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Abstract

We significantly reduce the complexity of BDD-based sym-
bolic verification by using partitioned transition relations to
represent state transition graphs. On an example pipeline
circuit, this technique reduced the verification time by an or-
der of magnitude and the storage requirements for the tran-
sition relation by two orders of magnitude. We were also
able to handle example pipelines with over 10'?° reachable
states.

1 Introduction

Although methods for verifying sequential circuits by search-
ing their state transition graphs have been investigated for
many years, it is only recently that such methods have begun
to seem practical. Before, the largest circuits that could be
verified had about 10° states. Now it is easy to check circuits
that have many orders of magnitude more states [5, 6, 7, 9].
The reason for the dramatic increase is the use of special
data structures such as binary decision diagrams (BDDs) [4]
for encoding the state transition graphs of such systems.

In this paper, we show how to process state transition
graphs more efficiently than in our previous work [6, 7]. Our
new approach involves using multiple BDDs which are im-
plicitly conjuncted to represent the graphs. We call this
representation a partitioned transition relation. The BDDs
that make up the partitioned transition relation are derived
in a natural way from the structure of the circuit being veri-
fied. We illustrate the power of the technique by verifying a
pipeline circuit [6] against a specification given in the tem-
poral logic CTL [8]. For a pipeline with 4 registers, each
32 bits wide, the partitioned transition relation required less
than 2,500 BDD nodes, while our previous approach of us-
ing a single BDD required nearly 340,000 nodes, a savings
of nearly a factor of 140. On a Sun 4, the verification time
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improved from approximately 14,000 seconds (projected) to
995 seconds, a factor of about 14. We were also able to
handle example pipelines with over 10"%° reachable states.
There are several other methods that use BDDs in the
verification of sequential circuits. Bryant and Seger [5] use
a symbolic switch-level simulator to check pre- and post-
conditions specified in a restricted form of temporal logic.
The logic allows boolean conjunction and the next time
modality (X). Bose and Fisher [2] show how to verify
pipeline circuits with respect to a simpler abstract model by
means of a representation function. Coudert, Berthet, and
Madre describe a system for showing equivalence between
deterministic finite automata [9). Their system performs a
symbolic breadth-first search of the state space reachable by
of the product of the two automata. More recently [10], they
have extended their method to handle properties expressed
in the temporal logic CTL [6, 8]. None of these methods,
except for the recent work by Coudert et al., can be used to
verify liveness properties. More importantly, none of these
methods can easily handle nondeterministic systems. With
transition relations, it is very natural to model examples like
the cache coherency protocol for the Encore Gigamax, which
McMillan has recently investigated [12]. A major feature
of the Gigamax architecture is an asynchronous, and hence
nondeterministic, interconnection network. The use of ab-
straction to hide certain details of the cache replacement
policy also gives rise to nondeterminism in this example.
Our paper is organized as follows. Section 2 reviews sym-
bolic model checking. Section 3 describes how transition
relations can be partitioned according to the structure of
circuits. We use these partitioned transition relations in
section 4 to give improved verification algorithms. Sec-
tion 5 analyzes the performance of our new techniques on
the pipeline circuit mentioned above. The paper concludes
in section 6 with a discussion of our results and those of

2 Symbolic model checking

In this section, we give an overview of how we represent
circuits and sets of circuit states using BDDs and how we
specify and verify properties of circuits. These techniques
have been described in greater detail in earlier papers [6, 7].

Given a circuit, let V be its set of boolean state variables.
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We identify a boolean formula over V' with the set of val-
uations which make the formula true. A valuation of the
variables corresponds in a natural way to a state of the cir-
cuit; hence the formula may be thought of as representing a
set of circuit states. The BDD for the formula is in practice
a concise representation for this set of states. In the remain-
der of the paper, we will denote sets of states with S’s. We
denote the BDD representing the set S by S(V'), where V is
the set of variables that the BDD depends on. In addition
to representing sets of states of a circuit, we must be able
to represent which transitions the circuit can make. To do
this, we use a second set of variables V'. A valuation for the
variables in V' and V' can be viewed as designating a pair
of states in the circuit, and we can represent sets of pairs
using BDDs as above. We will refer to sets of pairs of states
as transition relations. If V is a transition relation, then we
write N(V, V') to denote the BDD that represents it.

We use a propositional temporal logic called CTL [8] to
specify properties of circuits. The formulas in CTL are built
from atomic propositions (one for each state variable of the
circuit), boolean connectives (=, A, V, —, & and @), and
temporal operators which are used to specify sequential be-
haviors. Some of the temporal operators are YX ¢, which
means that ¢ is true in all immediate successor states, VG ¢,
which means that ¢ is true for all reachable states, and
V(¢ U ¥), which means that i must eventually become true
and ¢ must be true up until that point.

