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Gries have developed a proof system

critical regions. In their system

logically related variables accessed by more than

one process are grouped together as resources, and

processes are allowed access to a resource only in

a critical region for that resource. Proofs of

synchronization properties are constructed by

devising predicates called resowce <nv&ant;s
which describe relationships among the variables of

a resource when no process is in a critical region

for the resource. In constructing proofs using the

system of Owicki and Gries, the programmer is re-

quired to supply the resource invariants.

We show that convex{ty plays a key role in

the derivation of strong resource invariants. We

also develop methods for automatically synthesizing

resource invariants. Specifically, we characterize

the resource invariants of a concurrent program as

~eash fixpofnts of a functional which can be ob-

tained from the text of the program. By using

this fixpoint characterization and a widening
operator which exploits our observation on the

importance of convexity, good approximations may be

obtained for the resource invariants of many con-

current programs.

1. Introduction

Owicki and Gries [OW76] have developed a,

proof system for cond{t{onal critigal regions.
In their system logically related variables

accessed by more than one process are grouped

together as resources, and processes are allowed

access to a resource only in a critical region

for that resource. Proofs of synchronization

properties are constructed by devising predicates

called resource invariant. These predicates

describe relationships among the variables of a

resource when no process is in a critical region

for the resource. Related methods for verifying

concurrent programs have been discussed by Lamport

[LM771 and Pneuli [PN771.

In constructing proofs using the system of

Owicki and Gries, the programmer is required to
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supply the resource invariants. we investigate the

possibility of automatically synthesizing resource

invariants for a simple concurrent programming

language (SCL) in which processes access shared

data via conditional critical regions. We consider

only invariance [PN77] or safety properties [LM77]

of SCL programs. This class of properties includes

mutual exclusion and absence of deadlock and is

analogous to partial correctness for sequential

programs. Correctness proofs of SCL programs are

expressed in a proof system similar to that of

Owicki and Gries.

To gain insight on the synthesis of resource

invariants we restrict the SCL language so that all

processes are nonterminating loops, and the only

statements allowed in a process axe P and V

operations on semaphores. We call this class of

SCL programs pv programs. For PV programs there is

a simple method for generating resource invariants,

i.e., the semaphore invariant method of Habermann

[HA721 which expresses the current value of a sema-

phore in terms of its initial value and the number

of P and V operations which have been executed.

Although the semaphore invariant method is simple

to state, it is a powerful technique for proving

PV programs; we show that it is as powerful as the

.veduct-ton method of Lipton [L175] for proving

freedom from deadlock.

The semaphore invariant method, however, is

not complete for proving either absence of deadlock

or mutual exclusion of PV programs. We show that

there exist PV programs for which deadlock (mutual

exclusion) is impossible, but the semaphore in-

variant method is insufficiently powerful to es-

tablish this fact. This incompleteness result is

important because it demonstrates the role of

eonvex<ty in the generation of powerful resource

invariants. We also give a characterization of the

class of PV programs for which the semaphore in-
variant method is complete for proving absence of

deadlock (mutual exclusion).

The semaphore invariant method is generalized

to the class of ~inear SCL programs in which solu-

tions to many synchronization problems can be ex-

pressed. Although the generalized semaphore in-

variant also fails to be complete, it is suffi-

ciently powerful to permit proofs of mutual exclu-

sion and absence of deadlock for a significant
class of concurrent programs. When the generalized

semaphore invariant is insufficiently powerful to

prove some desired property of an SCL program, is
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it possible to synthesize a stronger resource in-

variant? We argue that resource invariants are

fixpoinzis, and that by viewing them as fixpoints it

is possible to generate invariants which are stron-

ger than the semaphore invariants previously de-

scribed. We show that the resource invariants of

an SCL program C are fixpoints of a functional FC

which can be obtqined from the text of program C

and that the least fiXpOint H(Fc) of FC is the

“strongest” such resource invariant. Since the

functional FC is continuous, the least fixpoint

P (Fc) may be expressed as the limit
.

U(FC) = U F~(false) .
j =1

Clearlyr this characterization of u (Fc) cannot be
used directly to compute ll(Fc) unless C has

only a finite number of different states or unless

a good initial approximation is available for U(FC) .

By using the notion of widen{ng of Cousot

[C077] however, we are able to speed up the conver-

gence of the chain F~(false) and obtain a close

approximation to P (Fc) in a finite number of steps.

The widening operator which we use exploits our

observation on the importance of convexity in the

generation of resource invariants. Although fix-

point techniques have been previously used in the

study of resource invariants ( [LA761 , [FL771) , we

believe that this is the first research on methods

for speeding up the convergence of the sequence of
*

approximations to U(FC) . Examples are given in

the text to illustrate the power of this new

technique.

The SCL language and its semantics are dis-

cussed in Sections 2 and 3 of this paper. Sections

4 and 5 contain a description of the semaphore in-

variant method and a discussion of why it is incom-

plete. Section 6 introduces the class of linear

SCL programs and briefly describes how the semaphore

invariant can be generalized to this class of pro-

grams. The fixpoint theory of resource invariants

is presented in Section 7. Section 8 contains an

account of Cousot’s widening operator and how it

can be used in approximating resource invariants.

The paper concludes with a discussion of the results

and some remaining open problems.

2. A Simple Concurrent Programming Language (SCL)

An SCL program will consist of two parts’:

(1) an in{t{alizat{on part “9:=Z!T in which initial
values are assigned to the synchronization variables

%, and (2) a concurrent execution part

resource R(x): cobegin P1//P2//...Pn coend

which permits the simultaneous or interleaved execu-
tion of the statements in the processes Plr.. .,Pn.

