
Refining Abstractions of Hybrid Systems Using
Counterexample Fragments

Ansgar Fehnker1, Edmund Clarke2, Sumit Kumar Jha2, and Bruce Krogh2

1 National ICT Australia and University of New South Wales, Sydney, Australia
ansgar.fehnker@nicta.com.au

2 Carnegie Mellon University, Pittsburgh, USA
{emc, jha}@cs.cmu.edu
krogh@ece.cmu.edu

Abstract. Counterexample guided abstraction refinement, a powerful
technique for verifying properties of discrete-state systems, has been ex-
tended recently to hybrid systems verification. Unlike in discrete systems,
however, establishing the successor relation for hybrid systems can be a
fairly expensive step since it requires evaluation and over-approximation
of the continuous dynamics. It has been observed that it is often suf-
ficient to consider fragments of counterexamples rather than complete
counterexamples. In this paper we further develop the idea of fragments.
We extend the notion of cut sets in directed graphs to cutting sets of
fragments in abstractions. Cutting sets of fragments are then used to
guide the abstraction refinement in order to prove safety properties for
hybrid systems.

1 Introduction

Model checking for hybrid systems requires finite abstractions [1, 2, 3, 4]. Ab-
stractions of hybrid systems are usually quotient transition systems for the infi-
nite-state transition system that provides the semantics for the hybrid system.
The two principal issues in constructing these quotient transition systems are:
(i) identifying and representing the sets of hybrid system states that comprise
the states for the abstraction; and (ii) computing the transition relation for the
abstraction. Step (ii) is usually the most difficult and time-consuming step be-
cause it involves the computation of reachable sets for the continuous dynamics
in the hybrid system. The time involved in computing reachable sets for the
continuous dynamics makes the time required to perform model checking on the
abstraction negligible in the overall time required to perform the verify-refine
iteration described above.

Counterexample guided abstraction refinement (CEGAR) has been proposed
to guide the refinement process. This refinement strategy, originally developed
for discrete-state systems, uses counterexamples in the abstraction (runs that vi-
olate the specification) to determine how to refine the abstraction so that known
counterexamples are eliminated [5, 6]. This approach was extended to hybrid

M. Morari and L. Thiele (Eds.): HSCC 2005, LNCS 3414, pp. 242–257, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:ansgar.fehnker@nicta.com.au
mailto:krogh@ece.cmu.edu

Refining Abstractions of Hybrid Systems 243

systems [1, 3] as follows. The abstraction is created based only on the discrete
transitions in the hybrid system. For a given counterexample in this abstraction,
reachability computations are performed to see if the counterexample could oc-
cur in the hybrid system. This process is called validation. If the reachability
computations show that the counterexample cannot occur in the hybrid system,
the counterexample in the abstraction is refuted and is said to be spurious. In-
formation from the overapproximated reachability computations is then used to
refine the abstraction. For most hybrid systems, reachability computations are
necessarily over-approximations, so the validity of a counterexample is always
relative to the currently used over-approximation method.

We made two observations in our work on CEGAR for hybrid systems. First,
rather than refuting a complete counterexample, it is sufficient and often a
lot cheaper to refute a fragment of the counterexample. Second, coarse over-
approximation methods to compute reachable sets are not only computationally
faster, but can also lead to smaller refinements and produce conclusive results
more quickly than those obtained with exact (but computationally expensive)
methods. These observations are the basis for the new approach to abstrac-
tion refinement proposed in this paper. The overall goal is to obtain as much
information as possible from an analysis of the graph representing all abstract
counterexamples, and to use this information to minimize the amount of time for
expensive reachability computations for the underlying hybrid system dynamics.

2 Preliminaries

Definition 1. A hybrid automaton is a tuple HA = (Z, z0, zf , X, inv , X0, T, g,
j, f) where

– Z is a finite set of locations with initial location z0 ∈Z, and final location zf .
– X ⊆ R

n is the continuous state space.
– inv : Z → 2X assigns to each location z ∈ Z an invariant inv(z) ⊆ X.
– X0 ⊆ X is the set of initial continuous states.
– T ⊆ Z × Z is the set of discrete transitions between locations.
– g : T → 2X assigns a guard set g((z1, z2)) ⊆ X to (z1, z2) ∈ T .
– j : T → (X → 2X) assigns to each (z1, z2) ∈ T and a reset or jump mapping

from X to 2X . The notation j(z1,z2) is used for j((z1, z2))
– f : Z → (X → R

n) assigns to each location z ∈ Z a continuous vector
field f(z). The notation fz is used for f(z). The evolution of the continuous
behavior in location z is governed by the differential equation χ̇(t) = fz(χ(t)).
The differential equation is assumed to have a unique solution for each initial
value χ(0) ∈ inv(z).

Definition 2. A transition system TS is a tuple (S, S0, Sf , R) with a set of
states S, a set of initial states S0 ⊆ S, a set of accepting states Sf ⊆ S, and a
transition relation R ⊆ S × S.

244 A. Fehnker et al.

Definition 3. The semantics of a hybrid automaton HA is a transition system
TS (HA) = (S̄, S̄0, S̄f , R̄) with:

– the set of all hybrid states S̄ = {(z, x)|z ∈ Z, x ∈ X, x ∈ inv(z)},
– the set of initial hybrid states S̄0 = {z0} × (X0 ∩ inv(z0)),
– the set of accepting hybrid states S̄f = {zf} × inv(zf)
– transitions R̄ with ((z1, x1), (z2, x2)) ∈ R̄, iff (z1, z2) ∈ T and there exist a

trajectory χ : [0, τ] → X for some τ ∈ R
>0 such that: χ(0) = x1, χ(τ) ∈

g((z1, z2)), x2 ∈ j(z1,z2)(χ(τ)), and χ̇(t) = fz1(χ(t)) for t ∈ [0, τ], χ(t) ∈
inv(z1) for t ∈ [0, τ].

