
Reconsidering CEGAR: Learning Good Abstractions without Refinement ∗

Anubhav Gupta
Carnegie Mellon University, Pittsburgh

anubhav@cs.cmu.edu

Edmund Clarke
Carnegie Mellon University, Pittsburgh

emc@cs.cmu.edu

Abstract

Abstraction techniques have been very successful in model
checking large systems by enabling the model checker to ignore
irrelevant details. Most abstraction techniques in literature are
based on refinement. We introduce the notion of broken traces
which capture the necessary and sufficient conditions for the ex-
istence of an error path in the abstract model. We formulate ab-
straction as learning the abstract model from samples of broken
traces. Our iterative algorithm for abstraction-based model check-
ing is not based on refinement and can generate the smallest ab-
stract model that proves the property. We present an implementa-
tion of this algorithm for the verification of safety properties on
gate-level net-lists with localization abstraction. Experimental re-
sults prove the viability of our techniques.

1. Introduction

Model checking [1] is a formal verification technique that au-
tomatically decides whether a model satisfies a temporal property
by an exhaustive state-space traversal. Our approach focuses on
safety properties, which specify that there are no paths to some er-
ror states from the initial states in the model.

The major capacity bottleneck for model checking is the state-
space size, therefore the state-space size is a good characterization
for the size of a model. Abstraction techniques [2] have been very
successful in combating the state-explosion problem. The idea be-
hind abstraction is to build a smaller model, called the abstract
model, by grouping together multiple states in the concrete model
into a single abstract state. The abstract model preserves all the be-
haviors of the concrete model by allowing a transition from an ab-
stract state ŝ to an abstract state t̂ if there is some concrete state in
ŝ that has a concrete transition to some concrete state in t̂. This en-
sures that if the model checker proves the safety property on the
abstract model, it also holds on the concrete model. However, this
can introduce a path to an error state in the abstract model, even
when there is no such path in the concrete model. Abstraction tech-
niques search over a predefined set of abstract models, looking for
one that proves that property and is small in size.

This paper introduces the notion of broken traces which cap-
ture the necessary and sufficient conditions for the existence of an

∗ This research was sponsored by the Gigascale Systems Research Cen-
ter (GSRC), the Semiconductor Research Corporation (SRC), the Of-
fice of Naval Research (ONR), the Naval Research Laboratory (NRL)
and the Army Research Office (ARO).

error path in the abstract model. This is the motivation behind our
abstraction methodology: we compute the smallest abstract model
that eliminates all broken traces. This corresponds to the small-
est abstract model that can prove the property. The naive method
of computing this model by generating and eliminating all bro-
ken traces is infeasible because the set of broken traces is too large
to enumerate. Instead, we learn this model by generating a set of
sample broken traces such that the abstract model that eliminates
the broken traces in this set also eliminates all other broken traces.
Starting with an empty set, we iteratively generate this set of sam-
ples. In each iteration of the loop, we compute an abstract model
that eliminates all broken traces in the sample set, and then use the
counterexample produced by model checking this abstract model
to guide the search for new broken traces that are not eliminated
by the current abstract model. The loop terminates when no coun-
terexample is present in the abstract model, or a broken trace cor-
responding to a real bug is generated. We evaluate our algorithm
on a large set of industrial circuits, and compare it against the
separation-based refinement approach in [3] and the proof-based
abstraction techniques in [4, 5]. The results indicate that our tech-
nique generates much smaller abstract models, leading to better
overall performance and a more robust behavior on harder bench-
marks.

2. Related Work

Starting with Kurshan’s localization reduction [6], there has
been a lot of work in automatically generating good abstract mod-
els [7, 8, 3, 9, 10, 4, 11, 12, 13, 14, 15, 16]. Many of these tech-
niques follow the Counterexample-Guided Abstraction Refinement
(CEGAR) framework. These techniques start with an initial ab-
stract model and iteratively add more constraints (refinement) to
eliminate spurious counterexamples, until the property holds on
the abstract model or a counterexample is found on the concrete
model. The refinement of the abstract model and the search for a
concrete counterexample are guided by the abstract counterexam-
ples produced by the model checker.

The technique in [7, 3, 9, 4, 12] uses BDDs or SAT-solvers to
identify the failure-state, which is the last state in the longest pre-
fix of the abstract counterexample that has a corresponding path
in the concrete model. It then adds a set of constraints that elimi-
nate the abstract transition from the failure-state by splitting it into
multiple abstract states. The methods in [10, 16] are similar, ex-
cept that instead of the longest prefix, they look for a minimal spu-
rious sub-trace [10] or the longest suffix [16]. The drawback of this
strategy is that it focuses its efforts on a single abstract state in-
stead of the whole counterexample. A smaller abstract model that

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

eliminates the counterexample can be generated by splitting mul-
tiple abstract state in the counterexample. Moreover, identification
of the failure-state involves building an unrolling of the concrete
model, which is expensive. Our approach fixes these drawbacks by
analyzing all the abstract states and by never building an unfold-
ing of the concrete model.

The techniques presented in [13, 14] use a game-theoretic ap-
proach to eliminate spurious counterexamples. They analyze the
abstract model to identify latches that can steer the abstract model
away from the error states. The approach in [8] simulates the ab-
stract counterexample on the concrete model using 3-valued sim-
ulation, and looks for latches that conflict with their values in the
counterexample. The method in [11] finds latches that are assigned
the same value in multiple counterexamples. All these approaches
use a heuristic to identify a set of candidate latches to add to the
abstract model, and then greedily add latches from this list un-
til the abstract counterexamples are eliminated. These approaches
provide no guarantees on the size of the abstract model. Our ap-
proach, on the other hand, computes the smallest abstract model
that can prove the property.

