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&bs t rac t .  The use of symmetry to alleviate state-explosion problems 
during model-checking has become a important research topic. This pa- 
per investigates several problems which are important to techniques ex- 
ploiting symmetry. The most important of these problems is the orbit 
problem. We prove that the orbit problem is equivalent to an important 
problem in computational group theory which is at least as hard as the 
graph isomorphism but not known to be NP-complete. This paper also 
shows classes of commonly occurring groups for which the orbit problem 
is easy. Some methods of deriving symmetry for a shared variable model 
of concurrent programs are also investigated. Experimental results pro- 
viding evidence of reduction in state space by using symmetry are also 
provided. 

1 I n t r o d u c t i o n  

Temporal Logic Model Checking is a technique for determining whether a tem- 
poral logic formula is valid in a finite s tate  system M = (S, R, L), where S is 
the state space, R is the s tate  transit ion relation, and L is a function tha t  labels 
states with sets of a tomic propositions [4]. Such a s tructure is usually called a 
Kripke structure and may have an enormous number  of s tates because of the 
state explosion problem. A system with n boolean s ta te  variables can have a 
s tate  space which is exponential  in n. An efficient Model Checking procedure 
tries to reduce the number  of states tha t  are actually explored [2, 4]. Recently, 
techniques which exploit the inherent symmet ry  of the system while performing 
model checking have become quite popular  [3, 6, 11]. 

Basically, the idea of exploiting symmet ry  is the following: given a Kripke 
Structure M = (S ,R,L) ,  a symmet ry  group G is a group acting on the s ta te  
set S tha t  preserves the transit ion relation R, G part i t ions the s tate  set S into 
equivalence classes called orbits. A quotient model M v  is constructed tha t  con- 
tains one or more representat ive from each orbit. The s tate  space SG of the 
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quotient model will, in general, be much smaller than the original state space S. 
This makes it possible to verify much larger structures. 

This paper investigates several problems associated with exploiting symme- 
try. For example, given a group G and two states s and s I, the orbit problem 
asks whether s and s ~ are in the same orbit. Determining whether two states 
are in the same orbit is at the core of any model checking procedure exploiting 
symmetry. We prove that  the orbit problem is equivalent to an important  prob- 
lem in computational group theory. We explore ways of deriving symmetries of 
shared variable concurrent programs. Since the orbit problem in its full general- 
ity is quite hard, this paper also shows that  the orbit problem is easy for certain 
commonly occurring groups and provides alternative techniques which do not 
require solving the orbit problem. We have also built a model-checker called 
SYMM which allows the user to specify the symmetries of the model and then 
uses the symmetries to perform efficient model-checking. Few of these problems 
were considered in [3, 6]. The results provided in this paper represent signifi- 
cant advances over those presented in [3, 6]. Although the paper only presents 
results for asynchronous composition of processes, all the results do extend to 
synchronous composition of processes but are not presented here because of lack 
of space. Complete details will be provided in the full version of the paper. 

Our paper is organized as follows: In Section 2 we introduce a shared vari- 
able model. Section 3 gives a technique to derive symmetries of shared variable 
programs. Section 4 investigates the complexity of the orbit problem. Section 5 
investigates some special classes of the orbit problem. Experimental  results on 
an arbiter example are shown in section 6. Section 7 concludes with some in- 
teresting future directions. Due to space limitations we have not presented the 
background material here. For background on group theory the reader is re- 
ferred to [9]. For general background on symmetry groups and model-checking 
see [3, 6]. 

2 A S h a r e d  V a r i a b l e  M o d e l  o f  C o m p u t a t i o n  

We adopt the model of computat ion from [6]. A shared variable program is defined 
with the state sets and the transition relation as follows: 

- S = Loc I × D V is the finite set of states, with Loc a finite set of individual 
process locations, I the set of process indices, and V is a finite set of shared 
variables over a finite data domain D. 

- R C S × S which represents the transitions of the system. 