All variables accessed by more than one process must

aPPear in &he prefix R(R) of the concurrent execu–
tion part. Processes have the form

Pi: cycle S;; S$; . . ..S~ end
i—

where “S;; s;;..., ~,.Si ,, is a list of conditional

critical regions. Th~ cycle construct is a non-

terminating loop with the property that the next

statement to be executed after S1
ki

is the first

statement Si
1

of the loop. Although the cycle

statement simplifies the generation of loop invari-

ants, the results of this paper also apply to termi-

nating loops (e.g., while loops). The extension of

SCL to allow multiple resources is straightforward

and will not be treated in this paper.

Conditional c~it{cal regions have the form

with R when b do A od. Only variables listed in R—. —
can appear in the boolean expression b and the

body A of the conditional critical region. When

execution of a process reaches the conditional

critical region with R when b do A &, the process——
is delayed until no other proce~ is using R and

the condition b is satisfied. Then the statement

A is executed as an indivisible action.

Let C be an SCL program with the format de-

scribed above; a program state U is an ordered

list (pcl, pcz, . . ..pcn. s), where

(1) PCi is the p~ogrzm counter for process Pi

and is in the range 1 < pci ~ki.—

(2) s maps the set of synchronization variables to
the set Z of integers and is called the pro-
gram sto~e.

We will write b(s) to denote the value of predi-

cate b in store s; A(s) will be the new store

resulting when the sequential statement A is

executed in store S.

A COT7ipU7h7t{O?’t of an SCL program C is a sequence
of program states Oo, Olr.. .,ujr . . . . The {nitial

state o~ has the ~orm (1, 1,. ..,;.; so) where so
reflects the assignments made in the initlal~zation

part of C. Consecutive states

0 = (pC:, “
j

. . ..PC.; Sj)

and

Cr = (Pc;+l, . . ..p+l.sj+l)l)
j +1 n

are related as follows: There exists

1 < m < n SUCh that— —

(1) PC;+l = PC?
1

if i+m .

I 3 +’1
(2) Dc]+l = ,Pcm

if PC] < k
m m

‘m
(1 . otherwise

(3) if statement pc~ in process m

an m,

with R when b do A g, then b(s.
1

=~).—
‘j+l

Note that concurrency in the execution

is

= true and

of an SCL

program is modeled by nondeterminism in the selec-

tion of successor states.

If there exists a computation ~o’ U~, . ..Oj . . . .

of program C, then we say that state Oj is

~eachable from the initial state LSO of C and

write Uosoj. Note that the next statement to be

executed by process pi in state 0 = (pcl, . . ..pcn.s)

is always S=pCi . We say that program C is blocked

in state O if the condition of the next statement

to be executed in each process is false in state 0.

A state 0 of c is a deadZoek state if o is

reachable from the initial state of C and C is

blocked in state O. Two statements S1 and S2

in different processes of C are mutually exclusive
if there does not exist a state 5, reachable from

the initial state of C, in which % and S2 are

next to execute in their respective processes.
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Frequently it will be convenient to identify a
predicate U with the set of program states which
make U true. If ~ is the set of all program
states, then 2Z will be the set of all possible

predicates, false will correspond to the empty state

set, and true will correspond to the set Z of all
program states. Also logical operations on predi-
cates can be interpreted as set theoretic operations
on subsets of Z i.e., “or” becomes “union,”, “and”
becomes “intersection”, “not” becomee “complement”,

and “implies’! becomes ‘ris a subset of”.

SP[A] (U) will denote the strongest posteon-
di$ion corresponding to the sequential stakement A

and the preeond{t?on U. If the predicate U is
identified with the set of states which satisfy

it, then SPIA] (U) may be defined by SPIA] (U) =

{(PCl, . . ..PCn. A(S))/(PCl,...,PCn; s)6U}

THEOREM 2.1. Let A be a sequential statement.
(A) (Monoton~cit.zj) if U, v~X and U~V, then

SP [A] (U) C= SP [Al (V) .
(B) (Addit{vi~y) {f {Ul}, i LO KS afam-ily of

predicates, then
SP[A] ( U Ui) = ~ SP[A] (Ui) .

1

Proof: See [CL77]. ❑

3. Resource Invariant Proofs

In this section we adapt the proof system of

Owicki and Gries to SCL programs. We use the stan-

dard notation {P}A{Q} of Hoare to express the

part<al co~yectness of the sequential statement A

with respect to the precond{t{on P and postcondi-
tion Q. The triple

iff I=SP [A] (P) + Q.
{p}A{Q} is true (/= {P} A{ Q})

Proof systems for partial

correctness of sequential statements will not be

discussed in this paper.

Let C be an SCL program and let ST be the

set of statements occurring within the processes of

c. A resource invatiant system RSc for C will

consist of two parts:

(1) A predicate IR called the resource invatiant.

All free variables of IR must appear in the

resource prefix R(X) of the program C.

(2) Proofs of sequential correctness for each of

the individual processes of C.

