
S y m m e t r y Reduct ions in Mode l Checking *

E. M. Clarke 1 and E. A. Emerson 2 and S. Jha I and A.P. Sistla 3

1 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
2 Department of Computer Science, University of Texas, Austin, TX

3 Department of Electrical Engg and Computer Science, University of Illinois,
Chicago, IL

&bs t rac t . The use of symmetry to alleviate state-explosion problems
during model-checking has become a important research topic. This pa-
per investigates several problems which are important to techniques ex-
ploiting symmetry. The most important of these problems is the orbit
problem. We prove that the orbit problem is equivalent to an important
problem in computational group theory which is at least as hard as the
graph isomorphism but not known to be NP-complete. This paper also
shows classes of commonly occurring groups for which the orbit problem
is easy. Some methods of deriving symmetry for a shared variable model
of concurrent programs are also investigated. Experimental results pro-
viding evidence of reduction in state space by using symmetry are also
provided.

1 I n t r o d u c t i o n

Temporal Logic Model Checking is a technique for determining whether a tem-
poral logic formula is valid in a finite s tate system M = (S, R, L), where S is
the state space, R is the s tate transit ion relation, and L is a function tha t labels
states with sets of a tomic propositions [4]. Such a s tructure is usually called a
Kripke structure and may have an enormous number of s tates because of the
state explosion problem. A system with n boolean s ta te variables can have a
s tate space which is exponential in n. An efficient Model Checking procedure
tries to reduce the number of states tha t are actually explored [2, 4]. Recently,
techniques which exploit the inherent symmet ry of the system while performing
model checking have become quite popular [3, 6, 11].

Basically, the idea of exploiting symmet ry is the following: given a Kripke
Structure M = (S ,R,L) , a symmet ry group G is a group acting on the s ta te
set S tha t preserves the transit ion relation R, G part i t ions the s tate set S into
equivalence classes called orbits. A quotient model M v is constructed tha t con-
tains one or more representat ive from each orbit. The s tate space SG of the

* Clarke and Jha's research was supported in part by NSF Grant no. CCR-8722633 and
SRC Contract 92-DJ-294; Emerson's research was supported in part by NSF grant
no. CCR-941-5496 and SRC grant no. 388-DP-97; Sistla's research was supported in
part by NSF grants CCR-9623229 and CCR-9633536.

148

quotient model will, in general, be much smaller than the original state space S.
This makes it possible to verify much larger structures.

This paper investigates several problems associated with exploiting symme-
try. For example, given a group G and two states s and s I, the orbit problem
asks whether s and s ~ are in the same orbit. Determining whether two states
are in the same orbit is at the core of any model checking procedure exploiting
symmetry. We prove that the orbit problem is equivalent to an important prob-
lem in computational group theory. We explore ways of deriving symmetries of
shared variable concurrent programs. Since the orbit problem in its full general-
ity is quite hard, this paper also shows that the orbit problem is easy for certain
commonly occurring groups and provides alternative techniques which do not
require solving the orbit problem. We have also built a model-checker called
SYMM which allows the user to specify the symmetries of the model and then
uses the symmetries to perform efficient model-checking. Few of these problems
were considered in [3, 6]. The results provided in this paper represent signifi-
cant advances over those presented in [3, 6]. Although the paper only presents
results for asynchronous composition of processes, all the results do extend to
synchronous composition of processes but are not presented here because of lack
of space. Complete details will be provided in the full version of the paper.

Our paper is organized as follows: In Section 2 we introduce a shared vari-
able model. Section 3 gives a technique to derive symmetries of shared variable
programs. Section 4 investigates the complexity of the orbit problem. Section 5
investigates some special classes of the orbit problem. Experimental results on
an arbiter example are shown in section 6. Section 7 concludes with some in-
teresting future directions. Due to space limitations we have not presented the
background material here. For background on group theory the reader is re-
ferred to [9]. For general background on symmetry groups and model-checking
see [3, 6].