For convenience, each state s -- (s ~, s ' )  E S can be written in the form 
( e l , . . . ,  en, v -- d , . . . ,  v ~ -- d ~) indicating that  processes 1 , . . . ,  n are in locations 
~1,- --, ~n, respectively and the shared variables v , . . . ,  v r are assigned data  values 
d , . . . ,  d ~, respectively. 

Next, we define a labeling function for a shared variable program. The set 
of terms are expressions of the form li (i E I)  and v = d (v E V and d E D). 
The set of atomic propositions A P  are constructed from the set of terms by the 
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logical connectives A and -~. Given an atomic proposition p E A P  and a state 
s E S, the satisfaction relation s ~ p is defined in the following way: 
s ~ li if[ the i-th process in the state s is in location li. 
s ~ (v = d) iff the shared variable v has the value d in the state s. 
s f^giffs Sands g. 
s ~ -~f iff s ~: f .  

Given a shared variable program, we can construct a corresponding Kripke 
Structure M -- (S, R, L) (S and R were defined before) by constructing the 
following labeling function L : S --+ 2AP: p E L(8) ¢:> s ~ p. 

In practice, for ordinary model checking, M is the Kripke Structure corre- 
sponding to a finite state concurrent program P of the form ]]i~=lKi consisting 
of processes K I , . . . ,  Kn running in parallel. Each Ki may be viewed as a finite 
state transition graph with node set Loc. An arc from node / to node i t may b'e 
labeled by a guarded command B --+ A. The guard B is an atomic proposition 
that  can inspect shared variables and local states of "accessible" processes. A 
is a set of simultaneous assignments to shared variables v := d II "'" II vt := dl- 
When process Ki is in local state ~ and the guard B evaluates to true in the 
current global state, the program P can nondeterministically choose to advance 
by firing this transition of Ki which changes the local state of Ki  to be i t and the 
shared variables in V according to A. Thus the arc from g to E in Ki represents 
a local transition of K~ denoted by l : B -+ A : E . 

The Kripke structure M -- (S, R, L) corresponding to :P is thus defined using 
the obvious formal operational semantics. First, the set of (all possible) states S 
is determined from 7> because it provides us with the set of local (i.e., individual 
process) locations Loe, process indices I,  variables V, and data  domain D. For 
states s , t  E S, we define s -+ t E R iff ~i E I such that  the process Ki can 
cause s to move to t, denoted by s -+i t i f f  3i E I 3 local transition 7i = / i  : 
Bi -+ Ai : m~ of Ki which drives s = (s I, s ' )  to t = (t ~, t ' ) ;  i-th component of s ~ 
equals / i ,  the i- th component of t ~ equals mi, all other components of s ~ equal the 
corresponding component of t t, predicate Bi(s)  = true, and t" = A i ( s ' ) .  A i ( s ' )  
is constructed from s" by replacing the values of the shared variables according 
to the simultaneous assignment statement Ai. The labeling function L is defined 
as before. Notice that  we use asynchronous composition in the definition given 
here. Analogous definition can be given for synchronous composition. All the 
results given in the paper hold for synchronous composition, but are not stated 
because of lack of space. 

3 D e r i v i n g  S y m m e t r y  

This section analyzes how one can derive symmetry for shared variable programs 
introduced in the previous section. Intuitively, if one has a graph G whose nodes 
corresponds to processes and the processes communicate over the edges of G, 
an automorphism of the graph G should manifest itself into a symmetry of the 
underlying structure [3, 6]. Succinctly speaking, structural symmetry introduces 
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symmetry in the model [3](cf. [5]). This section proves tha t  for certain cases one 
can derive the symmet ry  of the model from the topology of the system. Given a 

n concurrent program P = Ili=lKi, we build a hypergraph HG(P) .  Under certain 
restrictions, we prove tha t  each automorphism of HG(7 ~) is also a symmet ry  of 
the underlying Kripke Structure M.  A restricted version of the theorem already 
appeared in [6]. There the authors assumed tha t  all processes are isomorphic and 
the variables are only shared between two processes. The new and more general 
version of the theorem, presented here, can handle a broader  class of systems. 
For example, an arbi ter  which maintains a global shared variable (indicating 
who has the resource) can now be accomodated.  

