
Verification of Supervisory Control Software

Using State Proximity and Merging�

Flavio Lerda1,��, James Kapinski2, Edmund M. Clarke1, and Bruce H. Krogh2

1 School of Computer Science
flerda@cs.cmu.edu, emc@cs.cmu.edu

2 Department of Electrical and Computer Engineering
jpk3@ece.cmu.edu, krogh@ece.cmu.edu

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract. This paper describes an approach for bounded-time verifica-
tion of safety properties of supervisory control software interacting with
a continuous-time plant. A combination of software Model Checking and
numerical simulation is used to compute a conservative approximation of
the reachable states. The technique verifies system properties in the pres-
ence of nondeterministic behavior in the software due to, for instance,
interleaving of tasks. A notion of program equivalence is used to char-
acterize the behaviors of the controller, and the bisimulation functions
of Girard and Pappas are employed to characterize the behaviors of the
plant. The approach can conservatively merge traces that reach states
that are in proximity to each other. The technique has been implemented
for the case of affine plant dynamics, which allows efficient operations on
ellipsoidal sets based on convex optimization involving linear matrix in-
equalities (LMIs). We present an illustrative example for a model of the
position controller of an unmanned aerial vehicle (UAV).

1 Introduction

Model-based design of embedded control systems is becoming standard practice.
Applying formal methods to embedded control design is important for reducing
time to market and for meeting safety and performance requirements, but for-
mal methods are difficult to apply to systems that interact with a continuous
dynamic environment. We present a formal verification technique based on the
combination of software Model Checking and numerical simulation of a contin-
uous dynamic plant. We use level sets of bisimulation functions [1] to represent
sets of plant trajectories and a notion of program equivalence for the controller
� This research was sponsored by the Air Force Research Office (AFRO) under contract

no. FA9550-06-1-0312, and by the National Science Foundation (NSF) under grant
no. CCR-0411152. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either
expressed or implied, of AFRO, NSF, or the U.S. government.

�� The first author was supported by General Motors under grant no. GM9100096UMA.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 344–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Verification of Supervisory Control Software 345

to guarantee safety bounds and provide an efficient and exhaustive search of the
system behaviors. The approach narrows the gap between simulation and Model
Checking of control systems.

A nonconservative approach that combines Model Checking [2,3] and simu-
lation was first proposed in [4]. That approach provides a means of efficiently
searching for counterexamples, but since it is not conservative, it cannot guaran-
tee safety. The approach presented here formalizes and extends that technique by
employing conservative approximations of the set of reachable states. Reachable
set estimation is a central problem in performing verification of safety proper-
ties. Other techniques compute the reachable set of states forward in time and
merge the reachable trajectories that are in proximity to each other in the state
space [5,6]. In the approach proposed here, the safety requirements are used
to construct sets of states that are guaranteed to be safe and these sets are
propagated backwards in time.

The work by Julius et al. provides a means for determining maximum safety
bounds for simulation traces [7], but the technique does not handle nondeter-
minism in the discrete transitions and it does not consider the semantics of the
control software. The work presented here deals efficiently with the prolifera-
tion of reachable paths that occurs due to nondeterministic behaviors in the
controller.

2 System Model

We consider supervisory controllers, by which we mean feedback controllers that
select operating modes for continuous dynamic systems. The supervisor may se-
lect plant operating modes directly or manage lower-level feedback control loops.
Lower-level control loops are modeled as part of the plant. This is appropriate
if the lower-level controller has a significantly higher sampling rate than the su-
pervisor. A sampled-data supervisor observes the state of the plant only at fixed
times, called sample instants. We assume that the sample instants are multiples
of a fixed sampling period, ts > 0. We model systems where the supervisor is
implemented by a set of tasks, and the plant is described by a set of differential
equations. We assume that the code of the supervisor executes instantaneously,
which is a reasonable assumption if the sampling period of the supervisor is
large compared to the actual execution time of the code. Also, we assume that
all tasks share the same clock. This assumption is appropriate for analyzing con-
trol software implemented as a set of concurrent tasks on one processor or on
multiple processors if the clock skew and jitter are small relative to the sampling
period of the tasks.

Consider a set of m supervisor variables taking values from a finite set V, and
a set of n real-valued plant variables. Let v ∈ V m be the value of the supervisor
variables, and x ∈ R

n be the value of the plant variables, called the plant state.