The disadvantage of any refinement-based strategy, is that once
some irrelevant constraint is added to the abstract model, it is
not removed in subsequent iterations. As the model checker dis-
covers longer abstract counterexamples, the constraints that were
added to eliminate the shorter counterexamples might become re-
dundant. Refinement-based techniques do not identify and remove
these constraints from the abstract model. This drawback is present
in a refinement-based strategy irrespective of the technique that is
used to eliminate spurious counterexamples. The proof-based ab-
straction technique presented in [5, 12] tries to alleviate this prob-
lem by building a fresh abstract model at each iteration. However,
the abstract model is computed from the proof of unsatisfiability
produced by SAT-solvers, and the SAT-solvers internally work like
a refinement engine. Our approach is not based on refinement. In
our iterative loop, the abstract model generated in the next itera-
tion is not necessarily a refinement of the previous abstract model.

Refinement minimization [8] is used by various approaches to
reduce the size of the abstract model. However, it is an expen-
sive operation, and it can only guarantee local minimality. There
has been some work in extracting the smallest unsatisfiable sub-
set of a set of clauses [17, 18]. In theory, these techniques can be
combined with the proof-based abstraction method [5] to gener-
ate small abstract models. However, in practice, these techniques
can only be applied to instances with a small number of variables
and clauses, and therefore do not scale to real-world systems.

3. Abstraction in Model Checking

We start with a brief description of the use of abstraction in
model (for more details refer to [2]). We restrict our attention
to safety properties. A system is modeled by a transition system
M = (S, I, R, E) where S is the set of states, I ⊆ S is the set of
initial states, R ⊆ S × S is the set of transitions, and E ⊆ S is
the set of error states. The size of a model M = (S, I, R, E) is de-
fined as |S|. An abstraction function h : S → Ŝ is a surjection
which maps a concrete state in S to an abstract state in Ŝ.

Definition 3.1. The abstract model M̂ = (Ŝ, Î, R̂, Ê) corre-
sponding to a concrete model M = (S, I, R, E) and an abstrac-

tion function h is defined as follows:

1. Ŝ = {ŝ | ∃s. s ∈ S ∧ h(s) = ŝ}.

2. Î = {ŝ | ∃s. I(s) ∧ h(s) = ŝ}

3. R̂ = {(ŝ1, ŝ2) | ∃s1. ∃s2. R(s1, s2)∧h(s1) = ŝ1∧h(s2) =
ŝ2}

4. Ê = {ŝ | ∃s. E(s) ∧ h(s) = ŝ}

The essence of abstraction is the following preservation
theorem[2], which is stated without proof.

Theorem 3.1. Let M̂ be an abstract model corresponding to M .
Then if the error states are not reachable in M̂ , then the error
states are also not reachable in M .

The aim of an abstraction framework is to find an abstrac-
tion function h, such that the property holds on the correspond-
ing abstract model. Abstraction techniques search over a prede-
fined (possibly infinite) set H of abstraction functions. For exam-
ple, for localization abstraction with visible/invisible latches [3],
the set H consists of all functions that map a concrete state to its
projection over some subset of latches. Among all h ∈ H that
prove the property, we ideally want to identify the one that corre-
sponds to the smallest abstract model.

Note that the converse of Theorem 3.1 is not true. Even if there
is a path from an initial state to an error state in the abstract model,
the error states might be unreachable in the concrete model. In this
case, the abstract counterexample generated by the model checker
is spurious, i.e. it does not correspond to a concrete path. The cur-
rent abstraction function is too coarse to validate the specification,
and a new abstraction function is computed to eliminate this spu-
rious behavior.

init(x) := 0; init(y) := 0; init(z) := 1;
next(x) := x; next(y) := ¬y; next(z) := ¬x ∨ ¬y;
SPEC AGz

Figure 1: An SMV model (M).

Consider the SMV model M in Figure 1. The model has 3
boolean state elements, x, y and z. The property holds on the
model. The state space of the model is S = B3, where B = {0, 1}.
Consider the abstraction function h : B3 → B2 such that:

h({x, y, z}) = {y, z} (1)

This abstraction function corresponds to localization abstraction
that removes the latch x from the abstract model, which is shown
in Figure 2. Model checking of this abstract model produces a spu-
rious counterexample:

{0, 1} → {1, 1} → {0, 0} (2)

Definition 3.2. The abstraction function h′ is a refinement of h if
∀s1, s2 ∈ S, h′(s1) = h′(s2) implies h(s1) = h(s2).

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

INPUT x;
init(y) := 0; init(z) := 1;
next(y) := ¬y; next(z) := ¬x ∨ ¬y;
SPEC AGz

Figure 2: An abstract model for M (Figure 1).

4. Broken Traces

Definition 4.1. Given a model M = (S, I, R, E) and an abstrac-
tion function h, a broken trace T on M for h is a sequence of pairs
of concrete states 〈(s1, t1), . . . (sm, tm)〉, such that

1. I(s1), i.e. s1 is an initial state.

2. ∀1 ≤ i ≤ m. h(si) = h(ti), i.e, si and ti lie in the same
abstract state.