For our purposes, these correctness proofs are

represented by a set VC of assertions called

ve~ificat~on c.ond{tions and two functions pre!,,
post: ST + VC which give the precondition and post-

condition for each statement C in the proof. To

insure that the proofs of sequential correctness

for the individual processes are interference free
[OW76], we require that the free variables in the

verification conditions for process i do nc,t

aPP:+r as free variables in the verification ~on-
dlt~ons for any process j with j#i. Xf c! is an
SCL program with the format described in Section 2,

then

also

(a)

(b)

(c)

(d)

the functions pre and post for process Pi must

satisfy the following conditions:

1=~=~ + Pre(s~) A IR

l=post(S~ ) + pre (S;)

l=wst(+~ + w=(Sj+l) _ _for 1 < j < ki-l.

if s; is the conditional critical region
1

with R when b; ~ A!j ~——

then ~ {pre (S;) A b~ A IR}A~{post (S~) A IR}.

THEOREM 3.1. Let RSc be a ~esouxwe invariant

system for the SCL program C. If a is rvachable

in c and S: is the next statement of p~ocess pi

to execute in state 0, then OCpre(S$).

‘Proof: See [OW76]. ❑

Resource invariant systems may be used to prove

absence of deadlock and mutual exclusion of an SCL

program C. TO prove mutual exci!us$on of statements

S1 and S2 in C it is sufficient to give a

resource invariant system Xc for C such that

M(PSC) = pre(S1) A pre(S2) A IR

is unsatisfiable. To prove that it is impossible

for c to become deadlocked it is sufficient to

exhibit a resource invariant system F&c such that

the predicate
ki

n

D(RSC) = A ( V pre(S~) A mb~) A IR
i=l j=l

is unsatisfiable. Local deadlock, in which only a
subset of the processes are blocked, may be handled
in a similar manner.

4. The Semaphore Invariant Method

P and V operations on a semaphore a can be
treated as conditional critical regions: P(x) is
equivalent to with R when x>O do x:=x-1 od and——
v(x) to with R when true do x~~+l o~. % this—. —
section we restrict the class of SCL programs so
that the only statements allowed within processes
are P and V operations on semaphores; we call
euch programs PVprogrwnls.

The semaphore invariant method [HA72] is based

on the use of a&~;a~ variables. Let a be a

semaphore with initial value m occurring in a PV

program C. For each statement Si corresponding

to a P operation we introduce an auxiliary vari-

able a; which is incremented each time the P

operation is executed. Similarly for each state-

ment Si corresponding to a V operation we intro-

duce a variable 2ai. All auxiliary variables are

initialized to zero at the beginning of the program

c. The semaphore <nvariant states that the predicate

Ia ? {a=m+~a~-~a~Aa~O} mustbe satisfiedby

c whenever C is not executing a P or V opera-

tion on the semaphore a.

When auxiliary variables are added to C in

this manner, there is a simple method of generating

appropriate pre and post functions for c. Let

“Pi: cycle S1;...;
1

S: end” be the ith process in
i

the program C, and let, d~,...,d~, be the auxil-

iary variables for this process. $he pre and post
functions for process pi will be defined induc-

tively:

(1) pre(S~) ~ post(S~ ) ~ {d~=d~ =... =d~ }
i i

(.2) If S: is a conditional critical region with

We

of

J
associated auxiliary variable then

[

. ‘;
post(s~) = pre(s~) (d~-1)/d~ 1

refer to the resource invariant system consisting

the conjunction of the semaphore invariants Ia

-----
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and the annotation obtained by the

as the semaphore ;nvatiant system
ding to C.

Consider, for example, the PV

a: =1

cobeqin

above procedure

(SIC) correspon-

program C

A: cycle P(a); SA; V(a) end

//
—

B: cycle P(a); SB; V(a) end

coend

SA and SB represent the bodies of the critical

regions established by the P and V operations

and will be treated as null statements in the

analysis which follows. Annotating C as described

in the previous paragraph we obtain:

{a~=OAa~=O Aa~=OAa~=O Aa=l}

resource R(a,
1

al, a~, a;, a:):
cobeqin

A: cycle

{a} = a~}
L L l:=al+l; a:=a-1 Q;~R_a>Od& a

11

{a~-l=a~}

1 L
2

with R when true SQ a2:=a +1; a:=a+l o~;
11

end

//

B: cycle

{a; =a~}

1
~Rha>O& a :=al+l; a:=a-l~;

22

{a~-1 = a;}

SB ;

{a~-l=a~}

22
with R when true & a :=a +1; a:=a+l oc&;

22

&

coend

The invariant Ia for semaphore a is

I ‘{a=l+af+a~ -a~-a~Aa~O} .
a

Since the predicate M(SIC) = pre(SA) Apre(SB) AIa

is unsatisfiable, it follows that statements SA and

SB are mutually exclusive. Similarly we see that C

is free from deadlock, since the predicate D(SIC)

is also unsatisfiable.

5. Incompleteness of the Semaphore Invariant Method

The incompleteness of the semaphore invariant
method is best explained by means of progress graphs
[D176] . The progress graph is a graphical method

for representing the feasible states of a PV program.

Consider, for example, the program C:

a:=l; b:=l
cobeqin

A: cycle P(a); P(b) ; V(a); V(b) S@

//
B: cvcle P(b); P(a); V(b); V(a) a

Feasible computations of this program can be re-

presented by a graph in which the number of instruc-

tions executed by a process is used as a measure of

the progress of the process, e.g.,

1-————;
b a b a-

Progress for process B

The dashed line represents a computation of the

rxogram C in which process B executes P(b) and.
process A executes P(a). The shaded region of

the graph represents those program states which

fail to satisfy the semaphore invariants for a or

b; such states are called unfeasible states. The

point labeled x in the graph is a deadloek state;
the state X is reachable from the initial state

of C but further progress for either process A

or process B would violate one of the semaphore

invariants (i.e., both processes are blocked) .