Definition 1 (Supervisor Task). Given a set of m supervisor variables with
domain V m and a set of plant states R

n, a supervisor task is a tuple Ti =
〈Loci, li,initial , li,final , δi〉 where:

346 F. Lerda et al.

– Loci is a finite set of control locations;
– li,initial , li,final ∈ Loci are two specially designated locations, called the initial

and final control locations of Ti; and
– δi : R

n → 2Loci×V m×Loci×V m

is the transition relation of Ti. We assume
that there are no transitions from the final control location li,final .

At each sample instant, the task starts executing at the initial control location
li,initial and executes until it reaches the final control location li,final . We assume
that every sequence of task transitions is finite and eventually reaches the control
location li,final , i.e., the code has no deadlock or livelock. A Model Checker can
be used to detect deadlocks and livelocks, but these aspects have been omitted
from the presentation for the sake of clarity. An approach that takes into account
these aspects is described in [4]. Notice that the transition relation δi depends
on the current plant state x. Given li, l̂i ∈ Loci, v, v̂ ∈ V m, and x ∈ R

n, there
exists a transition from (li,v) to (l̂i, v̂) when the plant state is equal to x if and
only if (li,v, l̂i, v̂) ∈ δi(x).

Definition 2 (Sampled-Data Control System). A sampled-data control
system is a tuple SDCS = 〈{T1, . . . , Tp}, V, fv, ts, Init〉 where:

– {T1, . . . , Tp} is a finite set of supervisor tasks;
– V is a finite domain for the supervisor variables;
– For each v ∈ V m, fv : R

n → R
n is a Lipschitz continuous function that

describes the flow of the plant and depends on the value of the supervisor
variables;

– ts is the sampling period; and
– Init ⊆ Loc1 × . . . × Locp × V m × R

n is a set of initial states.

Let Loc denote the set Loc1 × . . . × Locp of the control locations for all of the
tasks. A state of an SDCS is a tuple (q,x) where: q = (L,v) is the supervisor
state, L ∈ Loc specifies the control locations of each task, v ∈ V m is the value
of the supervisor variables, and x ∈ R

n is the plant state. Given a value v for
the supervisor variables and a plant state y, let ξy

v : R → R
n denote a solution

to the initial value problem ẋ(t) = fv(x(t)),x(0) = y. Since we assumed that
fv(·) is Lipschitz continuous, there exists a unique ξy

v(·) for every y ∈ R
n.

Definition 3 (Transitions). Given two states s = (q,x) and ŝ = (q̂, x̂) of an
SDCS, there exists a transition from s to ŝ, denoted by s −→ ŝ, if either:

– q = ((l1, . . . , lp),v), q̂ = ((l̂1, . . . , l̂p), v̂), and there exists a task Tj such that
x = x̂, (lj ,v, l̂j , v̂) ∈ δj(x) and, for every task Ti not equal to Tj , li = l̂i.
This is called a supervisor transition.

– q = (Lfinal ,v), q̂ = (Linitial ,v), and x̂ = ξx
v(ts). This is called a plant

transition.

A trace of an SDCS is a finite sequence of states σ = s0 . . . sK , for some K, such
that sk −→ sk+1 for all 0 ≤ k < K. Figure 1 provides an illustration of traces
of an SDCS. In the figure, the plant states have two dimensions, corresponding

Verification of Supervisory Control Software 347

Fig. 1. An illustration of traces of an SDCS. Solid arrows connecting points represent
plant transitions. Dotted lines connecting points represent supervisor transitions.

to the axes labeled x1 and x2. The vertical axis represents the value of the
supervisor variables: each plane corresponds to a different value of the supervisor
variables, namely va,vb, and vc. The initial state is s0 = (Lfinal,va,xinit), and
the first transition is a plant transition, s0 −→ s1, where s1 = (Linitial,va, x̂)
for some x̂. From s1, nondeterminism in the supervisor leads to two separate
states, s2 = (Lfinal,vb, x̂) and s4 = (Lfinal,vc, x̂). From each of these states a
plant transition is taken, s2 −→ s3, where s3 = (Linitial,vb,y) for some y, and
s4 −→ s5, where s5 = (Linitial,vc, z) for some z.

Definition 4 (Duration). The duration of a trace σ is the amount of time
elapsed between its first state and its last state, and it is defined inductively as
follows:

– If σ = s0, duration(σ) = 0.
– If σ = s0 . . . sK and sK−1 −→ sK is a supervisor transition then

duration(σ) = duration(s0, . . . sK−1), since we assume that supervisor tran-
sitions execute instantaneously.

– If σ = s0 . . . sK and sK−1 −→ sK is a plant transition then duration(σ) =
duration(s0, . . . sK−1) + ts.