The first step in model checking hybrid systems is to find a suitable finite
abstraction, where the notion of abstraction for transition systems is defined as
follows.

Definition 4. Given a transition system C = (S̄, S̄0, S̄f , R̄), a transition system
A = (S, S0, Sf , R) is an abstraction of transition system C, denoted by A � C, if
there exist an abstraction function α : S̄ → S such that S0 = α(S̄0), Sf = α(S̄f)
(where α is extended to subsets of S̄ in the usual way),and

R ⊇ {(s1, s2)|∃(s̄1, s̄2) ∈ R̄, α(s̄1) = s1, α(s̄2) = s2}
In this paper, we are interested in constructing finite abstractions for C =

TS(HA), where HA is a given hybrid automaton. This given infinite-state tran-
sition system is referred to as the concrete system. An abstraction A may include
transitions that have no counterpart in C. Such spurious transitions may arise
in abstractions of hybrid systems because sets of reachable states for hybrid sys-
tems cannot, except for simple dynamics [7], be computed exactly, but have to
be overapproximated. The computations of sets of reachable states required for
our procedure are represented formally as follows.

For an abstraction function α, let Sα denote the partition of the set of hybrid
states S̄ defined by the inverse mapping α−1. Our procedure requires a method
for computing the set of states that can be reached from one element of Sα in
another element of Sα. That is, given two sets of hybrid states, S̄1, S̄2 in Sα, we
require a method for computing a subset of states in S̄2 that contains the set of
hybrid states that can be reached from states in S̄1. We denote such a method by
succ. Given a set of hybrid states S̄1 ⊂ S̄ the set of successor states is denoted by
succ(S̄1) = {s̄′|∃s̄ ∈ S̄1. (s̄, s̄′) ∈ R̄}. With this notation, an over-approximation
method succ is defined as:

Definition 5. Let HA be a hybrid automaton with TS (HA) = (S̄, S̄0, S̄f , R̄),
and let A = (S, S0, Sf , R) and α as in Defn. 4. Let S̄1 = α−1(s1), and S̄2 =
α−1(s2). Then succ : Sα×Sα → 2S̄ is the over-approximation of the set of hybrid
successors of S̄1 in S̄2 iff succ(S̄1, S̄2) ⊆ S̄2 and succ(S̄1, S̄2) ⊇ succ(S̄1) ∩ S̄2.

Our abstraction refinement procedure provides a framework to use the fact
that different over-approximation techniques have different computational loads
and accuracy. It was observed in [3] that combinations of coarse and precise

Refining Abstractions of Hybrid Systems 245

methods can improve the efficiency of the verify-refine iterations significantly. In
the following we assume a series of over-approximation methods succ1, . . . , succn

is given that provides a hierarchy of coarse to tight approximations. This hier-
archy will be used to assign weights to fragments that reflect the computational
effort required to apply the various over-approximation methods.

Our procedure is based on the analysis of sequences of states in abstractions
called fragments.

Definition 6. A fragment of a transition system TS = (S, S0, Sf , R) is a finite
sequence (s0, . . . , sn) such that (si−1, si) ∈ R for i = 1, . . . , n. A run is a frag-
ment with s0 ∈ S0. A state s is reachable if the there exists a run that ends in
s. An accepting run is a run (s0, . . . , sn) with sn ∈ Sf . The set of all accepting
runs of TS will be denoted by R(TS). A run (s0, . . . , sn) is loop-free if for all
i, j ∈ {0, . . . , n}, i 	= j implies si 	= sj.

We consider the verification of safety properties. The set of states Sf should
not be reachable, that is, the transition system should not have any accepting
run. We refer to Sf as the set of bad states and to accepting runs as counterex-
amples. Our analysis of counterexamples for abstractions will focus on sets of
fragments, using the following notions of cutting fragments and cutting sets of
fragments.

Definition 7. For n2 ≥ n1 ≥ 0, fragment �1 = (s0, . . . , sn1) cuts a fragment
�2 = (t0, . . . , tn2), denoted by �1 � �2, if there exists a i ∈ {0, . . . , n2 − n1} such
that ti+j = sj for j = 0, . . . , n1.

Definition 8. A set F1 of fragments cuts a set of fragments F2, denoted by
F1 � F2, if for each fragment �2 ∈ F2 there exist �1 ∈ F1 such that �1 � �2.
Set F1 is minimal if F1 � F2 and F1 \� 	� F2 for all � ∈ F1. Given a transition
system TS, a set of fragments F cuts TS if F � R(A).

In words, a fragment �1 cuts another fragment �2 if �1 is a subsequence �2.
When a transition system is an abstraction of a hybrid system, a set of fragments
F that cuts the abstraction covers all counterexamples for the abstraction, that
is, any path from the initial state to the bad state (a counterexample) is cut
by one of the fragments in F . Any set of fragments that cuts F also cuts the
abstraction. The remainder of the paper shows how the minimal cutting sets of
fragments can be used to guide the refinement of abstractions for hybrid systems.