3. ∀1 ≤ i < m. R(ti, si+1), i.e, ti → si+1 is a concrete tran-
sition.

4. E(tm), i.e. tm is an error state.

A broken trace 〈(s1, t1), . . . (sm, tm)〉 is said to break at cycle
i if si �= ti. If a broken trace has no breaks, it corresponds to a
counterexample C = 〈s1, . . . sm〉 on the concrete model. Figure
3 shows a broken trace on M. This broken trace breaks at cycle 2.

{0,0,1}i

si

Break

{1,1,1}

{0,1,1}

Error
State

{1,0,0}

{1,0,0}

Initial
State

{0,0,1}

t

Figure 3: A broken trace on M (Figure 1) for the abstraction
function defined in (1). A state is an assignment to {x, y, z}.

Theorem 4.1. Given a model M = (S, I, R, E) and an abstrac-
tion function h, there exists a counterexample on the abstract
model corresponding to h if and only if there exists a broken trace
on M for h (See Figure 4).

Proof. (IF) Assume that T is a broken trace on M for h. Let
T = 〈(s1, t1), . . . (sm, tm)〉. Let M̂ = (Ŝ, Î, R̂, Ê) be the
abstract model corresponding to h. Let Ĉ = 〈ŝ1, ŝ2, . . . ŝm〉,
where ŝi = h(si). Since I(s1), by Definition 3.1, we have
Î(ŝ1). By Definition 4.1, R(ti, si+1). Therefore, by Definition 3.1,
R̂(h(ti), h(si+1)), i.e. R̂(ŝi, ŝi+1). Since E(tm), by Definition
3.1, we have Ê(ŝm). Hence, Ĉ is an counterexample on M̂ .

(ONLY IF) Assume that Ĉ is counterexample on the abstract
model M̂ corresponding to h. Let Ĉ = 〈ŝ1, ŝ2, . . . ŝm〉. Let
M̂ = (Ŝ, Î, R̂, Ê). Since Î(ŝ1), by Definition 3.1, there exists a
state s1 such that I(s1). Since R̂(ŝi, ŝi+1), by Definition 3.1, there
exist states ti and si+1 such that h(ti) = ŝi, h(si+1) = ŝi+1 and
R(ti, si+1). Since Ê(ŝm), by Definition 3.1, there exists tm such
that E(tm). Thus, T = 〈(s1, t1), . . . (sm, tm)〉 is a broken trace
on M for h.

Definition 4.2. An abstraction function h, and the corre-
sponding abstract model, are said to eliminate a broken trace
〈(s1, t1), . . . (sm, tm)〉 if ∃1 ≤ i ≤ m. h(si) �= h(ti).

I

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Counterexample
Abstract

Broken
Trace

E

���
���
���
���

���
���
���
���

Figure 4: An abstract counterexample and a broken trace over the
corresponding concrete states. This figure illustrates Theorem 4.1.

For example, the abstract counterexample in (2) corre-
sponds to the broken trace in Figure 3. The abstraction function
h({x, y, z}) = {x} eliminates the broken trace in Figure 3, be-
cause h({0, 1, 1}) = {0} and h({1, 1, 1}) = {1}.

Theorem 4.1 says that the existence of a broken trace on a con-
crete model for an abstraction function h is a necessary and suf-
ficient condition for the existence of a counterexample on the ab-
stract model corresponding to h. This is the motivation behind our
abstraction strategy. We compute the smallest abstract model that
eliminates all broken traces on the concrete model. Theorem 4.1
implies that this is the smallest abstract model that can prove the
property.

5. Learning Abstractions

The naive method of computing the abstract model by generat-
ing and eliminating all broken traces is infeasible, because the set
of broken traces is too large to enumerate. Instead, we learn this
model by generating a set of sample broken traces such that the ab-
stract model that eliminates the broken traces in this set also elim-
inates all other broken traces.

For example, the broken trace samples in Figure 5 are elimi-
nated by the abstraction function h({x, y, z}) = {x, z}. This ab-
straction function also eliminates the broken trace in Figure 3. The
property holds on the corresponding abstract model shown in Fig-
ure 6, and therefore by Theorem 4.1, h eliminates all broken traces
in M.

{1,0,0}{0,1,0}

{0,1,1} {0,0,1}

{1,1,1}

{1,0,0}

Figure 5: Sample broken traces on M (Figure 1). A state is an
assignment to {x, y, z}.

INPUT y;
init(x) := 0; init(z) := 1;
next(x) := x; next(z) := ¬x ∨ ¬y;
SPEC AGz

Figure 6: An abstract model that proves the property for M (Fig-
ure 1).

Figure 7 is a simplified view of our overall strategy. Starting
with an empty set, we iteratively generate this set of samples. In
each iteration of the loop, we compute an abstract model that elim-
inates all broken traces in the sample set, and then use the coun-

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

Property Holds

Broken Trace
Samples

Abstract
Model

Abstract Model
EliminatingBroken

Traces

Real Bug

Figure 7: Learning Abstract Models.

terexample produced by model checking this abstract model to
guide the search for new broken traces that are not eliminated by
the current abstract model. The abstract model generated in the
next iteration from the augmented set of samples is not necessar-
ily a refinement of the previous abstract model. The loop termi-
nates when: 1) No counterexample is present in the abstract model
(property holds); 2) A broken trace with no breaks is generated
(property does not hold).