A state s of an SDCS is reachable within a time bound T if and only if there
exists a trace σ = s0 . . . sK , for some K, such that s0 ∈ Init , sK = s and
duration(σ) ≤ T . Given a time bound T and a set of states Fail ⊂ Loc×V m×R

n,
a state s is safe for time bound T if and only if for every trace σ = s0 . . . sK ,
of arbitrary length K, such that s0 = s and duration(σ) ≤ T, we have that
sK /∈ Fail . For example, state s0 in Figure 1 is safe for time bound 2ts.

Definition 5 (Bounded-Time Safety). Given an SDCS, a set Fail ⊂ Loc ×
V m ×R

n of fail states, and a time bound T, the SDCS is safe for time bound T
if and only if all initial states are safe for time bound T .

348 F. Lerda et al.

3 Conservative Verification Using Merging

In [4], we presented an approach that combines Model Checking and simulation
to check bounded-time safety of an SDCS with a finite set of initial states. That
work also introduces a notion of approximate equivalence that is used to prune
the state space and, therefore, reduces the size of the state space that needs to
be explored. The approach is not conservative, however; it can be used to search
for counterexamples, but it is unable to prove safety.

Our approach for proving bounded-time safety of an SDCS is able to prune
parts of the state space by merging traces, which corresponds to merging a state
with a previously visited one. In Model Checking, merging can be done only
when a state on one trace is identical to a state on another trace. Our approach
is able to perform a merge when two states are in proximity to each other if the
pruned parts of the state space are guaranteed to be safe. In the following, we
show how to determine safe sets of plant states around the points in a trace.
These sets correspond to a set of traces that are in proximity of the visited trace
and are guaranteed to be safe. When a state that is within a safe set is reached,
the trace can be merged conservatively and the successors of such a state do not
need to be explored further.

In general, given a dynamical system and two initial states that are in prox-
imity to each other, the trajectories starting at those initial states may diverge.
This paper uses bisimulation functions to bound the distance between future
evolutions. Bisimulation functions were introduced by Girard and Pappas as a
way to determine the relation between states of a dynamical system [1]. In this
work, we use bisimulation functions to approximate conservatively the plant
transitions.

Definition 6 (Bisimulation Function). [1] Given an autonomous dynamical
system Σ described by ẋ(t) = fv(x(t)) where x : R → R

n and f : R
n → R

n, a
differentiable function ϕv : R

n × R
n → R is a bisimulation function of Σ if and

only if

– ϕv(y, z) ≥ 0, for all y, z ∈ R
n; and

– ∇yϕv(y, z) · fv(y) + ∇zϕv(y, z) · fv(z) ≤ 0, for all y, z ∈ R
n.

Definition 7 (Sublevel Sets). Given x ∈ R
n, a bisimulation function ϕ of

ẋ(t) = f(x(t)), and a real value r ≥ 0, the sublevel set of the bisimulation
function ϕ centered at x and of size r, denoted by Nϕ(x, r), is defined as

Nϕ(x, r) = {z ∈ R
n |ϕ(x, z) ≤ r}.

In the following, we assume that the bisimulation functions are symmetric, i.e.,
ϕ(y, z) = ϕ(z,y) for every y, z ∈ R

n. If a bisimulation function ϕ(·, ·) is a metric
on R

n, then it is called a contraction metric [8]. We assume that for every value
of the supervisor variables v, a bisimulation function ϕv of the autonomous
dynamical system ẋ(t) = fv(x(t)) is given. We can now state the following
theorem about bisimulation functions and plant transitions, based on a theorem
from Julius et al. [7].

Verification of Supervisory Control Software 349

Theorem 1 (Plant Approximation). Given two states s = ((Lfinal ,v),y)
and ŝ = ((Linitial ,v), ŷ) such that s −→ ŝ is a plant transition, and a bisimu-
lation function ϕv for the differential equation ẋ(t) = fv(x(t)), for every r ≥ 0
and for every z ∈ Nϕv(y, r), if ((Lfinal ,v), z) −→ ((Linitial ,v), ẑ) is a plant
transition, then ẑ ∈ Nϕv(ŷ, r).

Proof. The theorem is a direct consequence of Corollary 1 of [7].

Given a program state q and a time bound T, a set X ⊆ R
n of plant states

is safe for T at q if and only if, for every x ∈ X, s = (q,x) is safe for time
bound T . Given a program state q, the set of fail plant states at q is defined as
Failq = {x ∈ R

n | (q,x) ∈ Fail}.

Theorem 2 (Plant Transition Approximation). Given two states (q,y)
and (q̂, ŷ) such that q = (Lfinal ,v), q̂ = (Linitial ,v), and (q,y) −→ (q̂, ŷ) is a
plant transition, if X̂ ⊆ R

n is safe for T at q̂, then for all r ≥ 0, if Nϕv(ŷ, r) ⊆ X̂
and Nϕv(y, r) ⊆ Failq then Nϕv(y, r) is safe for (T + ts) at q.