2 A S h a r e d V a r i a b l e M o d e l o f C o m p u t a t i o n

We adopt the model of computat ion from [6]. A shared variable program is defined
with the state sets and the transition relation as follows:

- S = Loc I × D V is the finite set of states, with Loc a finite set of individual
process locations, I the set of process indices, and V is a finite set of shared
variables over a finite data domain D.

- R C S × S which represents the transitions of the system.

For convenience, each state s -- (s ~, s ') E S can be written in the form
(e l , . . . , en, v -- d , . . . , v ~ -- d ~) indicating that processes 1 , . . . , n are in locations
~1,- --, ~n, respectively and the shared variables v , . . . , v r are assigned data values
d , . . . , d ~, respectively.

Next, we define a labeling function for a shared variable program. The set
of terms are expressions of the form li (i E I) and v = d (v E V and d E D).
The set of atomic propositions A P are constructed from the set of terms by the

149

logical connectives A and -~. Given an atomic proposition p E A P and a state
s E S, the satisfaction relation s ~ p is defined in the following way:
s ~ li if[the i-th process in the state s is in location li.
s ~ (v = d) iff the shared variable v has the value d in the state s.
s f^giffs Sands g.
s ~ -~f iff s ~: f .

Given a shared variable program, we can construct a corresponding Kripke
Structure M -- (S, R, L) (S and R were defined before) by constructing the
following labeling function L : S --+ 2AP: p E L(8) ¢:> s ~ p.

In practice, for ordinary model checking, M is the Kripke Structure corre-
sponding to a finite state concurrent program P of the form]]i~=lKi consisting
of processes K I , . . . , Kn running in parallel. Each Ki may be viewed as a finite
state transition graph with node set Loc. An arc from node / to node i t may b'e
labeled by a guarded command B --+ A. The guard B is an atomic proposition
that can inspect shared variables and local states of "accessible" processes. A
is a set of simultaneous assignments to shared variables v := d II "'" II vt := dl-
When process Ki is in local state ~ and the guard B evaluates to true in the
current global state, the program P can nondeterministically choose to advance
by firing this transition of Ki which changes the local state of Ki to be i t and the
shared variables in V according to A. Thus the arc from g to E in Ki represents
a local transition of K~ denoted by l : B -+ A : E .

The Kripke structure M -- (S, R, L) corresponding to :P is thus defined using
the obvious formal operational semantics. First, the set of (all possible) states S
is determined from 7> because it provides us with the set of local (i.e., individual
process) locations Loe, process indices I, variables V, and data domain D. For
states s , t E S, we define s -+ t E R iff ~i E I such that the process Ki can
cause s to move to t, denoted by s -+i t i f f 3i E I 3 local transition 7i = / i :
Bi -+ Ai : m~ of Ki which drives s = (s I, s ') to t = (t ~, t ') ; i-th component of s ~
equals / i , the i- th component of t ~ equals mi, all other components of s ~ equal the
corresponding component of t t, predicate Bi(s) = true, and t" = A i (s ') . A i (s ')
is constructed from s" by replacing the values of the shared variables according
to the simultaneous assignment statement Ai. The labeling function L is defined
as before. Notice that we use asynchronous composition in the definition given
here. Analogous definition can be given for synchronous composition. All the
results given in the paper hold for synchronous composition, but are not stated
because of lack of space.

3 D e r i v i n g S y m m e t r y

This section analyzes how one can derive symmetry for shared variable programs
introduced in the previous section. Intuitively, if one has a graph G whose nodes
corresponds to processes and the processes communicate over the edges of G,
an automorphism of the graph G should manifest itself into a symmetry of the
underlying structure [3, 6]. Succinctly speaking, structural symmetry introduces

150

symmetry in the model [3](cf. [5]). This section proves tha t for certain cases one
can derive the symmet ry of the model from the topology of the system. Given a

n concurrent program P = Ili=lKi, we build a hypergraph HG(P) . Under certain
restrictions, we prove tha t each automorphism of HG(7 ~) is also a symmet ry of
the underlying Kripke Structure M. A restricted version of the theorem already
appeared in [6]. There the authors assumed tha t all processes are isomorphic and
the variables are only shared between two processes. The new and more general
version of the theorem, presented here, can handle a broader class of systems.
For example, an arbi ter which maintains a global shared variable (indicating
who has the resource) can now be accomodated.