There is an efficient algorithm for determining whether a
CTL property is true for a circuit that makes use of the sym-
bolic representation of circuits and sets of states described
above [6]. For our purposes, the important property of this
algorithm is that the of the basic step is performing compu-
tations of the following form:

SV = ?v [sVyANw, V).

(The notation above indicates a series of nested existential
quantifications, one for each variable in V.) This expression
is called a relational product. Computing relational products
is also important for other sequential verification techniques,
such as reachability analysis, that use symbolic representa-
tions. Thus, it is crucial to be able to do this computation
efficiently. A special algorithm is typically used to do this
operation in one pass over the BDDs S(V) and N(V,V’). By
using such an algorithm, it is possible to avoid building the
BDD for S(V) A N(V, V'), which would often be impracti-
cally large. Unfortunately, the BDD N(V, V') itself is often
very big. Up to this point, being forced to construct this
BDD has been the major stumbling block in trying to verify
complex circuits. In the following sections, we describe how
to overcome this problem by using a partitioned transition
relation to represent N.

3 Deriving transition relations

The first step in verifying a circuit is to derive its transition
relation. For a synchronous circuit with n state variables,
we let V = {vp,...,vn—1} and V' = {¥f,...,v5_;}. For
each state variable v;, there is a piece of combinational logic
which determines how it is updated. Let f; be the function

Paper 24.3
404

computed by this logic. Then v;’s value in the next state is

given by
v; = fi(V).
These equations are used to define the relations
Ni(V, V') = (v} & fi(V)).

In a legal transition of the circuit, each N; must be true;
hence the transition relation for the circuit is

NV, V'Y= No(V,V') A+ A Npes (V, V).

The main point is that the transition relation for a syn-
chronous circuit can be expressed as a conjunction of rela-
tions.

In practice, each N; can often by represented by a small
BDD (typically fewer than 100 nodes). However, the size
of the BDD representing the entire transition relation may
grow as the product of the sizes of the individual parts, and
thus may be prohibitively large. In the past, this has been
the major limitation of symbolic model checking. For our
new method, we instead represent the transition relation by
a list of the parts, which are implicitly conjuncted. We call
this representation a partitioned transition relation.

4 Computing relational products

As noted earlier, computing relational products is a fun-
damental operation in many symbolic verification methods.
This section describes how relational products can be com-
puted using partitioned transition relations. These tech-
niques significantly increase the size of circuits that can be
verified compared to previous methods.

Since the transition relation for a synchronous circuit is a
conjunction of relations, the relational product computed is
of the form

S = T [SOAWV, V') A--A Naca (V)] (1)
veV
The main difficulty in computing S'(V’) without building
the conjunction is that conjunction does not commute with
existential quantification. None the less, the new method
given below allows the relational product to be computed
without constructing the BDD for the full transition relation.
Our new technique is based on two observations. First,
circuits exhibit locality, so many of the Ni(V,V’) will de-
pend on only a small number of the variables in V and V'.
Second, although conjunction does not commute with exis-
tential quantification, subformulas can be moved out of the
scope of existential quantification if they do not depend on
any of the variables being quantified. We will take advan-
tage of these observations by conjuncting the N:(V, V') with
S(V) one at a time and quantifying out each variable v when
none of the remaining N;(V, V') depend on v. More formally,
the user must chose a permutation p of {0,...,n —1}. This
permutation determines the order in which the N;(V,V’)
are conjuncted together. For each ¢, we let D; be the set of
variables in V' that N;(V, V') depends on. Also, let

n-1

Ei=Dyiy= | Daio-
k=i+1



Thus, E; is the set of variables contained in D ;) that are
not contained in D) for any k larger than i. The E; are
pairwise disjoint and their union is equal to V. Then the
relational product in equation 1 can be computed as

Si(V,V')= 3 [S(V)ANyoy(V, V)]
vEEy

S:(V,V')y= J [Si(V,V') A Ny (V, V']
veE,

S(V') = E]E [Sn-1(V, V') A Npgno1y(V, V).
VEE, .1

The order p in which the N;(V,V') are processed has a sig-
nificant impact on how early in the computation state vari-
ables can be quantified out. This affects the size of the BDDs
constructed and the efficiency of the verification procedure.
Thus, it is important chose p carefully, just as with the BDD
variable ordering. In practice, we have found it fairly easy
to come up with orderings which give good results.