n K Let P = Ili=l i be a concurrent program. In this section the index set 
is I = In]. Each shared variable v is subscripted by the set of indices of the 
processes which access tha t  shared variable. For example, if x is accessed by 
processes 1, 4, and 5, we write x as x{1,4,5}- Notice tha t  each shared variable is 
uniquely determined by its name and subscript, but  we allow shared variables to 
have the same name as long as their subscripts are different. For example,  x{1,2} 
and x{3,4} are allowed. A permutat ion ~r E Sn acts on the variables in a natural  
manner ,  i.e., 7r(Xw) = X,(w). A permuta t ion  ~r acting on In] is called consistent if 
and only if for every shared variable xw, x~(w) is a variable as well. This means 
tha t  we only allow permutat ions  which map  shared variables to shared variables. 

We define how a consistent permutat ion 7r acts on states, atomic propositions, 
and processes. Let Ir be a consistent permutat ion.  

- Given a s tate  s = ( l l , . . . , l n , v w  1 = d l , . . . , vw~  = dk), the s tate  7r(s) is 
defined as follows: i- th process is in location l,(i) in the s tate  ~r(s), and the 
shared variable v,(w) in the state ~r(s) has the same value as the variable v~ 
in the state s. 

- Let p E A P  be an atomic proposition. ~r(p) is recursively defined as follows: 
7r(f A g) = 7r(f) A ~r(g), 7r(-~f) = -~r(f) ,  ~r(li) = l~(i), and ~r(v~ = d) = 

= d ) .  
- Given a simultaneous assignment A = (v~ 1 = dl []'." Hvwk = dk), define ~r(A) 

as the following simultaneous assignment: v , ( ~ )  = dl H"" IIv~(~k) = dk 
- Given a process Ki,  the process u(Ki)  is constructed in the following manner:  

l : B -~ A : l' is a transition in Ki  iff I : ~r(B) --+ r ( A )  : l' is a transit ion in 
~r(gl). 

D e f i n i t i o n  1. A colored hypergraph with n vertices and k colors is a 3-tuple 
H = ( [n ] ,E ,L)  such that  E C_ 2[ n] is the edge set, and L : [n] --~ [k] is the 
coloring ]unction which colors each node with one of the k colors. A permuta t ion  
~r acting on In] is called an automorphism of the hypergraph H iff the following 
two conditions hold: 
For all 1 < i < n, L(i) = L(Tr(i)). 
w E E i f f ~ r ( w )  E E .  
The  group of automorphisms of the hypergraph H is denoted by Aut(H) .  

Given a process Ki,  let T(Ki) be the type of tha t  process. For example,  if 
process Ki  is an instance of MODULE m [14], then T(KI) = m. Next, we define the 
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concept of isomoprhism between two processes. Let F(Ki) be the set of indices r 
such that  there exists a shared variable x~ such that  {i, r} C_ w. Intuitively, if r E 
F (Ki ) ,  then Ki and Kr  share some variables. F(Ki) is called the neighborhood 
of h i .  We require that  i E F (Ki ) ,  i.e., a process is in its own neighborhood. We 
say that  Ki -- Kj  if and only if for every consistent permutat ion r such that  
~(i) = j and such that  for all r E F(Ki),  T(Kr)  ---- v(K~r(r)) it is the case that  
~r(Ki) = Kj  and vice versa. Many times the condition Ki ~- Kj  can be checked 
by checking that  ~r(Ki) -- Kj  with respect to all permutations ~r tha t  map i to 
j and that  map elements in I'(Ki) to elements in I~(Kj) and that  satisfy local 
consistency conditions (i.e. xw is a variable iff x~(~) is a variable for cases where 
i E w); this proper ty  can be checked efficiently. 

n D e f i n i t i o n  2. Given a concurrent program 7 ) -- ]li=lKi, define the correspond- 
ing colored hypergraph HG(7 )) = ([n], E ,  L) in the following manner: 

- w E E iff there exists a shared variable with subscript w. 
- Part i t ion the p roces se s / (1 , . - . ,  K~ into equivalence classes induced by the 

relation -~. Let c l , . . . ,  ck be the k equivalence classes. The coloring function 
L is defined as follows: L(i) = r i f f  the process Ki is in the equivalence class 
Or. 