n K Let P = Ili=l i be a concurrent program. In this section the index set
is I = In]. Each shared variable v is subscripted by the set of indices of the
processes which access tha t shared variable. For example, if x is accessed by
processes 1, 4, and 5, we write x as x{1,4,5}- Notice tha t each shared variable is
uniquely determined by its name and subscript, but we allow shared variables to
have the same name as long as their subscripts are different. For example, x{1,2}
and x{3,4} are allowed. A permutat ion ~r E Sn acts on the variables in a natural
manner , i.e., 7r(Xw) = X,(w). A permuta t ion ~r acting on In] is called consistent if
and only if for every shared variable xw, x~(w) is a variable as well. This means
tha t we only allow permutat ions which map shared variables to shared variables.

We define how a consistent permutat ion 7r acts on states, atomic propositions,
and processes. Let Ir be a consistent permutat ion.

- Given a s tate s = (l l , . . . , l n , v w 1 = d l , . . . , vw~ = dk), the s tate 7r(s) is
defined as follows: i- th process is in location l,(i) in the s tate ~r(s), and the
shared variable v,(w) in the state ~r(s) has the same value as the variable v~
in the state s.

- Let p E A P be an atomic proposition. ~r(p) is recursively defined as follows:
7r(f A g) = 7r(f) A ~r(g), 7r(-~f) = -~r(f) , ~r(li) = l~(i), and ~r(v~ = d) =

= d) .
- Given a simultaneous assignment A = (v~ 1 = dl []'." Hvwk = dk), define ~r(A)

as the following simultaneous assignment: v , (~) = dl H"" IIv~(~k) = dk
- Given a process Ki, the process u(Ki) is constructed in the following manner:

l : B -~ A : l' is a transition in Ki iff I : ~r(B) --+ r (A) : l' is a transit ion in
~r(gl).

D e f i n i t i o n 1. A colored hypergraph with n vertices and k colors is a 3-tuple
H = ([n] ,E ,L) such that E C_ 2[n] is the edge set, and L : [n] --~ [k] is the
coloring]unction which colors each node with one of the k colors. A permuta t ion
~r acting on In] is called an automorphism of the hypergraph H iff the following
two conditions hold:
For all 1 < i < n, L(i) = L(Tr(i)).
w E E i f f ~ r (w) E E .
The group of automorphisms of the hypergraph H is denoted by Aut(H) .

Given a process Ki, let T(Ki) be the type of tha t process. For example, if
process Ki is an instance of MODULE m [14], then T(KI) = m. Next, we define the

151

concept of isomoprhism between two processes. Let F(Ki) be the set of indices r
such that there exists a shared variable x~ such that {i, r} C_ w. Intuitively, if r E
F (Ki) , then Ki and Kr share some variables. F(Ki) is called the neighborhood
of h i . We require that i E F (Ki) , i.e., a process is in its own neighborhood. We
say that Ki -- Kj if and only if for every consistent permutat ion r such that
~(i) = j and such that for all r E F(Ki), T(Kr) ---- v(K~r(r)) it is the case that
~r(Ki) = Kj and vice versa. Many times the condition Ki ~- Kj can be checked
by checking that ~r(Ki) -- Kj with respect to all permutations ~r tha t map i to
j and that map elements in I'(Ki) to elements in I~(Kj) and that satisfy local
consistency conditions (i.e. xw is a variable iff x~(~) is a variable for cases where
i E w); this proper ty can be checked efficiently.

n D e f i n i t i o n 2. Given a concurrent program 7) --]li=lKi, define the correspond-
ing colored hypergraph HG(7)) = ([n], E , L) in the following manner:

- w E E iff there exists a shared variable with subscript w.
- Part i t ion the p roces se s / (1 , . - . , K~ into equivalence classes induced by the

relation -~. Let c l , . . . , ck be the k equivalence classes. The coloring function
L is defined as follows: L(i) = r i f f the process Ki is in the equivalence class
Or.