3 Validating Fragments

Abstractions can be represented as directed graphs, with states as nodes and
transitions as edges. The initial states can be considered as sources and the final
states as sinks. A cut set is a set of edges such that all paths from source to
sink contain at least one edge in the set. For example, for the graph in Fig. 1.(a)
transitions (G, J) and (B,E) are a cut set. All paths from source to sink pass

246 A. Fehnker et al.

I
J

H

G

F

L

E

A B

C

D

K

H

LG

J

F

E

A B

C

D

K

I

Fig. 1. The initial state of this transition system is A, the accepting state is L. Figure
1.(a) depicts a pair of transitions that cut the transition system. Cutting set can also
contain fragments of length greater than two (Fig. 1.(b))

through one of those edges. All accepting runs are cut, if those edges are deleted
from the graph.

This paper generalizes the idea of cut sets to sets of fragments that cut the
abstraction. For example, fragments (D, H) and (C, G, J) in Fig. 1.(b) form a
cut set since all runs from source to sink contain either (D, H) or (C, G, J). If
both fragments were spurious, then there would exist no run in the concrete
system that connects source to sink. Hence, the concrete system would satisfy
the safety property.

The process of determining whether or not a fragment is spurious is called
validating a fragment. For a given fragment (s0, . . . , sn) of an abstraction A with
abstraction function α, the objective is to determine if there exists a fragment
(s̄0, . . . , s̄n) of hybrid system C, such that si = α(s̄i), for all i = 0, . . . , n. Com-
putation of hybrid successors is the key step in the validation procedure. The
validation procedure uses methods succ1, . . . , succm for the validation step. The
procedure maintains a mapping X : (F × N) → {1, . . . , m} that assigns method
X ((s0, . . . , sn), i) to validate transition i of fragment (s0, . . . , sn). Also, X̄ de-
notes the assignment of the least conservative method to every transition in the
given fragment.

The validation is performed as follows. Given abstraction A, concrete system
C, abstraction function α, and fragment (s0, . . . , sn):

S̄0 := α−1(s0)
for i = 1, . . . , n − 1

S̄i := α−1(si)
S̄i := succX ((s0,...,sn),i)(S̄i−1, S̄i)
if S̄i = ∅

return(“Fragment not valid“)
end % if

end % for
return“Fragment valid with respect to method “)

Refining Abstractions of Hybrid Systems 247

This procedure computes the hybrid successors along the fragment. There exist
no corresponding run to (s0, . . . , sn) if a set of successors S̄i becomes empty.

The need to consider fragments of length two or longer arises when all single-
transition fragments have been validated and some are found to be non-spurious.
Suppose for example, that (B,E) in Fig. 1.(a) has been shown to be spurious,
while (G, J) has been shown to be non-spurious. The next iteration has to choose
a cutting set from the abstraction in Fig. 1.(b). Fragment (G, J) however can not
be part of the next cutting set, since it is known to be non-spurious. Suppose
that (D, H) and (C, G, J) have not been validated yet. The set of fragments
(D, H) and (C, G, J) can then be chosen as the next cutting set, and one must
then check if they are spurious.

4 Using Sets of Fragments for Abstraction Refinement

Figure 2 presents our procedure for model checking hybrid systems using sets of
fragments to guide the abstraction refinement. The inputs to the procedure are:
C, a given concrete (hybrid) system; A, an initial abstraction for C; F , a set
of loop-free fragments that cuts A; and P : F → N, an assignment of weights
reflecting the computational effort required to validate each fragment. The con-
crete system is represented implicitly through the equations of the underlying
hybrid automaton. The initial abstraction includes the abstraction function and
a representation of the associated partition of hybrid states. In this paper we
assume the initial abstraction A = (S, S0, Sf , R) is defined as in [3]. This initial
abstraction has one abstract state for each control location, with the exception
of the initial location. For the initial location the abstraction includes two states,
one to represent the set of hybrid states S0 = z0 × (inv(z0) ∩ X0), and one state
to represent z0 × (inv(z0)\X0). Given the initial abstraction A = (S, S0, Sf , R),
the initial set of fragments F is defined to be the set of transitions R. Initially,
X assigns the computationally cheapest method to all transitions in the initial
set F , and P initially assigns the weight associated with this method.

In each iteration through the main loop, a new abstraction is constructed
based on the results of validating sets of fragments. If there are no accepting
runs for the abstraction coming into the main loop (R(A) = ∅) the verification
terminates with a positive result: the bad state is not reachable in the hybrid
system.

The first step in each iteration is to compute a minimal cutting set of frag-
ments Fopt for which the set sum of the weights is minimized (Fig. 2(i)). Section
5 describes the algorithm for finding Fopt, which is a generalization of algorithms
for finding minimal cut sets of links in a graph.