In the previous section, we described how a sequential
circuit could be represented by a set of Ni(V, V'), each de-
pending on exactly one variable in V’. While this is almost
always more efficient than constructing the full transition re-
lation, it may not be the best choice. As long as the BDDs
do not get too large, it is better to combine several of the
Ni(V,V') into one BDD (by taking their conjunction) in or-
der to reduce overhead.

5 A synchronous pipeline

In this section, we discuss the verification of a simple pipeline
circuit to illustrate the efficiency of the techniques discussed
in the previous section. This circuit, shown in figure 1 and
first described in an earlier paper [6], performs three-address
arithmetic and logical operations on operands stored in a
register file.

The pipeline decomposes naturally into pieces such as gen-
eral registers, operand registers, etc. We used this decompo-
sition as a starting point for breaking the transition relation
into parts. Some of the parts, such as the register file, were
found to require large BDDs to represent; we broke these
into more pieces. We also found that we could combine some
of the parts, such as the individual pipe registers, without
increasing the number of BDD nodes required; we did this
to decrease overhead. The final decomposition had the fol-
lowing pieces: control logic; pipe registers; the first ALU
operand register; the second ALU operand register; and one
piece for each general register. This ordering was also the
ordering p used for processing the transition relation. With
this ordering, the number of variables in intermediate results
never exceeded the number of state variables by more than
the number of bits in a register. We also found that the
sizes of the intermediate results with this ordering increased
monotonically during each step. In other words, breaking
the transition relation into pieces did not result in having
to manipulate larger BDDs than would have been necessary
with a monolithic transition relation. This is an important
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Figure 1: Pipeline circuit block diagram

point; in many applications involving BDDs, it is the num-
ber of nodes in intermediate results, not the final result, that
limits the size of the problem that can be handled.

In the BDD variable ordering that we used, the source
address registers are closest to the root. The bits of these
registers are interleaved. These are followed by variables
which make up the destination address shift chain. For each
stage in the chain, starting with the leftmost (input) stage,
there is a stall bit followed by a destination address register.
Next come the opcode shift registers, with the bits inter-
leaved. The operand registers, general registers and pipe
registers, interleaved and arranged most significant bit to
least significant bit, are at the end of the ordering.

We experimented with a number of versions of the pipeline
with varying numbers of registers r, register widths w, num-
bers of pipe stages s, and numbers of operations o. For
each version, we collected information on the sizes of the
BDDs needed to represent the transition relation and state
sets and on the time required to do the verification. The
following table shows the rate of growth in the sizes of the
various pieces of the transition relation as a function of the
parameters. These rates of growth were found by studying
“profiles” of the BDDs (histograms of the number of nodes
labeled with each variable) and determining how the BDDs
changed as the parameters changed.

control logic O(srlogr)

pipe registers O(ws)

ALU operand registers | O(srlogr + w(r + 3))
each general register O(w +1log )

The logr factors arise because an extra addressing bit is
needed when 7 increases from 2° to 2°*! — 1. The number
of parts in the transition relation increased linearly with r,
and did not depend on w, s or 0. The number of BDD nodes
in each piece of the transition relation was typically between
10 and 500. No piece ever had more than 1,500 nodes. The
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way the sizes of the pipe registers and ALU operand regis-
ters vary with o depends on the exact operations. The ones
we used were addition, subtraction, and bitwise logical op-
erations. With this set, the control logic grew O(log 0), the
pipe registers and ALU operand registers grew O(o), and the
general registers did not vary with o.

We also studied the BDDs representing the various state
sets in the verification and used profiles to determine their
rates of growth. Since most of the time and space for each
verification was used computing and representing the value
of the destination register at the end of the current oper-
ation, we concentrated on these. The number of nodes in
these BDDs grows as O(rs(r + 8)logr + w(r + 3)2). More
intricate analysis can be used to show, for the operations
above, that the sizes are also bounded by O(0?). The largest
BDDs we encountered had slightly less than 12,500 nodes;
typical sizes were about 1,000 nodes.

We performed the tests described above using a CTL
model checker written mostly in the T dialect of LISP [13].
The actual BDD manipulation routines are written in C and
are based on a package by Brace, Rudell and Bryant [3]. The
mode] checker was run on a Sun 4. Figure 2 shows how the
verification time depends on the parameters r, w, s and o.
The followmg table shows the values used for the ﬁxed pa-
rameters in these tests.

rlw]|]s]|o
vary r 11111
vary w | 3 1i1
vary s | 2| 2 1

varyo [ 2] 3 |1

The figure can be used to estimate the asymptotic in-
crease in verification time as a function of the different pa-
rameters. Because the figure is a log-log plot, a straight line
with slope m indicates that the verification time grows as
the mth power of the independent variable., We used linear
regression to determine the approximate rate at which the
verification times increased. We can divide the graph for r
into groups of points where r increases from 2' to 2'*! — 1
for some ¢. The slopes of the best fit lines within the last
two groups of points are 2.48 and 2.50. The verification time
increases significantly when r increases to 2! because each
of the addresses requires an extra bit. In the graphs for w, s
and o, the slopes of the best fit lines through the last half of
the points are 2.16, 1.92 and 1.54, respectively.