T h e o r e m 3. Let HG(~P) be the hypergraph corresponding to the program :P =
n K Ili=l i. Let M be the Kripke Structure corresponding to 7). Given these condi-

tions, Aut(HG(7=))) < Aut(M).

4 C o m p l e x i t y o f t h e O r b i t P r o b l e m

In this section we assume that the state space of our system is given by assign-
ments to n boolean state variables X l , . - . , xn. Therefore, the state space is iso-
morphic to B n (where B = {0, 1}). We assume that the symmetry group G < Sn
acts on B n in the natural way: a permutat ion a maps a vector (z l , . . . , Zn) to
(z~(1),""", z~(n)). The orbit problem is at the core of any method exploiting sym-
metry [3, 6, 12, 11]. The orbit problem asks whether two states s and s ~ (which
in this case are two 0-1 vectors of size n) are in the same orbit, i.e., there exists
a permutat ion a E G such that s ~ = a(s). In [3] it was proved that the graph
isomorphism problem can be reduced to the orbit problem. Therefore, the orbit
problem is atleast as hard as the graph isomorphism problem. Here we show that
the orbit problem is equivalent to the problem of finding a set stabilizer of a set
Y in a coset (we call this problem SSC). Since the graph isomorphism prob-
lem can be reduced to S S C [8], this result subsumes the result which appeared
in [3]. Moreover, S S C (and hence the orbit problem) is equivalent to several im-
portant problems in computational group theory, which are harder than graph
isomorphism, but not known to be NP-complete . Proofs of most the theorems
are based on techniques introduced in [13].

T h e O r b i t P r o b l e m COP): Given two 0-1 vectors x and y of size n and a

152

group G _< Sn, does there exist a permutat ion a E G which maps x to y, i.e.,
y = o (x) .

Set S t a b i l i z e r in a cose t (SSC): Given a set Y __ In], let G _< Sn be a
group and ~/E Sn be a permutation. The problem is to find whether there exists
a E G~/which stabilizes the set Y, i.e., a(Y) = Y.

C o n s t r u c t i v e Se t S t a b i l i z e r in a cose t (CSSC): Given a set Y C_ [n], let
G <__ Sn be a group and ~, E S~ be a permutation. The problem is to find
whether there exists a E G~ which stabilizes the set Y, i.e., a(Y) = Y and if
yes, to exhibit such a a.

L e m m a 4. The problems S S C and C S S C are polynomially equivalent.

T h e o r e m 5. The problems OP and S S C are polynomially equivalent.

In general, the S S C problem is harder than graph isomorphism [8]. Conditions
under which S S C can be solved in polynomial time are discussed in [8, 13].
In [8] it is proved that the Coset Intersection Emptiness problem stated below is
polynomially equivalent to several important problems in computational group
theory.

D e f i n i t i o n 6. C o s e t I n t e r s e c t i o n E m p t i n e s s (C I E) Given the groups A, B <
Sn by generating sets and given a permutat ion ~r E Sn, test whether A~r n B is
empty.

T h e o r e m 7. The set stabilizer in a coset problem (SSC) is polynomially equiv-
alent to CIE .

Therefore, using the previous theorems one can deduce that OP is polynomially
equivalent to C I E and hence several problems in computational group theory.

4.1 T h e C o n s t r u c t i v e Orbit P r o b l e m

Modeling states by boolean variables, in some cases, is too cumbersome and
detailed. For example, consider the shared variable program introduced in Sec-

n tion 2. Let 7) ---- Iii=lKi be a concurrent program which does not have shared
variables. Let the size of the set of locations Loc be k. In this case, a typical
state in 7) is given by a vector of size n whose elements are integers between 1
and k, i.e., the space [k] n. Permuting the processes Ki amounts to permuting
the corresponding integers in that state. A symmetry group G < Sn acts on
the space [k] '~ in the following way: a permutat ion a E G maps (x l , - - - , xn) to
(Xo ' (i) , """ , X~r(n)).

Given a symmetry group G, one frequently needs a representative]unction
: S -~ S [3, 6, 11] (S is the state space of the system) which has the following

properties:

- s and ~(s) are in the same orbit.
- If s and s' are in the same orbit, then ~(s) = ~(s').