Given the set of fragments Fopt, the inner loop iterates through the elements
of Fopt one at a time. Each fragment in Fopt will be validated (Fig. 2(ii)). This
iteration continues until all fragments have been validated (Fopt = ∅) or an
abstraction has been constructed for which the remaining fragments no longer
constitute fragments for the abstraction (Fopt 	⊆ F). If the current fragment is a
valid accepting run, the procedure stops. Otherwise, if it is a valid fragment, the

248 A. Fehnker et al.

while R(A) �= ∅
Fopt := cutset(A, F , P) (i)
while Fopt �= ∅ ∧ Fopt ⊆ F

(s0, . . . , sn) :∈ Fopt, Fopt := Fopt \ (s0, . . . , sn)
valid := validate((s0, . . . , sn), A, C, X) (ii)
if valid ∧ s0 ∈ S0 ∧ sn ∈ Sf ∧ X = X̄

exit(“Found valid accepting run of A”)
elseif valid

(F , P, X) := augment(F , P, X , (s0, . . . , sn), A) (iii)
break

else
(A, F , P, X) := refine(A, F , P, X , (s0, . . . , sn)) (iv)

end % if
end % for

end % while

exit(“zf is not reachable for the HA”)

Fig. 2. Validation-refinement loop that uses cutting sets of fragments Fopt to guide the
refinement. Inputs to this procedure are: Concrete hybrid system C, initial abstrac-
tion A, initial set of loop-free fragments F that cuts A, an assignment to estimated
computational cost of validation P and, finally, an assignment to validation methods X

procedure augments the set of fragments as well as the assignment of weights and
methods (iii), leaves the inner while loop, and recomputes Fopt. If the fragment is
not valid, the abstraction, fragments, weights and method assignment are refined
(Fig. 2(iv)). This refinement may change F such that Fopt 	⊆ F . In this case the
procedure exits the inner while loop and recomputes Fopt.

Augmentation (iii) and refinement (iv) depend on the outcome of the vali-
dation procedure (ii): either the procedure finds an empty set of successors, i.e.
there exists no corresponding fragment in C to (s0, . . . , sn), or the procedure
could not find an empty set of hybrid successors. The latter may be caused
by the over-approximation error of the selected methods. In this case there are
two options on how to proceed: Either, the over-approximation can be improved
by using a different approximation method, or the current fragment must be
replaced by extensions of the current fragment.

Choosing a different over-approximation method. The result of the validation
might be improved by a different approximation method in future iterations.
Changing the validation methods for fragment (s0, . . . , sn) is done by changing
the mapping X (which maps transitions in a fragment to the method that should
be used to validate them) for at least one transition in (s0, . . . , sn). If the proce-
dure changes the mix of methods used to validate (s0, . . . , sn) it has to update
function P accordingly.

Extending the fragment. If the over-approximation cannot improve, the current
fragment (s0, . . . , sn) will be replaced by new, extended fragments. This be-

Refining Abstractions of Hybrid Systems 249

after

i−1 i+1
i−1 i+1

i−1 i+1 i−1 i+1i

comp
i

reach
i

i

i

s

s

s s s s

s

ss

s s

s
s

beforebefore

after

Fig. 3. Left: Refinement by splitting states. Right: Refinement by purging transitions.
For a formal definition of the refinement operations see [3]

comes necessary if the validation step uses for each fragment the best available
over-approximation method. The new fragments will extend (s0, . . . , sn) in both
directions of the transition relation, i.e. sets {(s′, s0, . . . , sn)|(s′, s0) ∈ R} and
{(s0, . . . , sn, s′)|(sn, s′) ∈ R} are added to F . Recall the requirement that for
all �1, �2 ∈ F , �1 	� �2. The procedure enforces this requirement by removing
all fragments from F that are cut by some other fragment. It also removes all
fragments that contain self-loops. The set of new fragment ensures that there
are a sufficient number of fragments in F to cut RA, although one fragment was
removed. Finally, X and P are updated for all new fragments of F .

To avoid fragments of unlimited length the augmentation might extend frag-
ments only up to a certain length. First experiments show that an upper bound
of 2 to 4 is reasonable. Adding only a limited number of fragments may lead to a
situation in which a certain counterexample is not cut by any fragment. In this
case the procedure might add the complete counterexample to the cutting set,
and validate it in the next iteration.

Refinement. If the current fragment is not valid, the refinement step (iv) in Fig.
2 uses the sets S̄i that were computed in the validation step (ii), for i = 1, . . . , k.
For i = 1, ..., k − 1 the following steps are performed. If S̄i is a proper subset of
α−1(si), split si into two abstract states, one, sreach

i , to represent the states in
S̄i, and one, scomp

i to represent the states in α−1(si)\ S̄i (Fig. 3). The new states
sreach

i and scomp
i will have the same ingoing and outgoing transitions as Si, with

one exception. The transition from si−1 to scomp
i can be omitted, since there

exists no hybrid transition from any state in S̄i−1 to some state in α−1(si) \ S̄i.
All fragments from F that involve state si are removed, and the new transitions
of the abstraction are added to F . X assigns to the new fragments the default
method for single transitions, and P the weight that is associated with this
method. If S̄i is equal to α−1(si), then there is no need to refine the abstraction.

For i = k the transition (sk−1, sk) is omitted from the abstraction (Fig. 3),
since there exists no hybrid transition from any state in S̄k−1 to some state in

250 A. Fehnker et al.

α−1(sk). Similarly, all fragments from F that contain transition (sk−1, sk) are
removed.

5 Optimal Cutting Sets of Fragments

This section describes the cutset operation in step (i) of Fig. 2. Assume a finite
transition system A (the current abstraction), a set of fragments F and a weight
assignment P : F → N. The fragments in F have not been validated and are
candidate elements of the optimal cutting set. By assumption for the initial
abstraction, and by construction for all subsequent abstractions, all fragments
in F are loop-free. P assigns to each � ∈ F a weight; this weight reflects the
expected cost of validating this fragment. The weight of a set F ′ ⊆ F is the sum
of the weights of the elements. Furthermore, it is assumed that �1 � �2 implies
P(�1) ≤ P(�2). As a consequence it is required for all �1, �2 ∈ F that �1 	� �2,
i.e. no fragments in F cuts another.