T h e o r e m  3. Let HG(~P) be the hypergraph corresponding to the program :P = 
n K Ili=l i. Let M be the Kripke Structure corresponding to 7 ). Given these condi- 

tions, Aut(HG(7=))) < Aut(M).  

4 C o m p l e x i t y  o f  t h e  O r b i t  P r o b l e m  

In this section we assume that  the state space of our system is given by assign- 
ments to n boolean state variables X l , . - . ,  xn. Therefore, the state space is iso- 
morphic to B n (where B = {0, 1}). We assume that  the symmetry  group G < Sn 
acts on B n in the natural  way: a permutat ion a maps a vector ( z l , . . . ,  Zn) to 
(z~(1),""", z~(n)). The orbit problem is at the core of any method exploiting sym- 
metry  [3, 6, 12, 11]. The orbit problem asks whether two states s and s ~ (which 
in this case are two 0-1 vectors of size n) are in the same orbit, i.e., there exists 
a permutat ion a E G such that  s ~ = a(s). In [3] it was proved that  the graph 
isomorphism problem can be reduced to the orbit problem. Therefore, the orbit 
problem is atleast as hard as the graph isomorphism problem. Here we show that  
the orbit problem is equivalent to the problem of finding a set stabilizer of a set 
Y in a coset (we call this problem SSC).  Since the graph isomorphism prob- 
lem can be reduced to S S C  [8], this result subsumes the result which appeared 
in [3]. Moreover, S S C  (and hence the orbit problem) is equivalent to several im- 
portant  problems in computational group theory, which are harder than graph 
isomorphism, but  not known to be NP-complete .  Proofs of most the theorems 
are based on techniques introduced in [13]. 

T h e  O r b i t  P r o b l e m  COP): Given two 0-1 vectors x and y of size n and a 
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group G _< Sn, does there exist a permutat ion a E G which maps x to y, i.e., 
y = o ( x ) .  

Set  S t a b i l i z e r  in  a cose t  (SSC):  Given a set Y __ In], let G _< Sn be a 
group and ~/E Sn be a permutation. The problem is to find whether there exists 
a E G~/which stabilizes the set Y, i.e., a(Y)  = Y.  

C o n s t r u c t i v e  Se t  S t a b i l i z e r  in  a cose t  (CSSC):  Given a set Y C_ [n], let 
G <__ Sn be a group and ~, E S~ be a permutation.  The problem is to find 
whether there exists a E G~ which stabilizes the set Y, i.e., a(Y)  = Y and if 
yes, to exhibit such a a. 

L e m m a  4. The problems S S C  and C S S C  are polynomially equivalent. 

T h e o r e m  5. The problems OP and S S C  are polynomially equivalent. 

In general, the S S C  problem is harder than graph isomorphism [8]. Conditions 
under which S S C  can be solved in polynomial time are discussed in [8, 13]. 
In [8] it is proved that  the Coset Intersection Emptiness problem stated below is 
polynomially equivalent to several important  problems in computational group 
theory. 

D e f i n i t i o n  6. C o s e t  I n t e r s e c t i o n  E m p t i n e s s  ( C I E )  Given the groups A, B < 
Sn by generating sets and given a permutat ion ~r E Sn, test whether A~r n B is 
empty. 

T h e o r e m  7. The set stabilizer in a coset problem (SSC) is polynomially equiv- 
alent to CIE .  

Therefore, using the previous theorems one can deduce that  OP is polynomially 
equivalent to C I E  and hence several problems in computational group theory. 