153

Such a representative function is used during state exploration in [3, 6, 11]. The
need to find such a representative function motivates the following problem.

D e f i n i t i o n 8 . T h e Constructive Orbit Problem (COP): Given a group
acting on [n] and vector x = (x t , - - ' , xn) find the lexicographically least element
(or lex-least element for short) in the orbit of x (the group G permutes the
indices of x)

Notice that if one can solve COP in polynomial time, one can construct the
representative function ~. Given a state x, ~(x) is simply the lex-least element in
its orbit. In [1] it is proved tha t the problem is NP-hard. The paper also shows
that for certain special groups COP can be solved in polynomial time. Actually,
for our purposes it is enough to find a canonical element from each orbit.

5 Working Around the Orbit Prob lem

Results of section 4 prove that the Orbit problem and the Constructive Orbit
Problem are quite hard in its full generality. In this section we discuss two pos-
sible techniques which will help circumvent the complexity of the orbit problem.

1. We prove that for a large class of groups, which occur commonly in practice,
the orbit problem can be easily solved. This means that if the symmetries
are restricted to this class of groups, the orbit problem can be easily solved.

2. We also describe an approach that uses multiple representatives from each
orbit rather than just one. This approach is partcularly useful for symbolic
model checking [3].

The ensuing subsections outline these approaches.

5.1 Easy Groups

Notice that if a group G < S~ has polynomial size, COP for G can be solved
in polynomial time by exhaustive enumeration. For example, a rotat ion group
acting on set of size In] has order n. Therefore, for the rotat ion group one can
solve COP in linear time. The lemma given below states tha t if COP can be
solved in polynomial time for two disjoint groups J and K, then COP can be
solved in polynomial time for their direct product.

L e m m a 9. Let G be a disjoint product of J and K. If COP for J and K can be
solved in polynomial time, then COP for G can be solved in polynomial time.

The next lemma is similar to the previous one but refers to wreath products.

Lemma 10. Let G = J t K be the wreath product of J and K. The group
J, K, G act on the sets [n], Ira], Into] respectively. If COP for J, K can be solved
in polynomial time, then COP for G can be solved in polynomial time.

154

L e m m a 11. Let Sn be the full symmetric group acting on the set In]. The COP
problem for Sn can be solved in polynomial time.

P r o o f : Given a vector x = (Xl , . - - ,Xn) , the lex-teast element of x under the
group Sn can be obtained by sorting the elements xi. []

In practice, symmetries are given as a set of transpositions. For example, in a
system which has the star topology, the two outer processes can be switched. The
lemma given below states that if the group is only generated by transpositions,
then COP for it can be solved in polynomial time.

L e m m a 12. Let G be a permutat ion group acting on the set In]. Assume that
G is generated by a set of transpositions S. The COP problem for G can be
solved in polynomial time.

This means that during model-checking if one restricts to the class of groups
mentioned above, exploiting symmetry is relatively easy. Hence while exploiting
symmetry one should t ry to work with these easy groups.

5.2 M u l t i p l e R e p r e s e n t a t i v e s

Multiple Representatives were discussed in [3]. The account given here is much
cleaner and general. Assume that we are given a Kripke Structure M = (S, R, L)
and a symmetry group G of M. Let C C_ G be an arbi t rary set of permutations
which is inverse closed, i.e., 7r E C implies that ~r -1 E C. We also assume that
the identity permutat ion e is in C. Let Rep C_ S be a set of representatives which
satisfies the following requirements:

1. Every orbit of S under the action of G has a non-empty intersection with
Rep.

2. Given an s E S, there exists a a E C such that a(s) E Rep.

Let MRe p = (Rep, RRep, LRep) , where RRe p and LRe p are defined as follows:

- We have that (r l , r2) E RRe p iff there exists s E S and a E C such that

(s, r2) E R and a(s) = rl.
- LRep(r) = L(r).

The representative relation ~ C_ S × Rep is defined as follows: (s, r) E ~ iff there
= ~ - 1 exists a a E C such that a(s) = r. Notice that RRe p o R.