Step (i) of the procedure in Fig. 2 computes a cutting set Fopt ⊆ F of A that
is minimal w.r.t. to P, i.e. it satisfies

∑
f∈Fopt

P(f) = min
F ′ ⊆ F

F ′ � R(A)

∑
f∈F ′

P(f) (1)

Example. Suppose that we are given transition system A in Fig. 4 as abstraction.
Suppose furthermore that fragments (0, 4, 5), (1, 2, 4), (0, 1) and (4, 3) have not
been validated yet. Assume an associated weight of 2 with validating fragment
(0, 4, 5), a weight of 3 with (1, 2, 4), and a weight of 1 with fragments (0, 1) and
(4, 3). What subset of these fragments is the cutting set with the lowest sum of
weights? Obviously, we have to include fragment (0, 4, 5) in any cutting set. But
is the set with fragments (0, 4, 5) and (0, 1) sufficient? After all, this set cuts all
loop-free accepting runs.

Somewhat surprisingly, there exist an accepting run that is not covered by
fragment (0, 4, 5) or fragment (0, 1). Neither cuts accepting run (0, 4, 3, 1, 2, 4, 5),
although fragment (0, 4, 5) cuts it trivially once we remove loop (4, 3, 1, 2, 4).
This demonstrates that the problem of finding cutting sets of fragments is not
a simple cut set problem in a directed graph, for which it would be sufficient to
cut all loop-free runs. �

A standard cut set algorithm cannot be applied directly, since fragments in F
are not represented by single transitions in A. To solve this problem, we define a
collection of transition systems that observe A. The purpose of these observers is
to record the occurrence of a fragment in A. For example, the observer for frag-
ment (0, 4, 5) will help to distinguish between occurrence of a sequence (0, 4, 5)
and (2, 4, 5). The observers, one observer for each fragment in F , are composed
with a labelled version of abstraction A. Labelled transition systems, which are
called automata, and the composition of automata is defined as follows.

Refining Abstractions of Hybrid Systems 251

1

0

4 1

2

4

5

5
3

1

2

4

3

1

A

5 4

3 2

0

Fig. 4. Left: A finite transition system A. Right: The depth-first unrolling of A. The
unrolling stops if either the final state 5 is reached (solid), or if a loop has been detected
(dashed)

Definition 9. Given a set of labels Σ, an automaton A is a tuple (Σ, S, S0, Sf ,
R, L) where (S, S0, Sf , R) is a transition system and L : R → 2Σ a labelling
function.

Definition 10. Let Ai = (Σi, Si, S
0
i , Sf

i , Ri) be a finite number of automata,
i = 1, . . . , n. The synchronous composition A = A1|| . . . ||An is an automaton
(Σ, S, S0, Sf , R) with

– Σ =
⋃

i∈{1,...,n} Σi, the union of all alphabets.
– S = S1× . . .×Sn, S0 = S0

1 × . . .×S0
n, and Sf = Sf

1 × . . .×Sf
n. The projection

s|Si will be denoted as si.
– (s, s′) ∈ R if

⋂
i∈{1,...,n} Li(si, s

′
i) is nonempty.

– L(s, s′) =
⋂

i∈{1,...,n} Li(si, s
′
i).

This is a very restricted notion of composition. The composition automaton can
only take a transition if all automata can take a transition with the same label.
However, the observing automata will be constructed such that they can always
synchronize with any transition in the observed automaton. Given a transition
system A and a set of fragments F of A, the procedure first extends A with labels,
and then introduces for each fragment in F a small automaton that observes the
occurrence of a fragment. The steps to obtain the observing automata are the
following:

1. Extend A = (S, S0, Sf , R) to an automaton Al = (Σ, S, S0, Sf , R) with
Σ = R and L mapping (s, s′) �→ {(s, s′)}.

2. For each � ∈ F , � = (s0, . . . , sn−1), introduce an observer automaton A� =
(Σ�, S�, S

0
� , Sf

� , R�, L�) with
– Σ� = Σ
– S� = {t0, . . . , tn−1}, where n is the length of fragment �.
– S0

� = {t0} and Sf
� = S�

– R� is the set {(ti, ti+1)|i = 0, . . . , n − 2} ∪ {(ti, t0)|i = 0, . . . , n − 1}}
– and L� is the following mapping

252 A. Fehnker et al.

Σ

A A

(1,2)

(4,5)

(4,3)

(0,4)

(2,4)

5 4

3 2

(0,1)

1

0

(3,1)

A

0 1
(1,2)

Σ
\ (1,2)

1
(0,4)

Σ

0

A

Σ

Σ \ (0,4)l (0,4,5)

(0,1)

(1,2,4)

A(4,3)

00

Σ

Fig. 5. The automata A(0,4,5), A(1,2,4), A(0,1), and A(4,3) observe the transitions in Al.
The only accepting state of Al is the state 5

(t, t′) �→
⎧⎨
⎩

(si−1, si) if (t, t′) = (ti, ti+1), i = 0, . . . , n − 2
Σ \ (si−1, si) if (t, t′) 	= (ti, ti+1), i = 0, . . . , n − 2
Σ if (t, t′) = (tn−1, tn)

The next step composes the labelled transition system Al with the observer
automata A� for all � ∈ F . This composition will be denoted as AF .