Those points in the graph (states of C) which are

not reachable from the origin (initial state) by a

polygonal path composed of horizontal and vertical

line segments which never cross an unfeasible

region (by a valid computation sequence of C) are

called unreaehab2e points (states) . All unfeasible

woints are unreachable. The point labeled Y in

~he graph is an example of an unreaelzabZe feasible
point; if the program C were started in state Y,

the semaphore invariants would not be violated.

Next consider the PV program C:

a:=b:=c:=d:=l

cobegin

A: cycle P(a); P(b); P(d); V(a); P(c); V(b); V(c);

V(d) end

//
B: cycle P(a); P(b); P(c); V(b); p(d); V(a); V(c):

V(d) end

coend

The progress graph for C is shown on the next page.

Note that deadlock can never occur during execution

of program C. Let SIC be the semaphore invariant

system for the program C. Thus , if auxiliary

variables are added as described in Section 4,
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A

c1

c

b

c

a

d

b

a

a bcbdacde

the invariant I will be given by

I = {a=l+a~+a~-al-al Aa>l)
12–

Ab=l+b; +b~-b~-b~Ab > 0—

AC=1+C2
1

+C; -C; -C; AC>O—

Ad=l+d:+d:-d:-d~Ad > 0—

Aa~~OAa~~I)Aal 1

l~0Aa2~0

2> OAb2
‘bl –

>OAb:>OAbl>O
2- 2-

Ac
2 >0 AC! 2 >OAC 1
1-

>OAC
2–

;~o
;–

2Ad:>OAd
‘OAdl~OAd:~O}2–

It is not difficult to show that the condition

D(SIc) for absence of deadlock is satisfied by

the state Z in which

2=0, a;=l, a:=la=O, a2=l, a2
1

b=O, b;=O, b:=l, b:=l, b:=l

1C=o, C:=or C;=o, c1 =01
c; =1

d=O, d:=O, d:=O, d+=l, d~=O

Thus absence of deadlock cannot be proven by means

of the semaphore invariant method. The state Z

which satisfies D(SIC) is an example of an un-
reachable feasible state in which each process of

C is blocked; we will call such states trap states.

THEOREM 5.1. The semuphore invariant method $s
complete for proving deadlock freedom for those PV
programs whose progress graphs do not contain any
trap states.

Proof: Let C be a PV program whose progress

graph does not contain any trap states. Thus any
state of C in which all processes are blocksd

must be reachable from c’s initial state. I,e t
SIC be the semaphore invariant system for C. We

show that the condition D(SIC) is unsatisfiable

if and only if deadlock is impossible for the pro-
gram C. Clearly, if D(SIC) is unsatisfiable
than deadlock is impossible. Thus assume that
D(SIC) is satisfied by some state U. By con-
struction of the predicate D all processes are
blocked in state G. Since O is reachable from
the initial state of C, it is a deadlock state. 0

A similar characterization may be given for
mutual exclusion. How can the semaphore invariant
method be strengthened to handle trap states?
Since trap states correspond to “holes” in the un-
feasible region of a progress graph, a method
based on convexity is worthy of investigation. We
return to this question in Section 8.

Although the eemaphore invariant method is not
complete for proving absence of deadlock or mutual

exclusion of PV programs, it is a powerful tool
for proving correctness of PV programs which occur
in practice as the examples of [HA721 demonstrate.
Additional evidence for the power of the semaphore
invariant method may be obtained by comparing it

to other methods which have been proposed for

proving deadlock freedom of PV programs. We prove,

for example, that the semaphore invariant method is

as powerful as the Feauction method of Lipton [L1741:

If a PV program has a reduction proof of deadlock

freedom, then it also has a proof using the sema-

phore invariant method.

Reduction is a technique for decreasing the

number of interleavings of statements which must

be considered in the proof of a concurrent program.

Let C be a concurrent program and S a statement

contained in C. The reduction C/S is the con-

current program obtained from C by making S

into a single indivisible (i.e., uninterruptible)

action. To prove that program C has some pro-

perty U, it is sufficient to produce a sequence

of programs c=c~, c2,... ,cn and statements

sl, . . ..sn_~ such that

(1) ci+~=Ci/si for i=l,. ..,l-l.

(2) If Ci hae property U, then Ci/Si also

has property U.

(3) Cn trivially has property U.

Lipton gives a class of statements called D-~~duc-
tions with the property that if C is a concurrent
program and S is a D-reduction, then C is
deadlock-free iff C/S is deadlock free. For PV

programs D-reductions have the form
S=sl, s2,.. .,sn where Slv. ..,sl-l are P

operations, Si+~, . . ..Sn are V operations and

Sz, . . ..sn can always execute. In view of con-

dition (3) above we will assume that the progress
graph of the final program Cn in a reduction
proof of deadlock freedom does not contain any
trap states.

LEMMA 5.2. If the ppog~ess gnzph of a PVp~o-
grm C conta{ns a trap state, then the progress
gmph of the D-reduct{on c/s also eonta~ns a

trap state.

Proof: Let U be a trap state for the PV
program C. By definition, u is an unreachable
feasible state of C in which every procees iS
blocked. Let C/S be a D-reduction where

s=s~; Sz;...;sn has the form described above.