T h e o r e m 13. let M -- (S, R, L) be a Kripke structure, G be a symmetry group
of M, and h be a CTL* formula. If G is an invariance group for all the atomic
propositions p occurring in h, then for all r such that (s, r) E

M , s ~ h ¢=~ MRep, r ~ h

155

A natural question to ask is: how does one choose Rep given a set of polyno-
mial size C? One natural choice of Rep is given below:

r e Rep V(o e C)(r >

where < represents the lexicographical ordering on the 0-1 vectors. It is easy to
check that Rep has the required properties. Also notice that given an s 6 S and
r 6 Rep one can decide the following questions in polynomial time?

1. Is s a representative, i.e., s 6 Rep?
2. Is (s, r) e ~?

First we argue that the choice of C is very important on how much reduction
is achieved. For example, let us consider the case when C -- G [l'k]. In this case
we will only permute the first indices k indices of the states. Therefore if there
exists an orbit O C_ S which does not involve these k indices, then O C Rep,
i.e., the whole orbit has to be represented. We need a way of choosing C such
that we have uniform savings across all orbits of S in G. One possibility is to
take a subgroup H _< G such that [G : HI is polynomial in n. Let B be the full
right traversal of H in G. Let C be the inverse closure of B. The subgroup H
can be chosen in many ways and its choice will depend upon the structure of the
system being verified. One choice is as follows: Fix a set I = { i l , - . . ,ik} C_ In]
of size k. Let H be the pointwize stabilizer of I in G. The pointwise stabilizer of
I in G is the following group:

{a 6 C I V(i 6 I)(a(i) = i)}

Notice that [G : HI < n k. The subgroup H and its full traversal in G can be
found in polynomial time [7].

6 E m p i r i c a l R e s u l t s

Using the multiple representatives theory presented in section 5.2 we have built
a symbolic model checker called SYMM. The tool SYMM has a language based on
the shared variable model of computation described earlier. It allows the user to
give CTL specifications. The tool also provides the facility for the user to give
symmetries of the system. We have verified several examples using our tool. Here
we describe our results for an arbiter example. In this arbiter, each module has
a priority number. While competing for the bus, modules with higher priority
number are given preference. Among competing modules with the same priority
number, the winner is decided non-deterministically. Winner is the module which
wins the competing phase. The arbitration cycle (which results in a winner) has
six phases. We give a brief overview of these phases. The interested reader is
referred to the IEEE Futurebus s tandard for a more detailed account [10].

P h a s e 0: In this phase modules decide to compete for the bus.
P h a s e 1: Noticing that a competit ion phase is about to begin, other modules
might decide to compete.

156

P h a s e 2: In this phase a winner (called the master elect) is selected from the
set of competing modules. Winner is selected according to the rules described
earlier.
P h a s e 3: Other modules check that the master elect had the highest priority
number among the competing modules. If this is not the case, modules assert
an error. If an error has not occurred, this phase continues until the master of
the bus relinquishes its control. In this phase a module with higher priority than
the master elect might start a new arbitration cycle. This is called deposing the
master elect.
P h a s e 4: In this phase the current master of the bus might inhibit transfer of
control of the bus to the master elect. If the master relinquishes its control over
the bus, the arbitration cycle moves to the last phase.
P h a s e 5: In this phase the master elect gets control of the bus. This phase is
called the transfer of tenure phase.

There are three boolean variables in each module which ensures the proper
sequencing of the phases in an arbitration cycle. The internal state of the module
depends on the outcome of the arbitration cycle and is shown below.