6. The LEARNABS Algorithm

Algorithm 1 Learning Abstractions for Model Checking
LEARNABS (M, ϕ)

1: B = {};
2: while (1) do
3: h = ComputeAbstractionFunction(B);
4: M̂ = BuildAbstractModel(M, h);
5: if MC(M̂, ϕ) = TRUE then return ‘TRUE’;
6: else Let C be the counterexample produced by MC;
7: for (n = 1; n ≤ N ; n = n + 1) do
8: T = GenerateBrokenTrace(M, C);
9: if T has no breaks then return ‘FALSE’;

10: else B = B ∪ {T };

The pseudo-code of our Learning Abstractions(LEARNABS)
algorithm is shown in Algorithm 1. The ComputeAbstractionFunc-
tion function (line 3) computes an abstraction function that elim-
inates all broken traces in the sample set B (see Section 8). The
BuildAbstractModel function (line 4) builds the abstract model
corresponding to h (see Section 7). If the model checker proves
the property on the abstract model (line 5), the algorithm returns
TRUE. Otherwise, the GenerateBrokenTrace function (line 8) gen-
erates N broken trace samples corresponding to the abstract coun-
terexample C (see Section 9). If a real bug is found in the process
(line 9), the algorithm returns FALSE. Otherwise, the loop is re-
peated with the augmented set of samples (lines 10).

6.1. Termination

Since the broken trace(s) generated in a particular iteration of
the loop are not eliminated by the current abstraction function h,
the same abstraction function will not be computed in subsequent
iterations. Thus, termination of the LEARNABS is guaranteed if the
following conditions are met: 1) The ComputeAbstractionFunc-
tion function generates abstraction functions from a finite set H;
2) The set H contains the identity abstraction function h(s) = s,
for which the abstract model is the same as the concrete model.

These assumptions apply to many practical scenarios, including
localization abstraction, and predicate abstraction [19] over a fi-
nite set of predicates.

7. Our Abstraction Functions

We used localization abstraction with visible/invisible latches
[3]. We partition the set of latches into two sets: the set of visible
latches (V) and the set of invisible latches (I). The corresponding
abstraction function, denoted by hV , maps a concrete state to its
projection over V . The size of the abstract model is 2V . The Build-
AbstractModel function simply removes the logic that defines the
latches in I, and replaces these latches with inputs [3].

8. Computing the Abstraction Function

For a broken trace T = 〈s1, t1, . . . sm, tm〉, the eliminating
set ET consists of all latches r such that for some 1 ≤ i ≤ m,
the states si and ti differ on the value of r. The broken trace T
is eliminated by an abstraction function hV if ET ∩ V �= {}. For
example, the broken traces in Figure 5 are eliminated by abstrac-
tion functions corresponding to V = {x, z}, V = {y, z}, and
V = {x, y, z}. Given a set B of broken trace samples, we want
to compute the smallest set V such that hV eliminates all bro-
ken traces in B. This computation corresponds to the minimum
hitting-set problem, which is an NP-complete problem. We formu-
late this as an Integer Linear Program(ILP), and solve it using an
ILP-solver. We also implemented various polynomial-time algo-
rithms that compute an approximation of the minimum hitting-set.

9. Generating Broken Traces

A SAT-solver implements a function SAT[F] that returns an ar-
bitrary satisfying assignment for the boolean formula F . We en-
hanced the SAT-solver to implement ‘SAT with hints’. The func-
tion SATH[F ,H] takes as input a boolean formula F and a set H
of assignments to a subset of variables in F . It returns satisfying
assignment for F that agrees with the assignments in H on ‘many’
variables. This is achieved by forcing the SAT-solver to first de-
cide on the literals corresponding to the variable assignments in
H. Thus, the satisfying assignment will disagree with H on a vari-
able v only if v is forced to a different value by a conflict.

Theorem 4.1 says that if there is a counterexample on the ab-
stract model, there exists a broken trace(s) on the concrete model
for the corresponding abstraction function. The GenerateBroken-
Trace function (Algorithm 2) generates these broken traces. Start-
ing with a concrete initial state s1 (line 2), it successively finds
a concrete transition corresponding to each of the abstract transi-
tions in the counterexample (line 4). The hints to SATH ensure that
at cycle i, a state ti different from si is picked only if si does not
have a transition to some concrete state in ŝi+1. This helps in re-
ducing the size of the eliminating set for the broken trace. A bro-
ken trace with a smaller eliminating set is better because it helps
the sampling loop to converge faster [3]. Multiple samples are gen-
erated by randomizing the selection of assignments to the inputs.

Note that our approach does not perform BMC on the concrete
model. The SAT-solver works on a single frame of the transition re-
lation, thus it can potentially handle much larger designs. We can-
not replace the SAT-solver with a circuit simulator, because the

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

circuit outputs (latches) are constrainted to lie in the correspond-
ing abstract state in the counterexample. A circuit-simulator, on
the other hand, only permits constraints on the inputs.