Assume that U is not a trap state for C/S. If
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o were a feasible state of C/S, then it would be
a trap state of C/S since every computation of
C/S is a computation of C. Thus, 0 must not be
a feasible state of C/S. Since S=sl; s.2; . . ..sn

must be executed as an atomic statement in c/s ,
the process containing S must be blocked in state
G while attempting to execute one of the statements
S2, s3,... ,sn. Since by definition of a D-reduction

the statements S2, s3r. ..,sn can always executer

this is a contradiction. ❑

THEOREM 5.3. Ifa PYprogmm has a proofof

deadlock freedom using the rwduct{on method, then
it also has a proof of deadLock freedom using the
semaphore -hvarbat method.

Proof: Assume that CO has a proof of dead-

lock freedom using the reduction method. Then

there exists a sequence of D-reductions

Cl=CO/SO,...,Cn=Cn_Sn_l_l where Cn is free

from deadlock and does not contain any trap states.

By Lemma 5.2 co must also be free from deadlock

and not contain any trap states. By Theorem 5.1,

it is possible to prove that CO is free from

deadlock by means of the semaphore invariant

method. ❑

6. Generalization of the Semaphore Invariant

Method

Since a large class of synchronization tech-

niques can be modeled by counting operations on

shared variables, the class of linear SCL programs
is of particular interest. The conditional criti-

cal regions of a linear SCL program have the form

with R when B(x ) do A(x1, X2,.. .,Xn) @~, x2r*.. rxn _——

where

(1) the variables xl, x2, . . ..xn belong to

resource R.

(2) the condition B(x1, X2,. ..,Xn) is a truth

functional combination of atomic formulas of

the form alxl+a2x2 +... +anxn+an+l ~ O

(3) the body A(x1, X2, . . ..Xn)

assignment statements which

shared variables Xlr. ..,xn

xl:= Xl +bl

X2:=X2 +b2
.

‘n : ‘Xn + bn

Note that semaphores are special

is a series of

increment the

e.g.,

cases of linear

SCL programs. Many other standard synchronization

problems including the dining philosophers problem,

the readers and writers problem, and the cigarette

smoker’s problem can all be expressed as linear

SCL programs. Arguments are given in [SC76] and

[AG74] that linear SCL programs are universal in

their power to express synchronization constraints
for concurrent programs. It is also poss~ble to

prove that mutual exclusion and deadlock freedom

are undecidable for this class of programs.

We briefly outline how the semaphore invariant

can be generalized to linear SCL programs. Let C
be an SCL program. For each conditional critical
region Si in C we introduce a new auxiliary
variable dSi which counts the number of times Si
has been executed. Thus, the algorithm of Section
4 may be used to generate pre and post functions
for C; the resulting annotation of C will be

called the canonical annotation.

Let Hi(Z) =a~xl +aix + . . . a~n+ ain+l be a22

linear form occurring in the condition of some

critical region of C. We will use the notation

~H1/~Sj to denote the change in value of H1

caused by the execution of statement S<; note that

~H,/8S. is given by
J

Let dHi = H(Z) -H(io) where ;O gives the initial

values of the synchronization variables. Then, the

relationship

dHi = ~~Hi/aSj dSj

j
must hold if no process is executing a critical

region for R.

Although the generalized semaphore invariant

is sufficiently powerful to permit proofs of

mutual exclusion and absence of deadlock for a

significant class of linear SCL programs, it fails

to be complete for exactly the same reason as the

original semaphore invariant.

7. A Fixpoint Theory of Resource Invariants

Let L be the set of program states and let

F: 2X+2Z. If UZZ and F(U)=U, then U is a

fiXpO~nt for the functional F. If U is a fix-

point of F and U ~ V for all other fixpoints V

of F, then U is the least f~xpo{nt of F. F is

contzkuous if for every ascending chain

‘O=ul=...sujs...
of subsets

co

()

m

FUU, = U F(Uj) .
j=~ ] j=()

If F is continuous, then F has a

u(F) which 1s given by
co,

p(F) = U F] (false)
j=()

of z,

least fixpoint

where FO(U) = U and F]+l = F(F] (U)).

The resource invariants of an SCL program C

are fixpoints of a functional Fc which can be
obtained from the text of C. Let C be the SCL

program

X:=E;’

resource R(x)

cobegin P1//P2//...Pn coend

We assume that C contains K critical regions

s~, s.2r...rsK and that the ith critical region

has the form Si ~with R when bi & Ai ~. The— —

algorithm of Sections 4 and 6 will be used to
generate the pre and poet functions for C. Let

.Z be the set of possible states of C and let

Fc: 2Z+ 2Z be defined by

K

FC(J) =JOVJV V SP[Ai](pre(Si) AbiA J)
i=~

where the predicate Jo={~=~} describes the

initial state of C.
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THEOFUIM 7.1. l’he fU7ZCt~On FC <s a eontinuom

mapping on 2X. Thus, FC has a least fhpoint
P(FC) which is g<ven by

03.

!-I(FC) = u F~(false)
j =~

Proof: The continuity of Fc follows
directly from the additivity of SP. ❑

THEOREM 7.2. All resource invariant lR of
C are f?kpo{nts of FC. Also p(FC) ~s a .vesou.rve

for c.

Proof: Let IR be a resource invariant for

c. Clearly, IRS FC(IR). We must show that

FC(IR) ~ IR. By condition (a) in the definition

of a resource invariant system {~=6} ~IR. BY
condition (e) we see that for l<i<Kr

l=~Pre(Si)Abi AIR} Ai {POSZ(Si~AIR} .

It follows that for 1 ~ i < K

SP[Ai](pre(Si) AbiA IR) ~post(Si) AIR .

