 4]
but owing to the complexity of the directory process, Ace, is more elaborate than in the
semaphore case. We have used this framework to verify the coherence property of sev-
eral versions of German’s protocol and a simplified version of the Flash protocol [23].

Our experiments with the original Flash protocol showed that the abstract model can
become very large. The reason is the high precision of the abstract domain based on all
control conditions from the protocol code. There is a promising approach to alleviate
this problem: instead of building the best possible abstract model we build a coarser
model which we refine using the circular reasoning scheme of [16/17/6]]. Such a hybrid
approach combines the strengths of our approach and the circular reasoning approach.
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6 Conclusion

Environment abstraction provides a uniform platform for different types of parame-
terized systems. To adjust our tool to a new class of protocols, we have to identify the
compound statements for that class, and specify the actions of compound statements in
terms of abstraction templates. This task requires ingenuity, but is a one time task. Once
a ’library’ for a class of protocols is built, it can be used to verify any protocol in the
class automatically or with minimum user guidance.

Let us address some common questions we have encountered.
Human involvement present in too many places ? The end user who applies our tool to a
specific protocol can be different from the verification engineer who builds the library.
To verify a protocol, the user has to know only the compound statements; providing the
abstract template invariants is the task of the tool builder.
Compound statements too complex ? The compound statements try to pack as many basic
patterns as possible in a single statement and thus can be complex. But it is easy to create
familiar looking syntactic sugar for often used instances of the compound statements.
Correctness of the abstraction templates ? This question is not much different from
asking if a source code model checker is correct. It is easier to convince ourselves about
the correctness of a small number of declarative transition invariants than to reason
about a huge piece of software. In future work, we plan to investigate formal methods
to ensure correctness of the abstraction.
Abstraction refinement ? There are many ways of refining our abstract model. In partic-
ular, we can (i) enrich the environment predicates to count the number of processes in
a certain environment, (ii) increase the number of reference processes, and (iii) enrich
the A(z) descriptions by additional predicates. This is a natural part of our future work.

In conclusion, the environment abstraction framework works well for a variety of
protocols by striking what we believe is the right balance between automation and class
specific reasoning. As part of future work, we plan to apply this framework to real time
and time triggered systems to further illustrate this point.
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