Proof. We prove this theorem by contradiction. Assume that Nϕv(y, r) is not
safe for (T + ts) at q. This means that there exists a plant state z ∈ Nϕv(y, r)
and a trace σ = s0s1 . . . sK , for some K, such that s0 = (q, z), sK ∈ Fail , and
duration(σ) ≤ T + ts. Since z ∈ Nϕv(y, r) ⊆ Failq, we have that s0 /∈ Fail
and therefore the trace must contain at least two states (K ≥ 1). Let σ̂ denote
s1 . . . sK . By Definition 4 we have that duration(σ̂) = duration(σ) − ts ≤ T . By
Definition 3, s1 = (q̂, ẑ) for some ẑ ∈ R

n. By Theorem 1 we can deduce that
ẑ ∈ Nϕv(ŷ, r). But, by hypothesis, Nϕv(ŷ, r) ⊆ X̂ and therefore ẑ ∈ X̂ . Since X̂
is safe for T at q̂, there does not exists any trace starting at (q̂, ẑ) that reaches a
state in Fail and whose duration is less than or equal to T . However, σ̂ is such
a trace, which is a contradiction. Therefore Nϕv (y, r) must be safe for (T + ts)
at q. ��

Figure 2-(a) illustrates the notion of safe plant states and plant transition ap-
proximations. On each plane, the areas marked by Fail correspond to the parts of
the plant state space that are unsafe for the corresponding value of the supervisor
variables. Plant transitions correspond to continuous lines within a given plane;
supervisor transitions correspond to dotted lines from one plane to another. The
two sets N3 and N5 are safe for time bound zero as they do not intersect the
Fail plant states in the corresponding planes. By Theorem 2, the sets N2 and
N4 are safe for time bound ts, the sampling period, as they are guaranteed to
avoid the Fail region if the system evolves for one sampling period.

Theorem 2 allows us to determine a set of plant states that are safe for (T +ts)
at a given supervisor state q given a set of plant states that are safe for T at
the supervisor state q̂ obtained by performing a plant transition. Below we show
how to compute a set of plant states that is safe for T at a supervisor state
q for the case of discrete transitions. While continuous transitions are always
deterministic, supervisor transitions may lead from one state to a number of
successor states. In order to deal with this, we define a notion of equivalence
between continuous states with respect to a supervisor state.

350 F. Lerda et al.

(a) (b)

Fig. 2. (a) An illustration of sets safe for a time bound T . N3 and N5 are safe for time
bound zero. N1, N2, and N4 are safe for ts; (b) An illustration of merging. N6 is safe
for ts since all of its states make transitions into the set N2, which is safe for ts.

Definition 8 (Program Equivalence). Given a supervisor state q and a pair
of plant states y, z ∈ R

n, we say that y is program equivalent to z at q, denoted
by y ≈q z, if the set of successors of q at plant state y is the same as the set of
successors of q at plant state z, i.e., Q̂q(y) = Q̂q(z) where, given a supervisor
state q and a plant state x, Q̂q(x) = {q̂ | (q,x) −→ (q̂,x)} .

The relation ≈q defined above is an equivalence relation. Therefore, for every
supervisor state q, ≈q defines a set of equivalence classes. Given a supervisor
state q and a plant state y, let [y]≈q

denote the equivalence class of y defined
by ≈q, that is [y]≈q

= {z ∈ R
n |y ≈q z}.

Theorem 3 (Supervisor Transition Approximation). Given a state (q,y)
with q = (L,v) and L �= Lfinal , for each q̂ ∈ Q̂q(y), let X̂q̂ ⊆ R

n be a set of
plant states safe for some time bound Tq̂ at q̂. Let T = minq̂∈Q̂q(y) Tq̂ denote the
minimum of the time bounds for each q̂. The set

X = [y]≈q
∩ Fail q ∩

⋂

q̂∈Q̂q(y)

X̂q̂

is safe for time bound T at q.