Hence,

K

V SPIAi](pre(Si) AbiAIR) ~ IR .
i=l

so,
K

FC(IR) = .JOVIRV V SPIAi](pre(Si) AbiAIR) ~ IR .
i=l

Thus, every resource invariant IR is a fixpoint

of Fc.

Since p(Fc) is a fixpoint of
‘c ‘

we have

K

p(Fc) = JOvp(Fc) V V SP[Ai](pre(Si) Abi AN(Fc))
i=l

Thus , JO ~ P(FC) and for 1 < i < K--

SP[Ai](pre(Si) Abi AP(Fc)) ~l.I(Fc) .

By construction of the pre and post functions, we
also have SP[Ai](pre(Si)) ~post(Si).

By monotonicity

SP[Ai](pre(Si) Abi AU(Fc)) ~post(Si) .

It follows that for 1 < i < K—.

SP[Ai](pre(Si) AbiAp(Fc)) ~post(Si) Ap(Fc)

or, equivalently that

1= {pre (Si) A bi A V(FC)} Ai {postal} .

Thus, P(FC) is a resource invariant corresponding
to the canonical annotation given in Section 6. D

THEOREM 7.3. U(FC) = {aloO&} .

Proof: Let IR= {cs100~6}. We show that

IR is a fixpoint of Fc and that IRS U(FC).

Since U(FC) is the least fixpoint of
‘c

, it

follows that p(Fc) = IR.

[A) FC(IR) =IR: Clearly IRS FC(IR). Let

OEFC(IR) =JOVIRV $ SP[Ai](pre(Si)Abi AIR)
i=l

then either Isg Jo~IR or ISg IR or there exists

iO such that

OESPIAiO] (pre(SiO) AbiO AIR) .

Only the third case is interesting. If

UC SPIAiO] (pre(SiO)AbiOAIR)~

then there is a state U’6pre(SiO) AbiOAIR

such that AiO(U’)=C.

Since 0’ EIR, there is a computation OO,O1,.. .,OI

of C with Or=O’. Because O’Epre(SiO)AbiO

and O=A(CI’), (70, . . ..crr.o is also a computation

of C and CJ~IR.

(B) IR~P(Fc): Let Oc IR then there exists a

computation CJotCf~r... r~r

prove by induction on r

Since F~(false) =JO, the

is true. Assume that for

in which Or=a. We

that 0r6F~+1(false).

basis case cfOEF~(false)

all computations

aololr...for_l of c, Clr_l~ F~(false). Let

Do,al, . . . ror_l,cfr be a computation of length r,

then there exists and
‘o

such that

o r-l~pre(Sio)Abio and O =Aio(Or_l). Thus
r

UrCSPIAio] (pre(Sio) AbiOAF~(falSe)) ~ F ~+l(false).

It follows that
co

IR~ U F~(false) = V(FC). n—
i=()

THEOREM 7.4. The resource system RSc con-

SiSt_tn.g of P(FC) and the canonical annotation is

relatively complete for p~oving absence of dead-
lock and mutual exclus{on ofSCL programs.

Proof: We prove that for the resource invari-

ant system PSc, the condition D(RSC) is unsatis-

fiable ijff deadlock is impossible. Clearly, if

D(RSC) is unsatisfiable then deadlock is impossible.

We must show that if D(RSC) is satisfiable, then

there exists a state ~d which is reachable from

the initial state of C in which every process of

C is blocked. Let Ud be a program state which

satisfies D(RSC) . Since Cd satisfies D(RSC),

it follows that Od~U(FC) and also that each

process of C is blocked in state ad. Since

6d6p(FC), ad is reachable from the initial

state 00 of C. Thus, Dd is a deadlock state

for the program C. The proof of completeness for

mutual exclusion is similar and will be left to

the reader. ❑

Theorem 7.4 shows that V(FC) is the

“strongest” resource invariant for program C. The

next theorem is important because it gives a

method for improving approximations to P(FC) .

LC—

THEOREM 7.5. If L is a pred-icate such. that

(Fc), then
m

lJ(Fc) = U F](L) .
j=o
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Proof: It is easy to show that for all j ~ O

Fl (false) cFj(L) ~Fj(P(FC))—

Thus
‘m .

U(FC) = U F] (false) ~ U F](L) ~ ~ F](P(FC)) ‘H(FC)
j =Q j =0 j=Q

❑

To illustrate theorems 7.1 - 7.5 we consider

the following solution to the mutual exclusion

problem:

a:=o; b:=o;

resource R(a,b) :

cobegin

A: cycle Al: with R when b=O do a:=a+l od;— — —
SA;

A2: with R when true do a:=a-1 od— — — —
end

//
B: cycle Bl: with R when a=O do b:=b+l od;— — — —

SB ;

B2: with R when true do b:=b-1 od— — — —
end

coend

Adding auxiliary variables and using the algorithm

of Section 6 to generate pre and post functions

we obtain:

{a=OAb=OAal=O Aa2=OAbl=OAb~=O}

resource (a, b, al, a2, bl, b2) :

cobegin

A: cycle {al=a2}

Al: with R when——
od;

{a~m=a2}

SA;

{a~-l=a21

A2: with R when—.
od.

end

//

B: cycle {b1=b2}

Bl: with R when— —
Q;

{bl-l=b2}

SB ;

{bl-l=b2}

B2: with R when— —
od-

end

coend

b=O do a:=a+l; al:=al+l—

true do a:=a-l; a2:=a2+l—

a=O Qo_ b:=b+l; bl:=bl+l

true do b:=b-l; b z : =b2+l—

In this case the function
‘c ‘s

FC(J) =a=o Ab=OAal=O Aa2=0 Abl=OAb2=0

VJ

vSP[a:=a+l; a~:=al+l] (b=O Aa1=a2 AJ)

VSP[a:=a-l; a~:=a2+l] (trUe Aal-l=a2AJ)

vSP[b:=b+l; bl :=bl+l] (a=OAb1=b2 AJ)

vSP[b:=b-l; b2:=b2+l] (true Abl-l=b2 AJ)

Since a(b) is incremented in statement A1(B1)
and decremented in statement A2(B2) , an obvious
guess for a resource invariant is

IR={a=al-a2 Ab=bl-b2Aa1~0 Aa2~OAbl~0 Ab2~O} .