4.1 T h e  C o n s t r u c t i v e  Orbit  P r o b l e m  

Modeling states by boolean variables, in some cases, is too cumbersome and 
detailed. For example, consider the shared variable program introduced in Sec- 

n tion 2. Let 7 ) ---- Iii=lKi be a concurrent program which does not have shared 
variables. Let the size of the set of locations Loc be k. In this case, a typical 
state in 7) is given by a vector of size n whose elements are integers between 1 
and k, i.e., the space [k] n. Permuting the processes Ki amounts to permuting 
the corresponding integers in that  state. A symmetry group G < Sn acts on 
the space [k] '~ in the following way: a permutat ion a E G maps ( x l , - - - ,  xn) to 
(Xo ' ( i ) , """ ,  X~r(n) ). 

Given a symmetry  group G, one frequently needs a representative ]unction 
: S -~ S [3, 6, 11] (S is the state space of the system) which has the following 

properties: 

- s and ~(s) are in the same orbit. 
- If s and s' are in the same orbit, then ~(s) = ~(s'). 
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Such a representative function is used during state exploration in [3, 6, 11]. The 
need to find such a representative function motivates the following problem. 

D e f i n i t i o n 8 .  T h e  Constructive Orbit Problem (COP): Given a group 
acting on [n] and vector x = ( x t , - - ' ,  xn) find the lexicographically least element 
(or lex-least element for short) in the orbit of x (the group G permutes the 
indices of x) 

Notice that  if one can solve COP in polynomial time, one can construct the 
representative function ~. Given a state x, ~(x) is simply the lex-least element in 
its orbit. In [1] it is proved tha t  the problem is NP-hard. The paper also shows 
that  for certain special groups COP can be solved in polynomial time. Actually, 
for our purposes it is enough to find a canonical element from each orbit. 

5 Working  Around  the  Orbit Prob lem 

Results of section 4 prove that  the Orbit problem and the Constructive Orbit 
Problem are quite hard in its full generality. In this section we discuss two pos- 
sible techniques which will help circumvent the complexity of the orbit problem. 

1. We prove that  for a large class of groups, which occur commonly in practice, 
the orbit problem can be easily solved. This means that  if the symmetries 
are restricted to this class of groups, the orbit problem can be easily solved. 

2. We also describe an approach that  uses multiple representatives from each 
orbit  rather  than just  one. This approach is partcularly useful for symbolic 
model checking [3]. 

The ensuing subsections outline these approaches. 

5.1 Easy Groups 

Notice that  if a group G < S~ has polynomial size, COP for G can be solved 
in polynomial time by exhaustive enumeration. For example, a rotat ion group 
acting on set of size In] has order n. Therefore, for the rotat ion group one can 
solve COP in linear time. The lemma given below states tha t  if COP can be 
solved in polynomial time for two disjoint groups J and K,  then COP can be 
solved in polynomial time for their direct product.  

L e m m a  9. Let G be a disjoint product  of J and K.  If COP for J and K can be 
solved in polynomial time, then COP for G can be solved in polynomial time. 

The  next lemma is similar to the previous one but  refers to wreath products.  

Lemma 10. Let G = J t K be the wreath product  of J and K.  The group 
J, K,  G act on the sets [n], Ira], Into] respectively. If COP for J, K can be solved 
in polynomial time, then COP for G can be solved in polynomial time. 
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L e m m a  11. Let Sn be the full symmetric group acting on the set In]. The COP 
problem for Sn can be solved in polynomial time. 

P r o o f :  Given a vector x = (Xl , . - - ,Xn) ,  the lex-teast element of x under the 
group Sn can be obtained by sorting the elements xi. [] 

In practice, symmetries are given as a set of transpositions. For example, in a 
system which has the star topology, the two outer processes can be switched. The 
lemma given below states that  if the group is only generated by transpositions, 
then COP for it can be solved in polynomial time. 

L e m m a  12. Let G be a permutat ion group acting on the set In]. Assume that  
G is generated by a set of transpositions S. The COP problem for G can be 
solved in polynomial time. 