Proof. We prove this theorem by contradiction. Assume X is not safe for T at
q. This means that there exists a plant state z ∈ X and a trace σ = s0s1 . . . sK ,
for some K, such that s0 = (q, z), sK ∈ Fail , and duration(σ) ≤ T . Since
z ∈ X ⊆ Fail q, we know that s0 /∈ Fail and therefore the trace must contain at
least two states (K ≥ 1). The first transition of σ must be a discrete transition
because L �= Lfinal by hypothesis. Let s1 = (q̂, z) and σ̂ = s1 . . . sK . Since

Verification of Supervisory Control Software 351

z ∈ X ⊆ [y]≈q
, by hypothesis, we know that there exists a discrete transition

(q,y) −→ (q̂,y). Therefore, by hypothesis, q̂ ∈ Q̂q(y). Since we assumed that
z ∈ X and, by hypothesis, X ⊆ X̂q̂, we have that z ∈ X̂q̂. But, by hypothesis, X̂q̂

is safe for time bound Tq̂ at q̂. This means that there does not exist any trace
starting at (q̂, z) that reaches a state in Fail and whose duration is less than
or equal to Tq̂. But σ̂ is such a trace because duration(σ̂) ≤ Tq̂. This is true
since duration(σ̂) = duration(σ) ≤ Tq̂, by assumption, and T ≤ Tq̂. This is a
contradiction and therefore X must be safe for T at q. ��

Figure 2-(a) shows an application of the theorem above. In this case, the state
s1 = (q,y) has two successors, states s2 and s4. We assume that the sets N2 and
N4 are safe for time bound ts. The set X1 in the figure denotes the equivalence
class [y]≈q

corresponding to s1. Then N1 is safe for ts, because N1 does not
intersect the fail states of q, every state of N1 is program equivalent to y, and
N1 is contained within both N2 and N4.

The conservative merging occurs when a trace reaches a state within a safe
set of plant states. State s7 in Figure 2-(b) is within N2, which we assume to be
safe for time bound ts. The state s6 has a single successor, namely s7. The set
X6 in the figure denotes the equivalence class corresponding to state s6. The set
N6 does not intersect the fail region, N6 is a subset of N2, and N6 is a subset
of the equivalence class X6. Therefore, by Theorem 3, we can deduce that N6

is safe for ts: any trace starting from a plant state within N6 leads to a state
within N2.

3.1 Bounded-Time Safety Verification Algorithm

This section gives an algorithm to check bounded-time safety of an SDCS . This
algorithm is based on the explicit-state Model Checking algorithm [3], but uses
level sets of a bisimulation function and the notion of program equivalence to
determine sets of plant states that are safe. The standard explicit-state Model
Checking algorithm is a depth first search of the set of reachable states for each
of the initial states. By using bisimulation functions and the notion of program
equivalence, the algorithm presented here is able to determine, without looking
at every trace, if a certain state encountered during the analysis is guaranteed
not to lead to a fail state.

The procedures main and explore in Figure 3 implement the depth first
search. For each initial state (q,x), the procedure explore is invoked to perform
a depth first search up to the time bound T (lines 5-10). If the initial state is
safe, a set of states that are safe for T at q is returned: this set is added to the set
of initial states that are guaranteed to be safe (SafeInit on line 8). Otherwise, if
an error was detected, it is returned immediately (line 10). After analyzing each
initial state, the set of safe initial states is returned on line 11. The procedure
explore takes as arguments a state (q,x), a time bound τ, and a trace σ which
leads to (q,x). The time bound τ represents the amount of time remaining from
the given state; that is, τ = T − duration(σ). It performs the actual depth first

352 F. Lerda et al.

1: global SDCS, Fail , T;
2: global safe sets ← ∅; Sets of safe plant states, initially empty.

3: main: Check bounded-time safety of SDCS
4: SafeInit ← ∅ Set of safe initial states.
5: foreach ((q, x) ∈ Init) Depth-first search for each initial state.
6: result ← explore(q, x, T, [(q, x)]);
7: if(result = (SAFE , X))
8: SafeInit ← SafeInit ∪ {(q, x) | x ∈ X} Add to safe initial states.
9: else
10: return result; An error was detected.
11: return (SAFE , SafeInit); Return the set of safe initial states.

12: function explore(q, x, τ , σ) Depth-first search from (q, x) up to time τ .
13: if ((q, x) ∈ Fail) return (UNSAFE , σ); Check for fail states.