Algorithm 2 Generating Broken Traces
GenerateBrokenTrace(M, C)

1: Let C = 〈ŝ1, . . . ŝm〉
2: s1 = SAT[I(s1) ∧ (h(s1) = ŝ1)];
3: for (i = 1; i < m; i = i + 1) do
4: (ti, si+1) = SATH[R(ti, si+1) ∧ (h(ti) = ŝi)∧

(h(si+1) = ŝi+1), {ti = si}];

5: tm = SATH[E(tm) ∧ (h(tm) = ŝm), {tm = sm}];
6: Return T = 〈(s1, t1), . . . (sm, tm)〉;

10. Eliminating One Counterexample: LEARNABS vs.
Splitting Failure State

Many abstraction techniques eliminate a spurious ab-
stract counterexample as follows: they identify an abstract failure
state [7] by a forward (or backward) simulation of the coun-
terexample on the concrete model and then remove the abstract
transition from (or to) the failure state by splitting the fail-
ure state into multiple abstract states. The drawback of this
technique is that it focuses on a single abstract state. A smaller ab-
stract model that eliminates the counterexample can be generated
by splitting multiple abstract states of the counterexample. More-
over, this technique does not guarantee that the counterexample
is eliminated. We illustrate these shortcomings through some ex-
amples in the context of the approach based on separating
deadend and bad states [7, 3, 4]. We also illustrate how our ap-
proach fixes these shortcomings.

10.1. Deadend/Bad States

The set of concrete paths that corresponds to the counterexam-
ple 〈ŝ1, ŝ2, . . . ŝm〉 is given by

ψm = {〈s1 . . . sm〉 | I(s1) ∧
m−1̂

i=1

R(si, si+1) ∧
m̂

i=1

h(si) = ŝi}

(3)
If the counterexample is spurious, ψm is empty. The failure in-

dex f , f < m is the maximal index such that ψf is satisfiable.
Given f , 〈ŝ1, . . . ŝf 〉 is the longest prefix of the counterexample
that corresponds to a concrete path. The abstract state ŝf is called
the failure state (see Figure 8). The states df , such that there ex-
ists some 〈d1...df 〉 in ψf , are called the deadend states. By defi-
nition, the deadend states are reachable from the initial states but
have no concrete transition to h−1(ŝf+1).

Since there is an abstract transition from ŝf to ŝf+1, there is a
non-empty set of transitions φf from h−1(ŝf) to h−1(ŝf+1) that
agree with the counterexample. The set of transitions φf is given
by

φf = {〈sf , sf+1〉 |R(sf , sf+1)∧h(sf) = ŝf ∧h(sf+1) = ŝf+1}
(4)

The states bf , such that there exists some 〈bf , bf+1〉 in φf , are
called the bad states. By definition, bad states have a concrete tran-
sition to a state in h−1(ŝf+1).

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

State
Failure

Deadend
States

States
Bad

Concrete
Model

Counterexample
Abstract

Figure 8: The spurious abstract counterexample breaks at the fail-
ure state. Deadend and bad states lie in the same abstract state.

(1,1)

����

��
��
��
��

����

��
��
��
��

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��

�
�
�
�

��

�
�
�
�

����

��
��
��
��

����

��
��
��
��

��
��
��

��
��
��

Failure
State

Bad
States

Deadend
States

{0} {1} {2} {3} {4}{x}

(y,z)

(0,0)

(0,1)

(1,0)

Figure 9: V = {x}, I = {y, z}. The counterexample breaks at
abstract state {2}.

There is a spurious abstract transition from ŝf to ŝf+1 because
the deadend and bad states lie in the same abstract state. This sug-
gests the following strategy to eliminate the counterexample: gen-
erate a new abstract model that puts the deadend and bad states
into separate abstract states.

10.2. Drawbacks of Separating Deadend/Bad

Example: Consider the abstract counterexample in Figure 9, with
V = {x} and I = {y, z}. Figure 10 is an abstract model ob-
tained by separating state set S1 from S2, and S3 from S4, where
S1 = {{2, 0, 0}}, S2 = {{2, 1, 0}, {2, 1, 1}}, S3 = {{3, 0, 1}},
and S4 = {{3, 1, 0}, {3, 1, 1}}. S1 and S2 lie in the abstract state
{2}, while S3 and S4 lie in the abstract state {3}. This separation
can be achieved by making y visible, and the new abstract model
eliminates the counterexample. Note that this abstract model does

(1)

��
��
��
��

����

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�
�

�� ��

��
��
��
��

�
�
�
�

��
��
��
��

����

��
��
��
��

��������

��
��
��
��

����

�
�
�
�

��

�
�
�
�

��

��
��
��
��

{0,0} {1,0} {2,0} {3,0} {4,0}

{x,y} {0,1} {1,1} {2,1} {3,1} {4,1}

{x,y}

(z)

(0)

(1)

(z)

(0)

����

Figure 10: An abstract model that eliminates the counterexample
in Figure 9 by splitting multiple abstract states.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

{4,1,0}

{0,0,0}

{0,0,0}

{1,0,0}

{1,0,0}

{2,0,0}

{2,0,1}

{3,0,1}

{3,1,1}

{4,1,1}

{4,1,1}

{0,0,1}

{0,0,1}

{1,0,1}

{1,1,0}

{2,1,0}

{2,1,0}

{3,1,0}

{3,1,0}

{4,1,0}

Figure 11: Broken trace samples corresponding to the counterex-
ample in Figure 9. A state is an assignment to {x, y, z}.

(1,1)

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

��

�
�
�
�

����

��
��
��
��

����

��
��
��
��

Deadend
States

Bad
States

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

Failure
State{0} {1} {2} {3} {4}{x}

(y,z)

(0,0)

(0,1)

(1,0)

��

Figure 12: V = {x}, I = {y, z}. The counterexample breaks at
abstract state {2}.

not separate the deadend and bad states. Separating deadend and
bad states for this example would require both y and z to be visi-
ble, thereby adding unnecessary latches to the abstract model. This
example illustrates that separating deadend and bad states is not
necessary for eliminating the counterexample. Figure 11 illustrates
some broken trace samples corresponding to this counterexample.
All these samples are eliminated by making y visible. Thus our
technique does not have this drawback.