This means that  during model-checking if one restricts to the class of groups 
mentioned above, exploiting symmetry is relatively easy. Hence while exploiting 
symmetry one should t ry  to work with these easy groups. 

5.2 M u l t i p l e  R e p r e s e n t a t i v e s  

Multiple Representatives were discussed in [3]. The account given here is much 
cleaner and general. Assume that  we are given a Kripke Structure M = (S, R, L) 
and a symmetry group G of M. Let C C_ G be an arbi t rary set of permutations 
which is inverse closed, i.e., 7r E C implies that  ~r -1 E C. We also assume that  
the identity permutat ion e is in C. Let Rep C_ S be a set of representatives which 
satisfies the following requirements: 

1. Every orbit of S under the action of G has a non-empty intersection with 
Rep. 

2. Given an s E S, there exists a a E C such that  a(s) E Rep. 

Let MRe p = (Rep, RRep, LRep) , where RRe p and LRe p are defined as follows: 

- We have that  ( r l , r2)  E RRe p iff there exists s E S and a E C such that  

(s, r2) E R and a(s) = rl. 
- LRep(r) = L(r). 

The representative relation ~ C_ S × Rep is defined as follows: (s, r) E ~ iff there 
= ~ - 1  exists a a E C such that  a(s) = r. Notice that  RRe p o R. 

T h e o r e m  13. let M -- (S, R, L) be a Kripke structure, G be a symmetry group 
of M, and h be a CTL* formula. If G is an invariance group for all the atomic 
propositions p occurring in h, then for all r such that  (s, r) E 

M , s  ~ h ¢=~ MRep, r ~ h 
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A natural  question to ask is: how does one choose Rep given a set of polyno- 
mial size C? One natural  choice of Rep is given below: 

r e Rep V(o e C)(r > 

where < represents the lexicographical ordering on the 0-1 vectors. It is easy to 
check that  Rep has the required properties. Also notice that  given an s 6 S and 
r 6 Rep one can decide the following questions in polynomial time? 

1. Is s a representative, i.e., s 6 Rep? 
2. Is (s, r) e ~? 

First we argue that  the choice of C is very important  on how much reduction 
is achieved. For example, let us consider the case when C -- G [l'k]. In this case 
we will only permute the first indices k indices of the states. Therefore if there 
exists an orbit O C_ S which does not involve these k indices, then O C Rep, 
i.e., the whole orbit has to be represented. We need a way of choosing C such 
that  we have uniform savings across all orbits of S in G. One possibility is to 
take a subgroup H _< G such that  [G : HI is polynomial in n. Let B be the full 
right traversal of H in G. Let C be the inverse closure of B. The subgroup H 
can be chosen in many ways and its choice will depend upon the structure of the 
system being verified. One choice is as follows: Fix a set I = { i l , - . .  ,ik} C_ In] 
of size k. Let H be the pointwize stabilizer of I in G. The pointwise stabilizer of 
I in G is the following group: 

{a 6 C I V(i 6 I)(a(i) = i)} 

Notice that  [G : HI < n k. The subgroup H and its full traversal in G can be 
found in polynomial time [7]. 

6 E m p i r i c a l  R e s u l t s  

Using the multiple representatives theory presented in section 5.2 we have built 
a symbolic model checker called SYMM. The tool SYMM has a language based on 
the shared variable model of computation described earlier. It allows the user to 
give CTL specifications. The tool also provides the facility for the user to give 
symmetries of the system. We have verified several examples using our tool. Here 
we describe our results for an arbiter example. In this arbiter, each module has 
a priority number. While competing for the bus, modules with higher priority 
number are given preference. Among competing modules with the same priority 
number, the winner is decided non-deterministically. Winner is the module which 
wins the competing phase. The arbitration cycle (which results in a winner) has 
six phases. We give a brief overview of these phases. The interested reader is 
referred to the IEEE Futurebus s tandard for a more detailed account [10]. 