Example (Cont). Given the transition system A in Fig. 4, the first step is to ob-
tain Al by adding labels (Fig. 5). Recall that F = {(0, 4, 5), (1, 2, 4), (0, 1), (4, 3)},
and P(0, 4, 5) = 2, P(1, 2, 4) = 3, P(0, 1) = 1 and P(4, 3) = 1. The next step
includes a small observing automaton for each fragment (Fig. 5). The automaton
for fragment (0, 4, 5) has as many states as the fragment has transitions. In each
state the observer automaton can synchronize with any transition in Al.

If transition (0, 4) occurs in Al the observing automaton A(0,4,5) takes a
transition from state 0 to state 1. If transition (4, 5) occurs right after the first
transition, the observing automaton will take a transition back to the initial
state. This corresponds to the transition from (4, 1, 0, 0, 0)T to (5, 0, 0, 0, 0)T in
composition AF in Fig. 6. This transition marks an occurrence of the fragment
(0, 4, 5) in Al.

Figure 6 depicts the composition automaton AF , and the tree of all loop-
free counterexamples. There are two transitions labelled (4, 3) in AF . Transition
(4, 3) is an element of the set of fragments F that have not been validated yet. If
one could show that (4, 3) is spurious, it would eliminate both arcs in the graph
in one go. Obviously, the cut set algorithms for directed graphs cannot be used,
since several arcs in AF can represent the same fragment of Al.

The set with ((4, 1, 0, 0, 0)T , (5, 0, 0, 0, 0)T) and ((2, 0, 1, 0, 0)T , (4, 0, 0, 0, 0)T)
cuts composition AF .1 These transitions in AF mark the occurrence of fragments
(0, 4, 5) and (1, 2, 4) in A. The overall weight of this set is 5. The tree also
shows that the set containing fragments (0, 4, 5) and (0, 1) does not cut Al,

1 Column vectors are used for elements of product state spaces to distinguish them
from tuples of states that are fragments.

Refining Abstractions of Hybrid Systems 253

0,0
0,0,0

0,0
0,0,04,1,0

0,0

5,0,0
0,0

3,0,0
0,0

1,0,0
0,0

2,0,1
0,0

4,0,0
0,0

5,0,0
0,0

5,0,0
0,0

4,0,0
0,0

2,0,1
0,0

1,0,0
0,0

5,0,0
0,0

AF

(0,4)

(4,5)

(4,5)

(4,3)
(4,3)

(3,1) (2,4)

(2,1)

(0,1)
4,1,0
0,0

4,0,0
0,0

3,0,0
0,0

2,0,1
0,0

1,0,0
0,0

Fig. 6. Composition automaton AF , and the tree of all loop-free accepting runs

since transitions ((4, 1, 0, 0, 0)T , (5, 0, 0, 0, 0)T) and ((0, 0, 0, 0, 0)T , (1, 0, 0, 0, 0)T)
do not cut AF . It also shows that (0, 4, 5), (1, 0) and (4, 3) are a cutting set of A,
with an associated weight of 4. This is the optimal cutting set for this example.

The observers for the fragments (0, 1) and (4, 3) do not add anything and
could be omitted. Likewise, one observer for fragments that are equal except
for the last transition would be sufficient. However, maintaining those observers
does not increase the size of the composition, and we choose to maintain them
in this paper to treat the different fragments consistently. �

The construction of Al ensures that each transition has a unique label. Con-
sequently Al is deterministic. All observers are deterministic, too, and can syn-
chronize in each state with any transition of Al. The behavior of Al is not
restricted by the observers. This yields a close relationship between AF and Al,
and thus between AF and A. As a matter of fact for each π ∈ R(A) there exist
a πF ∈ R(AF) such that πF |S = π, and for each πF ∈ R(AF) there exist a
π ∈ R(A) such that such that πF |S = π, where πF |S is the projection of πF to
the states S of Al.

Lemma 1. Given a transition system A, a set of fragments F of A and the
composition automaton AF , the following holds.

(i) A subset F ′ ⊆ F cuts transition system A, i.e. F ′ � R(A) iff for all πF ∈
R(AF) there exists � ∈ F ′ such that � � πF |S.

(ii) Given � = (s0, . . . , sn), πF ∈ R(AF) the following holds: � � πF |S iff the
projection of the path πF to S × S� contains a transition from (sn−1, tn−1)T

to (sn, t0)T .

Proof: (i) This follows directly from the observation that πF |S is in R(A) for all
πF ∈ R(AF), and that for all path π ∈ R(A) there exists a πF , with πF |S = π.
(ii)”⇒” Transition (sn−1, tn−1)T to (sn, t0)T can only be taken if it was im-
mediately preceded by transitions synchronizing on labels (sn−i−1, sn−i)T , for
i = 1, . . . , n − 1.
”⇐”. Let πF |S = (z0, . . . , zm) and πF |S� = (z′

0, . . . , z
′
m). By definition, � � πF |S

iff there exists a k such that zk+i = si for i = 0, . . . , n.