14: if (∃ (q̂, X̂ , τ̂) ∈ safe sets: q = q̂ ∧ x ∈ X̂ ∧ τ ≤ τ̂)

15: return (SAFE , X̂); Merge traces if within a safe set.
16: if (q.L = Lfinal)
17: result = plant transition(q, x, τ , σ); Plant transition
18: else
19: result = supervisor transitions(q, x, τ , σ); Supervisor transitions
20: if (result = (SAFE , X))
21: safe sets ← safe sets ∪ {(q, X , τ)}; Plant states safe for τ at q.
22: return result;

23: function plant transition(q, x, τ , σ)
24: if (τ < ts) Stop if time bound is less than sampling time
25: return (SAFE , {x | (q,x) /∈ Fail});
26: x̂ ← sim(x, fq.v); Numerical simulation
27: q̂ ← (Linitial , q.v);
28: result = explore(q̂, x̂, τ - ts, σ · (q̂, x̂));

29: if (result = (SAFE , X̂))

30: rmax ← max
{

r | Nϕq.v (x̂, r) ⊆ X̂
}
; Safe set of plant states

31: return (SAFE , Nϕq.v (x, rmax));
32: else
33: return result;

34: function supervisor transitions(q, x, τ , σ)

35: Q̂ ← {q̂ | ∃i: (q, q̂) ∈ δi(x)}; Explore each successor

36: X ← [x]≈q ∩ Fail ;

37: foreach (q̂ ∈ Q̂)
38: result ← explore(q̂, x, τ , σ · (q̂, x));

39: if (result = (SAFE , X̂))

40: X = X ∩ X̂ ;
41: else
42: return result;
43: return (SAFE , X);

Fig. 3. The conservative merging verification algorithm

Verification of Supervisory Control Software 353

search starting from the given state up to the time bound. The trace σ is used
to generate a counterexample if a fail state is reached (line 13). The current
state is compared with the sets of safe states that have been determined so far
(lines 14-15). If there exists a set of plant states X̂ that is safe for the current
supervisor state q and a longer time bound τ̂ ≥ τ, the search of this branch can
terminate and the set of plant states X̂ is returned to the caller as safe.

Two ways of computing the successor states are possible. If the current control
state is equal to Lfinal , then a plant transition is performed by calling the function
plant transition (line 17). Otherwise, the transitions of the supervisor are
explored by calling the function supervisor transitions (line 19). In either
case, if the result is that the current state is safe, the set X of plant states that
are computed to be safe for state q and time bound τ is added to the list of safe
sets (line 21).

The result of a plant transition is computed by the function plant transition
in Figure 3. Line 25 is executed if the time bound has been reached, i.e., there is
not enough time left to complete an additional plant transition. The set of plant
states that are safe for time bound τ at q is simply the set of plant states that are
not fail states at supervisor state q, since τ < ts (line 24). Otherwise, the successor
state (q̂, x̂) of the current state (q,x) is computed using numerical simulation (line
26) and by setting the current control location to Linitial (line 27). The search
continues from the new state by calling explore. The recursive call uses a smaller
time bound and adds one state to the trace being constructed (line 28). If the
result at line 28 is that state (q̂, x̂) is safe, the set of states X̂ that are safe for
time bound τ − ts at q̂ is used to determine the maximum size of a sublevel set of
the bisimulation function centered around x that is safe for time bound τ at q by
solving the optimization problem:

rmax = max
{
r ∈ R | Nϕv(x̂, r) ⊆ X̂

}
,

where v is the current value of the supervisor variables and ϕv is the bisimulation
function for ẋ = fv(x) (line 30). The set Nϕv(x, rmax) is returned to the caller
since it is safe for time bound τ at q.

The function supervisor transitions in Figure 3 computes and explores
the successors of a state (q,x) that originate from transitions of the supervisor.
The set of successors Q̂ is generated by using the transition relations δ1, . . . , δp

of the tasks that make up the supervisor (line 35). Each successor q̂ is visited
by calling the function explore over (q̂,x) with the same time bound τ (since
supervisor transitions are instantaneous) and with a trace that adds the new
state (q̂,x) to σ (line 38). If the state (q̂,x) is safe, a set of safe plant states X̂
is returned by the recursive call. The set of safe plant states that is returned to
the caller by this call (line 43), computed by lines 36 and 40, is

X = [x]≈q
∩ Fail q ∩

⋂

q̂∈Q̂

X̂q̂.

354 F. Lerda et al.

This concludes the description of the algorithm. The following theorems es-
tablish correctness and termination of the procedure. The proofs are omitted for
the sake of brevity.

Theorem 4 (Correctness). Consider an SDCS, a set of fail states Fail , and a
time bound T . If the algorithm of Figure 3 returns (SAFE, SafeInit) then the SDCS
is safe for time bound T, Init ⊆ SafeInit , and all states in SafeInit are safe for time
bound T . If the algorithm returns (UNSAFE, σ) then SDCS is not safe for time
bound T and σ is a trace of duration less than T that ends at a state in Fail .

Theorem 5 (Termination). Given an SDCS = 〈{T1, . . . , Tp}, V, fv, ts, Init〉
such that Init is finite, the algorithm of Figure 3 always terminates.