Example: Consider the abstract counterexample in Figure 12, with
V = {x} and I = {y, z}. Figure 13 is an abstract model that puts
the deadend and bad states into separate abstract states. The coun-
terexample is not eliminated from the new abstract model, because
the bad states are reachable in this model. This example illustrates
that separating deadend and bad states is not sufficient to elimi-
nate the counterexample. Figure 14 illustrates some broken traces
corresponding to this counterexample. In order to eliminate these,
we need to make both y and z visible, which also eliminates the

(1)

�
�
�
�

�
�
�
�

��

�
�
�
�

����

�
�
�
�

�� ��

��

��

��

��

��

��

��

��

��

��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

State
Failure

{0,0} {1,0} {2,0} {3,0} {4,0}

{0,1} {1,1} {2,1} {3,1} {4,1}{x,y}

{x,y}

Abstract
Counterexample

(z)

(0)

(1)

(z)
(0)

�
�
�
�

Figure 13: An abstract model obtained by separating deadend
and bad states in Figure 12. The counterexample is not eliminated.

{0,1,0}

{0,0,0}

{0,0,0}

{1,0,0}

{1,0,0}

{2,0,0}

{2,1,0}

{3,1,0}

{3,1,0}

{4,1,0}

{4,1,0}

{0,1,0} {1,1,0} {2,1,1} {3,1,1} {4,1,1}

{4,1,1}{3,1,1}{2,1,1}{1,1,1}

Figure 14: Broken trace samples corresponding to the counterex-
ample in Figure 12. A state is an assignment to {x, y, z}.

counterexample. Thus our technique does not have this problem.

11. Eliminating all counterexamples: LEARNABS vs.
Refinement

Counterexample-Guided Abstraction Refinement (CEGAR)
framework [6] is a common strategy for automatically generat-
ing abstract models. Starting with an initial abstraction function,
this technique refines it in each iteration to eliminate one or mul-
tiple spurious counterexamples. The smallest abstract model
that eliminates a set of counterexamples is not necessarily a re-
finement of the smallest abstract model that eliminates a subset
of this set. Thus, a refinement-based strategy cannot guaran-
tee the smallest abstract model that proves the property. The
proof-based abstraction technique presented in [5, 12] tries to al-
leviate this problem by building a fresh abstract model at each it-
eration. They perform BMC on the concrete model up to
the length of the counterexample. The abstract model con-
sists of the gates that are used by the SAT-solver to prove
unsatisfiability of the BMC instance. The problem with this strat-
egy is that SAT-solvers internally work like a refinement engine,
the size of the abstract model depends on the variable splitting or-
der used by the SAT-solver. The LEARNABS algorithm is not
based on refinement, and therefore it does not have these draw-
backs.

Example: Consider the application of a CEGAR-based strategy to
M (Figure 1). In the first iteration of the CEGAR loop, an abstract
model is generated to eliminate counterexamples of length 1. This
could produce an abstract model with V = {y, z} (see Figure
2), which is one of the smallest models that eliminates all coun-
terexamples of length 1. In the next iteration, a counterexample of
length 2 will be generated and this adds the latch x to V . At this
point, the latch y is not needed, but it ends up being part of the ab-
stract model because CEGAR is based on refinement. Even if a
fresh abstract model is generated using a SAT-solver, the abstract
model will contain the latch y if the SAT-solver splits on the vari-
ables corresponding to y first. Our approach, on the other hand,
guarantees that y is not included in the final abstract model (see
Figure 6).

12. Experiments Results

We implemented a model checker for gate-level net-lists based
on the LEARNABS algorithm. It uses zChaff [20] as the SAT-
solver, and CPLEX [21] as the ILP-solver. Cadence SMV [22] is
used as the BDD-based model checker for verifying the abstract
models. We used 3 sets of benchmarks for our experiments: the
IU benchmarks [3] from Synopsys, the PJ benchmarks derived

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

from the PicoJava processor [5], and the RB benchmarks from the
IBM Formal Verification Library [23]. The value of N in LEARN-
ABS was set to 25. All experiments were performed on a 1.5GHz
Athlon machine with 3GB RAM, running Linux. The following
optimizations were implemented on top of LEARNABS.

12.1. Optimizations

Fine Grained Abstractions: The latch-level abstraction can be too
coarse for larger circuits. We modified the BuildAbstractModel
function (line 4) to perform BMC on the latch abstraction com-
puted from the samples. The BMC instance is restricted with val-
ues from the counterexample. If the BMC instance is unsatisfiable,
only the gates used in the proof of unsatisfiability are added to the
abstract model [5]. If the BMC instance is satisfiable, it means that
the counterexample has not been eliminated, and more samples are
generated.

Eliminating All Counterexamples: Eliminating one counterexam-
ple in each iteration could lead to a lot of expensive model check-
ing calls [24]. The LEARNABS loop can be modified to elimi-
nate all counterexamples at the current depth. The modified loop
performs (unrestricted) BMC on the current abstract model in the
BuildAbstractModel function, and proceeds to the model check-
ing step only if the BMC instance is unsatisfiable. If BMC pro-
duces a counterexample, the counterexample is used to generate
more samples.