254 A. Fehnker et al.

First, we show that A� is in its initial state after the k-th transition of πF ,
that is, z′

k = t0. If k = 0, z′
k = t0 holds trivially. When k > 0 we have the

following: (zk−1, zk) is a transition of Al, but it is not a transition of fragment
�. The latter holds because zk = s0 and � is loop-free. Since (zk−1, zk) is not in
� it can synchronize only with a transition of A� that leads to its initial state.
This implies that z′

k = t0. The transition (zk+i, zk+i+1) will then synchronize
with (z′

k+i, z
′
k+i+1) on label (si, si+1), for i = 0, . . . , n − 2. At this point A� will

be in state tn−1. In this state, transition (zn−1, zn) of Al can only synchronize
with transition (tn−1, t0) of A� on label (sn−1, sn), which concludes the proof.�

Rather than selecting subsets of F that cut A, the procedure can select
subsets of RF , the transitions of AF , that cut AF . The advantage of transitions
above fragments is that it becomes sufficient to look at loop-free accepting runs.
A set R′

F ⊆ RF that cuts all loop-free accepting runs, also cuts all accepting
runs. Let Rlf (AF) be the set of all loop-free accepting runs.

Lemma 2. Given a transition system A, a set of fragments F of A and the
composition automaton AF . Let R′

F ⊆ RF , then R′
F � Rlf (AF) iff R′

F �
R(AF).

Proof: ”⇒” Suppose that we have an accepting run πF ∈ R(AF). From this we
can obtain a loop-free accepting run π′

F by eliminating all loops. According to
the precondition there exists a � ∈ R′

F such that � � π′
F , which means that �

appears somewhere in π′
F . Since the transitions that occur in πF are a super-set

of those that appear in π′
F we have � � πF , too. ”⇐” If a set of transitions cuts

all accepting runs, it will cut all loop-free accepting runs. �
Lemma 2 allows the consideration of only loop-free accepting runs of AF .

However, the example demonstrates that a cut set algorithm for directed graphs
cannot be used to find a cut set of AF , since fragments of A may be represented
by multiple transitions in AF . The cutting set problem can be solved by a trans-
lation to a set cover problem. A similar approach has been used in [8] to find
cut sets for attack graphs.

Given a finite (universal) set U and a set of sets C = {C1, . . . , Cn} with Ci ⊆ U
as input, a set cover algorithm computes the smallest subset Copt ⊆ C such that⋃

Ci∈Copt
Ci = U . The set cover problem is NP-complete, but a greedy approach

is guaranteed to find an solution that is at most lg n as bad as the optimal
solution in polynomial time (where n is the number of elements of U) [9]. The
greedy algorithm picks in each iteration the set from S that covers the greatest
number of uncovered elements of U , until the complete set U is covered.

The problem of finding a cutting set of fragments is a set cover problem,
where the universal set is Rlf (AF), and C contains for each fragment � in F set
C� = {πF ∈ Rlf (AF)|� � πF |S}. The problem is to find an optimal subset of C
that covers Rlf (AF). We compute the sets C� by a depth-first exploration of AF ,
that starts backtracking if it either finds a loop, or reaches an accepting state.
In the latter case it adds the accepting run to C� if � � π.

We modify the greedy algorithm to accommodate the fact that we are not
looking for the smallest cover of Rlf (AF), but for an optimal one. In each itera-

Refining Abstractions of Hybrid Systems 255

tion the algorithm adds the set C� to Copt that has the smallest associated cost
P(�) per covered run. In the latter it considers only runs that have not been
covered in earlier iterations. When all runs in Rlf (AF) are covered the procedure
tests if the set obtained by removing some C� from Copt covers all runs. If this is
the case, C� will be omitted from Copt.

The overall procedure to compute cutting sets of fragments can be summa-
rized as follows. Given a finite transition system A and a set of loop-free frag-
ments F , construct the composition automaton AF . Then, compute all loop-free
accepting runs Rlf (AF). For each fragment � compute the corresponding set C�,
which contains πF ∈ Rlf (AF), if � � πF |S . Finally, compute the optimal set
cover Copt. The optimal cutting set of fragments Fopt contains all fragments �
with C� ∈ Copt.

Example (cont). The composition automaton AF has only three loop-free coun-
terexamples (Fig. 6). The following table shows which of these, projected to S,
is cut by what fragment:

(0, 4, 5) (1, 2, 4) (0, 1) (4, 3)
(0, 4, 5) �
(0, 4, 3, 1, 2, 4, 5) � �
(0, 1, 2, 4, 5) � �

Given the set F = {(0, 4, 5), (1, 2, 4), (0, 1), (4, 3)} there are two sets of fragments
that cover all accepting runs: {(0, 4, 5), (1, 2, 4)} and {(0, 4, 5), (0, 1), (4, 3)}. The
latter is optimal with an overall weight of 4. �

6 Example

This section uses an adaptive cruise control system to illustrate the proposed cut
set approach. The results in [3] for this example show that analyzing fragments
of counterexamples rather than complete counterexamples can reduce the com-
putation time in CEGAR by an order of magnitude. Here we apply the concept
of cutting sets of counterexample graphs to guide the abstraction.

The adaptive cruise control system is part of a vehicle-to-vehicle coordination
system [10]. This system has two modes: cruise control mode (cc-mode) and
adaptive cruise control mode (acc-mode). The acc-mode tries to keep a safe
distance to the vehicle ahead, while the cc-mode tries to keep a constant speed.
The hybrid automaton is the composition of a four-gear automatic transmission
with the two mode acc-controller. An additional error state represents collisions.