3.2 Ellipsoidal Sets for Affine Dynamics

In this subsection, we discuss properties related to our technique for the case of
stable affine plant dynamics and sets of fail states defined by linear inequalities

Bisimulation Functions. For the special case of stable, affine plant dynamics,
fv(x) = Avx + Bv, a bisimulation function is given by

ϕv(y, z) = (z − y)T Pv(z − y),

where Pv satisfies the Lyapunov inequality Av
T Pv +PvAv ≤ 0. The level sets

are given by Nϕv(x, r) = {z ∈ R
n | (z−x)T Pv(z−x) ≤ r}, which are ellipsoidal.

Maximum Ellipsoid Within an Ellipsoid. In the case of affine dynamics,
one operation required in line 30 of the procedure given in Figure 3 is the com-
putation of the maximum sized ellipsoid contained in a second ellipsoid. Given
a set Nϕv(z, rz) and a point y ∈ R

n, we want to find the maximum ry such
that Nϕv(y, ry) ⊆ Nϕv (z, rz). It is shown in [9] that this is equivalent to the
following:

max
λ,c

c

s.t.

⎡

⎣
−rzQv (z − y) c

√
Qv

(z − y)T λ − 1 0
c
√

Qv 0 −λI

⎤

⎦ ≤ 0, λ ≥ 0, c ≥ 0,

where c = √
ry, Qv = Pv

−1, I is the identity matrix, and
√

Qv is the matrix that
satisfies Qv =

√
Qv

√
Qv, which exists since Qv is positive semidefinite. This is

a convex problem with LMI constraints. Numerical tools exists for solving such
problems in polynomial time.

Maximum Ellipsoid Within a Set of Linear Constraints. Another oper-
ation required in line 30 of the procedure given in Figure 3 for the case of affine
dynamics is the computation of an ellipsoid of maximum size that satisfies a
conjunction of linear constraints. We want to maximize r subject to constraints

Verification of Supervisory Control Software 355

of the form
∧imax

i=1 cT
i y ≤ bi for all y ∈ Nϕv(x, r) = {z ∈ R

n | (z−x)T Pv(z−x) ≤
r}, where bi ∈ R, ci ∈ R

n for each i. Let Qv = Pv
−1. The maximum r that

satisfies the linear constraints is then given by [10]

r∗ = min
i∈{1,...,imax}

(bi − cT
i x)2

cT
i Qvci

.

4 Experimental Results

The technique presented in the previous section was implemented using an
existing explicit-state source-code Model Checker. The tool we chose is Java
PathFinder [11]. The main purpose of the tool is to verify Java programs, but it
also handles the subset of C that is common to the two languages. This proto-
type implementation handles systems where the plant dynamics are affine. We
use the LMI tool CVX with the semidefinite program solver SDPT3 [12,13] to
solve the optimization problems that arise during the verification.

Java PathFinder was extended as follows. The state of a system was enhanced
to include the plant state x, represented by a set of floating-point variables.
Our extension stores sets of plant states that are safe with respect to a given
supervisor state and time bound. Safe sets are represented as ellipsoidal sets, and
program equivalence classes and system requirements are represented as sets of
linear constraints. Ellipsoidal sets are represented by their size parameter r and
their center, while the shape and orientation are determined by the bisimulation
function given for each set of plant dynamics. The set of constraints used to
express the set of fail states as well as the program equivalence classes are given
as annotations. Moreover, since the plant dynamics are affine, it is possible to
convert the continuous-time dynamics into discrete-time difference equations
over the fixed sampling period ts.

We applied our technique to an example based on the Stanford Testbed of
Autonomous Rotorcraft for Multi-Agent Control (STARMAC), a quadrotor un-
manned aerial vehicle (UAV) under development at Stanford University [14].
The vehicle is a square frame with four rotors mounted on its corners and a
computer controller and power supply at its center. The controller sends thrust
commands to the four rotors. The supervisor makes its decisions based on mea-
surements of the state of the vehicle. We consider a model of the STARMAC
system with six plant state variables: the horizontal position and velocity (x and
ẋ), the vertical position and velocity (z and ż), and the rotation about the y-axis
and the corresponding rotational velocity (θ and θ̇). The y position and rotation
around the x-axis and z-axis are not included in this model. Motors 1 and 3
provide lift and torque around the y-axis, while motors 2 and 4 only provide
lift. The forces applied by motors 2 and 4 lie on the y-axis. Equivalent force is
applied by motors 2 and 4 at all times.

The equations of motion are nonlinear. We linearized the equations and de-
signed a linear quadratic regulator (LQR) to drive the system to a given set point.