Reducing Number of Samples: It can be shown that computing the
smallest abstract model is a ΣP

2 -complete problem [25]. Therefore,
the LEARNABS algorithm could potentially generate an exponen-
tial number of samples before it terminates. In order to balance the
time spent in computing the abstract model and in model check-
ing, we added some simple heuristics to the ComputeAbstraction-
Function function (line 3) to pick larger non-optimal separating
sets if the sampling step takes too much time. Since the Gener-
ateBrokenTrace function does not build a BMC unrolling, it might
generate a large number of samples before it finds one that corre-
sponds to a real bug. Therefore, if the number of samples at a par-
ticular depth reaches a threshold, we check for the presence of a
real bug at that depth by performing BMC on the concrete model.

12.2. Results

Figure 15 shows the comparison of LEARNABS with the ab-
straction strategy based on separating deadend/bad states. The
numbers for Deadend/Bad were obtained from [3] (these exper-
iments were performed on the same machine as ours). The ta-
ble shows the number of latches in the circuit (reg); the coun-
terexample length (cex) - ‘T’ indicates that the property holds;
the total running time (time); the number of model checking calls
(itr); and the number of latches in the final abstract model (abs).
The LEARNABS algorithm generates smaller abstract models. For
smaller benchmarks, model checking is not the bottleneck, and
therefore the effort spent in generating a good abstract model does
not result in a smaller overall running time. The LEARNABS algo-
rithm performs better on the larger benchmarks.

Figure 16 compares the LEARNABS algorithm with the ab-
straction strategy based on the proof of unsatisfiability generated
by SAT-solvers (SATPROOF) [4, 5, 12]. For both these techniques,
we show results for the single-counterexample mode (indicated

circuit reg cex Deadend/Bad LEARNABS

time itr abs time itr abs
IU30 30 10 6 3 20 8 10 14
IU35 35 19 23 4 21 61 70 16
IU40 40 19 34 5 22 37 35 15
IU45 45 19 39 5 22 34 31 17
IU50 50 19 57 5 22 67 22 16
IU55 55 10 59 3 20 13 10 13
IU60 60 10 77 3 20 34 9 14
IU65 65 10 80 3 20 30 10 13
IU70 70 10 69 3 20 25 10 13
IU75 75 10 23 4 21 22 11 15
IU80 80 10 26 4 21 26 10 14
IU85 85 10 28 4 21 25 9 14
IU90 90 10 28 4 21 21 10 13
IUP1 4494 T >2hr - - 1295 18 8

Figure 15: Comparison of Deadend/Bad with LEARNABS.

by ‘S’) that eliminates one abstract counterexample in each it-
eration; and the all-counterexample mode (indicated by ‘A’) that
eliminates all counterexamples at the current depth in each itera-
tion. The LEARNABS algorithm consistently generates smaller ab-
stract models, and this translates to a better or similar runtime on
most benchmarks. For the benchmarks with bugs, SATPROOF per-
forms better because the BMC step is very efficient in identify-
ing the error trace. The LEARNABS algorithm completes all the
benchmarks, while SATPROOF cannot complete 4 benchmarks. On
IUP1, the SAT-solver runs out of memory while trying to build an
unrolling of the concrete model for depth 67 for SATPROOF (S),
and 69 for SATPROOF (A).

13. Conclusion

We introduced the notion of broken traces and formulated ab-
straction as learning from samples of broken traces. We presented
an iterative algorithm for abstraction-based model checking that is
not based on refinement, and that computes the smallest abstract
model that can prove the property. There are several future re-
search directions to our work. We want to explore better heuris-
tics for balancing the time spent in model checking and the time
spent in computing a good abstraction. The current algorithm tries
to map an abstract transition to a single concrete transition in the
broken trace. This can be extended to multiple concrete transi-
tions, which can be used to generate a hierarchy of abstract mod-
els. Together with predicate abstraction, our algorithm can be used
for verification of high-level system descriptions and for software
model checking. If the set of predicates is predefined, then the
techniques presented in this paper apply directly. Otherwise, data-
mining techniques can be used to infer eliminating predicates from
broken trace samples. The broken traces can also be used to iden-
tify which predicates are relevant at which location in the program.

References

[1] E. Clarke and E. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Proc. IBM Workshop
on Logics of Programs, 1981.

[2] E. Clarke, O. Grumberg, and D. Long, “Model checking and abstraction,”
ACM Trans. Prog. Lang. Sys., vol. 16, no. 5, 1994.

[3] E. Clarke, A. Gupta, and O. Strichman, “SAT based counterexample-
guided abstraction-refinement,” TCAD, vol. 23(7), 2004.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

circuit reg cex SATPROOF (S) LEARNABS (S) SATPROOF (A) LEARNABS (A)
time itr abs time itr abs time itr abs time itr abs