Two different methods are used for validation. The first method, succcoarse ,
formulates the question if a trajectory between S1 and S2 exists as an optimiza-
tion problem. The second method succtight computes polyhedra which enclose
all trajectories that originate in S1. This over-approximation with polyhedra is
based on work presented in [2]. Both methods were discussed in [11]. The default
method for single transitions, succcoarse , has an associated weight of 1. If this
method fails to refute a fragment, the fragment is extended to a path of length

256 A. Fehnker et al.

(7,9)

5

6

7

13

9

10

11

4

1

2

12

14

5

6

7

8

9

10

11

4

1

2

12

5

6

7

8

9

10

3

4

1

2

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10 :
11 :
12 :
13 :
14 :
15 :CBA

(4,13,7)

(2,3),

(3,4),

(2,11,4)

(4,8,7),

(1,2),

(1,2,3)

(11,4)

(11,4,8)

(13,7)

(2,6), (2,10)

(4,8), (3,7)
(2,3,7)

(4,12),

(4,8,9)

(8,7), (8,9)

(1,5)A

B

C

(7,6), (7,14),
(7,12), (13,7,9)
(13,7,9)

Fig. 7. Adaptive cruise control example. The initial state is 1, the final state, that
models collision, is state 9. Figure A depicts the initial abstraction. B and C depict
refinements. To the right, the sequence of cutting sets computed during verification.
Valid fragments in bold face, spurious ones in italics

two. For pairs of transitions succcoarse is applied first, with an associated weight
of 2. If this method fails to refute the fragment, method succtight will be applied
to the fragment next, with an associated weight of 6.

Our prototype implementation of the cut set method computes 15 cutting
sets to reach a conclusive result. The sequences of cut sets and abstraction refine-
ments are shown in Fig. 7. Three fragments were found to be spurious: (2, 3, 7)
of the fifth cut set for the first abstraction in Fig. 7.A, leading to the refine-
ment show in Fig. 7.B; (4, 8, 9) of the 10th cut set, leading to the refinement
in Fig. 7.C, and (13, 7, 9) of the 15th cut set. This final fragment was validated
before in the 14th iteration with succcoarse and found to be non-spurious. The
validation method for this fragment was consequently updated to succtight with
an associated weight of 6. The more accurate method then found in the 15th
iteration that (13, 7, 9) is spurious. This was the only time that succtight was
invoked. Because the only fragment of the cutting set is not valid, state 9 is
proven to be not reachable, which concludes the verification.

Note that the cut set in iteration 7 is not the optimal cut set; the 8th set
would have been optimal at this stage. Although the greedy approach fails to
compute the optimal cut set in this case, it does not compromise the final result,
since the computed sets are always cutting sets.

A complete analysis of the ACC example with the prototype implementation
of the cut set method in MATLAB takes 27.8 secs. on 1.2GHz Celeron processor,
compared to 28.1 secs. for our implementation of the CEGAR approach from [3].
Although the runtimes are very similar, the cut set approach invokes the coarse-
over-approximation 24 times vs. 29 invocations by CEGAR with fragments. Both
invoke succtight once. An analysis of the experimental results using the MATLAB
profiler indicates that only 2.3% of the computation time is spent computing cut
sets.

Refining Abstractions of Hybrid Systems 257

7 Conclusions and Future Work

This paper presents a method for guiding abstraction refinement for hybrid sys-
tems using sets of fragments of counterexamples, building on the notion of frag-
ment that was introduced in [3]. We use the concept of cutting sets of fragments.
These cutting sets of fragments focus on the analysis similar to the way in which
cut sets in directed graphs focus on bottlenecks. The aim is to refute as many
counterexamples as possible while minimizing the expected computational effort.

The procedure presented in this paper leaves room for many heuristic choices,
for example what mix of over-approximation methods is useful for what frag-
ments, and how to assign weights to validations. Effective heuristics will be
developed as we gain experience and insight with our prototype tool.

References

1. Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of
hybrid system. In: TACAS. Volume 2619 of LNCS., Springer (2003)

2. Chutinan, A., Krogh, B.: Verification of polyhedral-invariant hybrid automata us-
ing polygonal flow pipe approximations. In Vaandrager, F., van Schuppen, J., eds.:
Hybrid Systems: Computation and Control. LNCS 1569, Springer Verlag (1999)
76–90

3. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,
M.: Abstraction and counterexample-guided refinement in model checking of hy-
brid systems. International Journal of Foundations of Computer Science 14 (2003)
583–604

4. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In Tomlin,
C.J., Greenstreet, M.R., eds.: Hybrid Systems: Computation and Control HSCC.
Volume 2289 of LNCS., Springer (2002) 465–478

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer-Aided Verification. Volume 1855 of LNCS.,
Springer (2000) 154–169

6. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press (1994)

7. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid au-
tomata? In: Proceedings of the 27th Annual Symposium on Theory of Computing,
ACM Press (1995) 373–382

8. Sheyner, O.: Scenario Graphs and Attack Graphs. PhD thesis, SCS, Carnegie
Mellon University (2004)

9. Skiena, S.: The Algorithm Design Manual. Telos/Springer-Verlag (1998)
10. Girard, A., Souza, J., Misener, J., Hedrick, J.: A control architecture for integrated

cooperative cruise control and collision warning systems. In: Proc. 40th IEEE Conf.
on Decision and Control. (2001)

11. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.: Specification-guided analysis of
hybrid systems using a hierachy of validation methods. In: Proc. IFAC Conference
ADHS, Elsevier (2003)

	Introduction
	Preliminaries
	Validating Fragments
	Using Sets of Fragments for Abstraction Refinement
	Optimal Cutting Sets of Fragments
	Example
	Conclusions and Future Work