It is important to note that in all cases, the verification
time is growing polynomially in the number of components
of the system. Polynomial verification times were also docu-
mented in earlier work [6, 7). Other researchers [1] using
symbolic techniques have demonstrated verification times
that grow sublinearly in the number of stafes of the system,
but still exponentially in the number of components.

For comparison, we also ran the verification with a mono-
lithic transition relation. With 8 bit registers, the monolithic
transition relation required more than 75,000 BDD nodes to
represent, compared with less than 750 nodes using a par-
titioned transition relation, a difference of more than two
orders of magnitude. In addition, the verification needed
nearly an order of magnitude more time. We also note that
combining parts of a transition relation can result in higher
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Figure 2: Verification times

asymptotic complexity. For example, the total number of
nodes in the BDDs that represent the register file in the
partitioned transition relation is O(r), while the BDD for
their conjunction has O(r?) nodes.

We also ran several more realistic ‘examples. The largest of
these was a pipeline with 8 registers, each 32 bits wide, 2 pipe
registers, and one operation. This example had 406 state
variables resulting in more than 10'2° reachable states, and
the verification took 4 hours and 20 minutes of CPU time.

6 Discussion and future research

By using partitioned transition relations, we have signifi-
cantly improved the efficiency of symbolic model checking.
For some of the examples discussed in section 5, we were
able to reduce the verification time by more than an order
of magnitude and the number of nodes needed to represent
the transition relation by two orders of magnitude. We ver-
ified a circuit with more than 400 state variables and over
1020 reachable states.

For deterministic systems, a transition function vector can
be used to represent how a circuit transitions from one state



to another. In this method, a separate BDD is used for each
state holding node of the system. This BDD represents the
function computed by the combinational logic driving the
associated node. Coudert et al. [9, 10] describe a number
of algorithms for manipulating transition functions. They
note that the monolithic transition relation can require many
more BDD nodes than the corresponding transition func-
tion vector [10]. However, they report that computations
with transition relations are faster than those using transi-
tion functions. Partitioned transition relations provide the
speed of transition relations and the memory efficiency of
transition functions.

Recently, Touati et al. [14] proposed another method for
representing transition relations as implicit conjunctions.
They use the constrain operator of Coudert et al. [9] to elim-
inate the state set S(V) in equation 1. Then they compute
the resulting conjunction as a balanced binary tree, quanti-
fying out each variable in V when all the BDDs depending
on that variable have been combined. We believe that this
method is inferior to the one proposed here because the con-
strain operator may introduce dependencies on any of the
variables in S(V). This makes it impossible to compute in
advance a schedule for quantifying out the variables in V,
which in turn turn reduces the practicality of caching re-
sults between relational product computations. In addition,
if S(V') depends on most of the variables in V, it may not
be possible to quantify out many variables before performing
the final conjunction. They also suggest having one transi-
tion relation per state variable. In our experience, it is often
better to combine parts of the transition relations to reduce
overhead; this idea is also applicable to their method. We
implemented their method and tested it on some of the ex-
amples in section 5. For a pipeline with four 8 bit registers,
one pipe register and one operation, our method was more
than five times faster. In addition, for some of the relational
product computations, the intermediate BDDs using their
method were more than an order of magnitude larger than
the final result.

There are several questions that would benefit from fu-
ture research. One problem is finding automatic methods
for determining efficient orders in which to process parts of
the transition relation. Some questions still remain concern-
ing the exact relationships between using transition relations
and using transition functions, and between model checking
and state machine comparison. Using transition functions
and state machine comparison, Coudert et al. have ob-
served verification times which were sublinear in the number
of states in the system, but these times were still exponential
in the number of components [1]. In the examples we have
considered, using model checking and transition relations,
the verification time has grown polynomially in the num-
ber of components. When we tried to apply state machine
comparison to the pipeline given in the previous section, we
found that the size of the BDD representing the reachable
state set grew exponentially with the number of registers
and the number of pipe stages. It would be interesting to
try to categorize some of the circuit features that influence
the complexity of the different methods of verification. We
believe that the kind of asymptotic analysis done in the pre-
vious section, when applied to a larger class of circuits and

verification techniques, would be useful for this purpose.
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