P h a s e  0: In this phase modules decide to compete for the bus. 
P h a s e  1: Noticing that  a competit ion phase is about  to begin, other modules 
might decide to compete. 
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P h a s e  2: In this phase a winner (called the master elect) is selected from the 
set of competing modules. Winner is selected according to the rules described 
earlier. 
P h a s e  3: Other modules check that  the master elect had the highest priority 
number among the competing modules. If this is not the case, modules assert 
an error. If an error has not occurred, this phase continues until the master  of 
the bus relinquishes its control. In this phase a module with higher priority than 
the master elect might start  a new arbitration cycle. This is called deposing the 
master elect. 
P h a s e  4: In this phase the current master of the bus might inhibit transfer of 
control of the bus to the master elect. If the master  relinquishes its control over 
the bus, the arbitration cycle moves to the last phase. 
P h a s e  5: In this phase the master elect gets control of the bus. This phase is 
called the transfer of tenure phase. 

There are three boolean variables in each module which ensures the proper 
sequencing of the phases in an arbitration cycle. The internal state of the module 
depends on the outcome of the arbitration cycle and is shown below. 

Idle 

~ ~ .  request 

loser 

transfer ~dePe°Sirtir°n 

Lure 
tran 

Master 

Com ~ete 

) 
winner 

) 
Master Elect 

Fig.  1. States of the Arbiter 

Notice that  two modules with the same priority number can be permuted 
without changing the behavior of the system. Formally, the permutat ion cor- 
responding to exchanging two modules with the same priority number is a 
symmetry  of the system. However, two modules with different priority num- 
bers cannot be exchanged. In the table given below the first column shows the 
configuration of the system. Assume that  we have m sets of n modules (denoted 
b y  { M 1 , 1 ,  • • • ,  Ml,n}, ' "  •, {Mm,1, • • -, Mm,n}). Moreover, the priority numbers of 
two modules Mj,I and Mr,t are the same iff j = r, or they belong to the same 
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set. In this case the set of representatives Rep  is the set of states where the first 
module from a particular set is always chosen master elect. The set C contains 
all the transpositions of the form ai,z = ((i, 1), (i, l)) (1 < i < m and 1 < l < n) 
and their products. The transposition a~,t corresponds to exchanging modules 
M~,I and Mi,l. It is easy to see that C is inverse closed. Moreover, given an 
arbitrary state s there exists a representative state r E Rep  and a E C such that 
a(s)  = r E Rep. Consider a state s where Mj,t is the master elect. In this case 
ai,t (s) is the state where Mj,1 is the master elect. Hence all conditions for apply- 
ing the multiple representative theory are satisfied. The table of experimental 
results is shown below. 

System Time BDD Time BDD size 
Config size (Symm) (Symm) 
10m 163.41 1369,705 37.04 27,671 
12m 487.56 921,034 43.12 36,135 
10ml0m 1171.85 932,429 126.17 73,514 
12m12m - 198.195 93,094 

The property that was checked was that only one module is picked master elect. 
The first column shows the system configuration. For example, 10m is the con- 
figuration with 10 modules having the same priority number. 10ml0m denotes 
the configuration where the first 10 modules have a higher priority number than 
the last 10 modules (there are 20 modules in all). Columns 2 and 3 shows the 
time (in seconds) and the maximum BDD size encountered during checking the 
temporal property without using symmetry. The experiments were run on an 
Sun ULTRA SPARC. The last column shows the same statistic with using sym- 
metry. The symbol - means that we were unable to check the property in the 
time allowed. As can be seen from the table we get considerable savings by using 
symmetry. 

7 C o n c l u s i o n  

In this paper we investigated various problems associated with exploiting symme- 
try in model checking. We also provided ways of deriving symmetry for shared 
variable concurrent programs. An important research problem will be to take 
some existing hardware description languages and derive symmetry information 
statically from the system descriptions written in that language. Ideas presented 
in section 3 are applicable in this context. This paper also makes connection be- 
tween exploiting symmetry in model checking and computational group theory. 
An important research direction will be to use some of the powerful techniques 
available in the computational group theory literature in the model checking 
domain. It will be also very useful to apply some of the symmetry ideas on 
industrial size examples. 
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