Idle

~ ~ . request

loser

transfer ~dePe°Sirtir°n

Lure
tran

Master

Com ~ete

)
winner

)
Master Elect

Fig. 1. States of the Arbiter

Notice that two modules with the same priority number can be permuted
without changing the behavior of the system. Formally, the permutat ion cor-
responding to exchanging two modules with the same priority number is a
symmetry of the system. However, two modules with different priority num-
bers cannot be exchanged. In the table given below the first column shows the
configuration of the system. Assume that we have m sets of n modules (denoted
b y { M 1 , 1 , • • • , Ml,n}, ' " •, {Mm,1, • • -, Mm,n}). Moreover, the priority numbers of
two modules Mj,I and Mr,t are the same iff j = r, or they belong to the same

157

set. In this case the set of representatives Rep is the set of states where the first
module from a particular set is always chosen master elect. The set C contains
all the transpositions of the form ai,z = ((i, 1), (i, l)) (1 < i < m and 1 < l < n)
and their products. The transposition a~,t corresponds to exchanging modules
M~,I and Mi,l. It is easy to see that C is inverse closed. Moreover, given an
arbitrary state s there exists a representative state r E Rep and a E C such that
a(s) = r E Rep. Consider a state s where Mj,t is the master elect. In this case
ai,t (s) is the state where Mj,1 is the master elect. Hence all conditions for apply-
ing the multiple representative theory are satisfied. The table of experimental
results is shown below.

System Time BDD Time BDD size
Config size (Symm) (Symm)
10m 163.41 1369,705 37.04 27,671
12m 487.56 921,034 43.12 36,135
10ml0m 1171.85 932,429 126.17 73,514
12m12m - 198.195 93,094

The property that was checked was that only one module is picked master elect.
The first column shows the system configuration. For example, 10m is the con-
figuration with 10 modules having the same priority number. 10ml0m denotes
the configuration where the first 10 modules have a higher priority number than
the last 10 modules (there are 20 modules in all). Columns 2 and 3 shows the
time (in seconds) and the maximum BDD size encountered during checking the
temporal property without using symmetry. The experiments were run on an
Sun ULTRA SPARC. The last column shows the same statistic with using sym-
metry. The symbol - means that we were unable to check the property in the
time allowed. As can be seen from the table we get considerable savings by using
symmetry.

7 C o n c l u s i o n

In this paper we investigated various problems associated with exploiting symme-
try in model checking. We also provided ways of deriving symmetry for shared
variable concurrent programs. An important research problem will be to take
some existing hardware description languages and derive symmetry information
statically from the system descriptions written in that language. Ideas presented
in section 3 are applicable in this context. This paper also makes connection be-
tween exploiting symmetry in model checking and computational group theory.
An important research direction will be to use some of the powerful techniques
available in the computational group theory literature in the model checking
domain. It will be also very useful to apply some of the symmetry ideas on
industrial size examples.

158

References

1. L. Babai and E. Luks. Canonical labeling of graphs. In Proceedings of the 15th
ACM STOC, 1983.

2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 102° states and beyond. 98(2):142-170, June 1992.

3. E. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1/2):77-104, 1996.

4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Prog.
Lang. Syst., 8(2):244-263, Apr. 1986.

5. P. Curie. Sur la sym~trie dans les phenomenons physiques, sym~trie d'un champ
dlectrique magn~tique. J. Physics (3rd, ser.), 3:393-415, 1894.

6. E. Emerson and A. Sistla. Symmetry and model checking. Formal Methods in
System Design, 9(1/2):105-130, 1996.

7. M. Furst, J. Hopcroft, and E. Luks. Polynomial-time algorithms for permutations
groups. In Proceedings of the 21st Annual Symposium on Foundations of Computer
Science, 1980.

8. C. tIoffman. Group Theoretic Algorithms and Graph Isomorphism, volume 697 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1982.

9. T. Hungerford. Algebra. Springer-Verlag, 1980.
10. IEEE Computer Society. IEEE Standard for Futurebus+--Logieal Protocol Speci-

fication, Mar. 1992. IEEE Standard 896.1-1991.
11. C. Ip and D. Dill. Better verification through symmetry. Formal Methods in Sys-

tem Design, 9(1/2):41-76, 1996.
12. K. Jeusen. Condensed state spaces for symmetrical coloured petri nets. Formal

Methods in System Design, 9(1/2):7-40, 1996.
13. E. Luks. Permutation groups and polynomial-time computation. In Workshop on

Groups and Computation, volume 11 of Dimacs. American Mathematical Society,
Oct. 1991.

14. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, 1992.