It is easily checked that Fc(IR) = IR so that IR

is a fixpoint of FC.

Since D = pre(Al) Ab=O Apre(Bl) Aa=OAIR is

unsatisfiable, the invariant IR may be used to

prove absence of deadlock for C. The invariant

IR is not strong enough, however, to prove mutual

exclusion of statements SA and SB, since the

predicate M = pre(SA) Apre(SB) AIR is satisfiable.

By using Theorem 7.5 we may compute the strongest

resource invariant p(FC). Let

L= {IRAa1=a2Abl=b2} then L ~ LI(FC). Since

F;(L) =F~(L) =... ={IRAa=l. +b=OAb=l+a=O}, we see

that ~

B(FC) = U F~(L)=F~(L) ‘{a=al-a2A b=b1-b2Aa=l ‘b=o
i=o

Ab=l+a=OAa@A a2~Q

Abl~ 0Ab2~O}

Using the resource invariant u(Fc) it is easy to

show that the predicate M’ =pre(SA)A pre(SB)A P(FC)

is unsatisfiable; thus the statements SA and SB

are mutually exclusive.

Note that Theorem 7.5 can only be used to

obtain p(Fc) if program C has a finite number

of different possible states or unless a good

approximation is already available to U(FC). In

the next section we will examine more powerful

techniques for obtaining strong resource invariants.

8. Speeding up the Convergence of Fixpoint Tech-

niques for Approximating Resource Invariants

For linear SCL programs the notion of W~d~n?kg
of Cousot [C077] may be used to speed up conver-

gence to U(FC) . The widening operator * is

characterized by the following two properties:

(A) for all adm<ssabl~ predicates U and V,

U ~ U*V and V c U*V— —

(B) for any ascending chain of admissible pre-

dicates uo~u1~u2~... the ascending

chain defined by V. = Uo, Vi+~=Vi*Ui+~ is

k>Qeventually stable i.e., there exists a _

such that for i>k,Vi=V .— k

In this paper the adnissable predicates are

the polygonal convex sets of Qm where Q is the

set of rational numbers and m is the number of

resource variables belonging to R. The widening

operator * that we use is a modification of the

one used by Cousot [C0781. Let

polygonal convex sets. Then U

represented as conjunctions

9 h

U= Ayj and V= Ad
j =1 k=l k

where each coniunct is a linear

U and V be

and V can be

inequality of the

form
alxl +... ‘amxm+am+l s 0“

We further assume

that the representation of U and V is minimal,

i.e. , no conjunct can be dropped without changing

U or V. We say that two linear inequalities y.
1

and 6
k

are equivalent if they determine the same
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half space of ~. U*V is the conjunction Of all

those yj in the representation of U for which

there is an equivalent 6
k

in the representation

of v. Thus the widening operator “throws out”

all those constraints in the representation of U

which do not occur in the representation of V.

We now describe the strategy for approximating

lJ(Fc) . Since the predicates F~(false) in the

chain F~(false) ~ F~(false) ~ . . . may not be

polygonal convex sets, let Gi=CVIF~(false)]

where CV is the convex hull operato~. The

sequence GO~G1~... is a chain of polygonal

t
convex sets. The sequence I will be used in ob-

taining a good approximation to the strongest

resource invariant for R and is defined by ,

‘t
It=lJH.

j=~ 3

where H;=G and H!
t

=H~*G
3+1 J t+j+l

THEOREM 8.1.

(A) Each It can be corrputed in a finite number
of steps.

(B) H(FC) ~It for t ~~.

(C) The sequence It ~S a decreasing chain. in z

11a12013 . . .i.e., _ _

Proof of (A): By condition 2 in the defini-

tion of a widening operator the sequence

ttt
Ho, HI, H2, . . . must eventually stabilize. Thus

there exists a k such that

It =
k

UH: .
j=~ 3

Proof of (B) :

co.

p(FC) = U F1(false)
i=l)

co
c U CVIF1(false)].

i=o

m
c U G.

j=o 1

co
c UG .

j=() t+]

c
; ~t

– j=o j

c It

Proof of (C): Let U and V be poly-

gonal convex sets, we write UCV if for every

conjunct 6 in V, there is an equivalent con-

junct in U. We prove by induction on k that

~t+l
k CH:+l .

(1) Basis step:

~t+l

o = Gt+l
CH~*Gt+l .H~

(2) Induction step:

Assume
t+l t

‘k ‘Hk+l
then

t+l e+l

‘k+l = ‘k * ‘t+k+2
CH~+l *Gt+k+2=H:+2

Note that H~lCH~+l implies H~l~H~+l. Thus

~t+l m
=UH~l~;Ht .It and the sequence

k=O k=O ‘+1

10311312~ is a decreasing chain in 2.. 0-- —“.”