356 F. Lerda et al.

Model-Checking-Guided Model Checking
Simulation without Merging with Safe Sets and Merging

Visited states 43,134 25,493
Running time 17 sec 107 sec
Memory usage 90.2MB 77.0MB

Fig. 4. Visited states, running time, and memory usage for the time bound T = 90 sec
with and without merging of safe states. The number of state merges was 282.

The LQR controller is modeled as part of the plant. The system we obtained is of
the form ẋ = Ax + Bx∗, where x∗ is the set point we want to reach and

A = −B =

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.6 0.0 0.0 0.0 0.0 9.8
1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 −1.1 −0.4 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0

−35.4 −22.1 0.0 0.0 −70.2 −2221.7
0.0 0.0 0.0 0.0 1.0 0.0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The supervisory controller for this system is implemented by two concurrent
tasks: one task determines the target position based on a given list of waypoints;
the other sends position commands to the plant. Due to the interleaving of the
two tasks, the plant might receive the updated target position with a sampling
period delay, and the system will follow slightly different traces every time a new
waypoint is generated.

We performed the analysis both with and without state merging. The results,
presented in Figure 4 show a significant reduction in number of visited states
and memory usage. The space overhead due to the ellipsoidal sets that need
to be associated with each visited state was limited and it was offset by the
reduction in memory consumption due to the drastic reduction in number of
visited states. Such a reduction was obtained with just a handful of conservative
state merges: even a single merge can lead to a large reduction because every state
reachable from the merged state no longer needs to be visited. The approach as
implemented showed a significant overhead in terms of running time, however,
which could be reduced by further optimizing the operations involving storing
and lookup of ellipsoids.

5 Conclusions

This paper presents a formal verification technique for embedded control systems
based on the combination of software Model Checking and numerical simulation
of a continuous dynamic plant. The technique can provide a guarantee that a
continuous dynamic plant controlled by a supervisor implemented in software
satisfies safety requirements over a given time bound.

The algorithm presented in this work can be applied to system with nonlinear
plant dynamics; however, the process of identifying bisimulation functions for

Verification of Supervisory Control Software 357

nonlinear systems is difficult, in general. The work by Parrilo et al. on iden-
tifying Lyapunov functions for a class of nonlinear systems is related to the
work presented here [15]. Due to the similarity between Lyapunov functions and
bisimulation functions, similar techniques can be used to compute bisimulation
functions for nonlinear systems.

References

1. Girard, A., Pappas, G.J.: Approximation Metrics for Discrete and Continuous Sys-
tems. Technical Report MS-CIS-05-10, University of Pennsylvania (2005)

2. Clarke, E.M., Emerson, E.A.: Synthesis of Synchronization Skeletons for Branching
Time Temporal Logic. In: Proc. of Workshop on Logic of Programs (1981)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

4. Lerda, F., Kapinski, J., Maka, H., Clarke, E.M., Krogh, B.H.: Model Checking
In-The-Loop. In: The 27th American Control Conference (submitted, 2007)

5. Kapinski, J., Krogh, B.H., Maler, O., Stursberg, O.: On Systematic Simulation of
Open Continuous Systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 283–297. Springer, Heidelberg (2003)

6. Donzé, A., Maler, O.: Systematic Simulation using Sensitivity Analysis. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189.
Springer, Heidelberg (2007)

7. Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust Test Gen-
eration and Coverage for Hybrid Systems. In: Bemporad, A., Bicchi, A., Buttazzo,
G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)

8. Aylward, E., Parrilo, P.A., Slotine, J.J.E.: Algorithmic Search for Contraction Met-
rics via SOS Programming. In: Proc. of the 2006 American Control Conference
(2006)

9. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in
System and Control Theory. In: SIAM Studies in Applied Mathematics, vol. 15.
SIAM, Philadelphia (1994)

10. Kurzhanski, A.B., Vályi, I.: Ellipsoidal Calculus for Estimation and Control.
Birkhäuser, Boston (1997)

11. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering 10(2), 203–232 (2003)

12. Grant, M., Boyd, S., Ye, Y.: CVX User’s Guide (2007)
13. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3 4.0. MIT Press, Cambridge (2006)
14. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor Helicopter

Flight Dynamics and Control: Theory and Experiment. In: Proc. of the AIAA
Guidance, Navigation, and Control Conference (2007)

15. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, California Institute of Tech-
nology (2000)

	Verification of Supervisory Control Software Using State Proximity and Merging
	Introduction
	System Model
	Conservative Verification Using Merging
	Bounded-Time Safety Verification Algorithm
	Ellipsoidal Sets for Affine Dynamics

	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