PJ00 348 T 7 3 9 6 3 4 7 3 9 6 3 4
PJ01 321 T 6 3 3 5 2 0 6 3 3 5 2 0
PJ02 306 T 7 3 4 6 3 4 7 3 4 6 3 4
PJ03 306 T 6 3 4 5 3 4 6 3 4 6 3 4
PJ04 305 T 7 3 3 5 2 0 6 3 3 5 2 0
PJ05 105 T 9 7 34 35 8 28 9 7 34 34 8 28
PJ06 328 T 209 7 56 23 7 41 210 7 56 24 7 41
PJ07 94 T 18 11 36 13 7 32 20 10 36 14 7 32
PJ08 116 T 58 6 41 75 7 41 58 6 41 76 7 41
PJ09 71 T 8 6 31 4 6 25 8 6 31 4 6 25
PJ10 85 T 3 3 5 2 3 4 3 3 5 2 3 4
PJ11 294 T 11 5 12 5 2 0 12 5 12 5 2 0
PJ12 312 T 4 1 0 4 1 0 4 1 0 4 1 0
PJ13 420 T 10 5 13 8 3 8 10 5 13 8 3 8
PJ14 127 T 25 6 32 9 4 13 35 5 32 9 4 13
PJ15 355 T 184 5 42 14 5 23 185 5 42 15 5 23
PJ16 290 T 248 6 44 64 7 32 246 6 44 65 7 32
PJ17 212 T 2126 14 43 1869 20 29 5037 11 43 3685 14 31
PJ18 145 T 993 22 49 390 8 32 161 7 45 542 7 36
PJ19 52 T >2hr - - 18 3 12 >2hr - - 19 3 12
RB05 1 313 31 11 10 24 141 17 13 17 6 12 137 11 13
RB09 1 168 T 1 4 9 1 3 4 1 4 9 1 3 4
RB10 1 236 T 3 5 9 1 4 3 3 5 9 1 4 3
RB10 2 236 T 3 6 11 2 4 3 3 6 11 2 4 3
RB10 3 236 T 5 7 34 2 5 5 5 7 34 1 5 5
RB10 4 236 T 8 10 23 1 4 5 6 8 22 2 4 5
RB10 5 236 T 1 4 7 2 4 4 2 4 7 2 4 4
RB10 6 236 T 3 5 7 2 4 4 2 5 7 2 4 4
RB11 2 242 T >1hr - - 128 24 26 >1hr - - 219 14 30
RB14 1 180 T 37 7 47 3 5 15 37 7 47 3 5 15
RB14 2 180 T >1hr - - 1258 60 37 334 11 87 179 13 38
RB15 1 270 9 2 7 8 17 9 4 2 7 8 13 9 4
RB16 1 1 1117 T 8 7 92 324 8 80 8 7 92 260 8 80
RB16 2 4 1113 5 4 5 40 61 5 32 4 5 40 48 5 32
RB26 1 608 T 1 1 0 1 1 0 1 1 0 1 1 0
RB31 2 1 111 T >1hr - - 38 27 29 >1hr - - 17 12 26
IUP1 4494 T mem - - 1295 18 8 mem - - 151 13 5

Figure 16: Comparison of SATPROOF and LEARNABS, in single (S) and all (A) counterexamples mode.

[4] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang, “Auto-
mated abstraction refinement for model checking large state spaces using
SAT based conflict analysis,” in FMCAD, 2002.

[5] K. McMillan and N. Amla, “Automatic abstraction without counterexam-
ples,” in TACAS, 2003.

[6] R. Kurshan, Computer aided verification of coordinating processes.
Princeton University Press, 1994.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for model checking,” J. ACM, 2003.

[8] D. Wang, P. H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano,
“Formal property verification by abstraction-refinement with formal, sim-
ulation and hybrid engines,” in DAC, 2001.

[9] S. Barner, D. Geist, and A.Gringauze, “Symbolic localization reduction
with reconstruction layering and backtracking,” in CAV, 2002.

[10] S. Das and D. Dill, “Counterexample based predicate discovery in predi-
cate abstraction,” in FMCAD, 2002.

[11] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M. Y. Vardi,
“Multiple-counterexample guided iterative abstraction refinement: An in-
dustrial evaluation,” in TACAS, 2003.

[12] A. Gupta, M. K. Ganai, Z. Yang, and P. Ashar, “Iterative abstraction using
SAT-based BMC with proof analysis.” in ICCAD, 2003.

[13] C. Wang, B. Li, H. Jin, G. D. Hachtel, and F. Somenzi, “Improving Ari-
adne’s bundle by following multiple threads in abstraction refinement,” in
ICCAD, 2003.

[14] F. Y. Mang and P.-H. Ho, “Abstraction refinement by controllability and
cooperativeness analysis,” in DAC, 2004.

[15] G. D. H. Chao Wang and F. Somenzi, “Fine-grain abstraction and sequen-
tial don’t cares for large scale model checking,” in ICCD, 2004.

[16] H. Jain, D. Kroening, N. Sharygina, and E. Clarke, “Word level predicate
abstraction and refinement for verifying RTL verilog,” in DAC, 2005.

[17] Lynce and Marques-Silva, “On computing minimum unsatisfiable cores,”
in SAT, 2004.

[18] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov,
“AMUSE: a minimally-unsatisfiable subformula extractor,” in DAC, 2004.

[19] S.Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in
CAV, 1997.

[20] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: En-
gineering an efficient SAT solver,” in DAC, 2001.

[21] “CPLEX,” www.cplex.com.

[22] K. McMillan, “Cadence SMV,” Cadence Berkeley Labs, CA.

[23] E. Zarpas, “Simple yet efficient improvements of SAT based bounded
model checking,” in FMCAD, 2004.

[24] N. Amla and K. L. McMillan, “A hybrid of counterexample-based and
proof-based abstraction,” in FMCAD, 2004.

[25] C. Umans, “The minimum equivalent DNF problem and shortest impli-
cants,” in FOCS, 1998.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