In practice when computing
It

we stop

generating the predicates H:, H:, . . . as soon as

a predicate
‘;

the limit

of the truncated
ant for C, then

UJ.

is found such that Ht= H
1 ;+1 . lf

chain fails to be a resource invari-

additional predicates in the se-

quence ~t may have to be computed. Thus the con-
j

struction of It provides a procedure which may be

used to obtain successively better approximations

to the strongest resource invariant V(FC) .

We demonstrate this method of synthesizing

resource invariants by considering the program C

a:=l

cobegin

A: cycle P(a); SA; V(a) end

//
—

B: cycle P(a); SB; V(a) end—
coend

discussed in Section 4. The function ‘c
in thie

caee is given by

FC(J) =a~=O Aaf=O Aa~=o Aa~=o Aa=o

VJ

v SP [a; :=a~+l; a:=a-l] (a~=a~Aa>OA J)

vSP [a: :=a~+l; a:=a+l] (a~-l=a~AJ)

VSP[a~:=a&; a:=
~11(al=a2Aa>o AJ)

22

VSP[a2:=a~+l; a:=a+l] (a~-l=a~AJ)
2

While C is quite simple and can be handled by the

methods of Section 4, there are potentially an in-

finite number of states and the chain

F~(false) ~F~(false) ~ F~(false) 5 . . . does not

converge. By computing the sequence of approxima-

tions It however, we obtain:
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#1
Note that is a resource invariant for C and

4
that I implies the semaphore invariant I used

a

in the proof of absence of deadlock and mutual
exclusion in Section 4.

For the PV program used in Section 5 to illus-

trate the incompleteness of the semaphore invariant

16
method, I is strong enough to permit a proof of

deadlock freedom. The trap state Z no longer

16
causes a problem since I contains the restraint

(b2-d:) +(d;-
1

b;) ~ 1 which is not satisfied by

the unreachable feasible points in the progress

graph of the program.

As a final example we consider the standard

solution to the readers and wtiters problem tiith
Wtiter priority [BH73] where there are two reader

processes and one writer process, e.g.,

rr:=o; rw:=O; aw:=O;

al :=0; bl:=O;

az:=o; b2:=o;

c:=O; d:=O; e:=O;

resource (rr, rw, aw, al, bl, a2, b2, c, d, e) :

cobegin

reader 1

// -
reader 2

// -
writer

coend

Each reader process has the form:

reader i: cycle

Ai : ‘with R when aw<O do a. :=ai+l;—— — 1

rr:=rr+l O&;

read;

B,: with R when true do bi:=bi+l;
l—— —

rr:=rr-1 od;.
end

The writer process is:

writer’ Sr!sE
C: with R when true do c:=c+l; aw:=aw+l—— —

od;

D: wit~R when rNOAn?~O do d:=d+l;—. .

rw:==rw+l O&;

E: with R when true do e:=e+l; aw:=aw-l;—. —

rw:=rw-1 Q;
end.

Note that auxiliary variables al, bl? a2, b2, c r

d, and e have been added to the program to count

the number of times critical regions Al, Bl, A2,

B2, c, D, and. E are executed. The predicate 15

generated by our approximation procedure is:

15
={aw-c+e=O

‘a2~b2~0

Ac>d>e>O}—— —

This predicate is a resource invariant for the

program and is sufficiently strong to prove absence

of deadlock and mutual exclusion of read and write

statements.

9. Open Problems

If a concurrent program contains a large

number of critical regions, then the combinatorial

explosion in the number of possible states which

must be considered by the approximation procedure

of Section 8 may prevent convergence to a suitable

resource invariant. We are currently investigating

techniques for minimizing this combinatorial

explosion. Two techniques which seem promising are:

(A) preprocessing the program to obtain information
about which states can follow a given state during

a computation of the program. For example, in the

readers and writers problem, assume that reader 1

is waiting for entry into critical region Al an~

that aw>O. If reader 2 executes critical region

B2, it is unnecessary ~o check whether reader 1 is

enabled to enter Al since execution of i32 doe;

not affect the value of aw. A similar analysis

is currkntly used in obtaining efficient implementa-

tions of conditional critical regions [sc76].

(B) Construct the program and its correctness

proof simultaneously. Although the programmer may

not precisely know the resource invariant for the

program he is writing, he may be able to deduce a

first approximation to the invariant from the

problem specification. In this case the technique

of Sections 7 and 8 may be used to strengthen the

approximation. Techniques for deriving correct

concurrent programs have been investigated by

van Lansweerde and Sinkzoff [LA76j.

A number of additional questions arise re-

garding the power of the generalized semaphore

invariant of Section 6 and the fixpoint methods

for generating resource invariants in Sections 7

and 8. It would be interesting to compare these

proof techniques with other techniques which do

not use resource invariants, e.g., the Church-

Rosser approach of Rosen [R076] and the reach-

ability tree construction of Keller [KE77]. Al SO

it is not clear how the techniques of this paper

generalize to synchronization methods such as

path expressions [HA75] for which linear restraints

are not explicitly given.

Currently the author is building an automatic

verification system for concurrent programs based

on the ideas in this paper. This system will ex-

tract the “synchronization skeleton” of a con-

current program and use the techniques of Sections
6 and 8 to generate the appropriate resource

invariants . The examples of Section 8 were all

obtained with the aid of this system.

Arw-d’+e = O

Arr-al+b -a2+b2=0
1

Aal-bl+d-e~l

Aa2-b2+d-e~l

Ac-e<l .
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