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SML is a language for describing complexfinite state hardware 
controllers. I t  provides many of the standard control structures 
found in modern programming languages. The state tables pro- 
duced by the SML compiler can be used as input to a temporal 
logic model checker that can automatically determine whether a 
specification in the logic CTL is satisfied. We describe extensions 
to SML for the design of modular controllers. These extensions 
allow a compositional approach to model checking which can 
substantially reduce its complexity. To demonstrate our methods, 
we discuss the specification and verification of a simple CPU 
controller. 

The programming language, compositional state machine 
language (CSML), provides a concise notation for spec- 
ifying complicated hardware controllers [4]-[6]. It has 
many of the control structures found in modern imperative 
programming languages including a while statement, a 
conditional statement, a case statement, and a parallel 
execution statement. There is even a simple mechanism for 
declaring nonrecursive procedures. However, it differs from 
standard programming languages in two important respects. 
First, the passage of time is explicit in the semantics of 
CSML; like ESTEREL, CSML is based on a synchronous 
model of time. The actions of a program are presumed to 
be instantaneous, and time is measured by events external 
to the program. Second, all CSML programs are finite 
state, hence programs in CSML may be compiled into state 
transition tables that can be implemented in hardware as 
PAL’S, PLA’s, or ROM’s. In addition, the state transition 
tables can be used as input to a temporal logic verifier that 
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Fig. 1. Flowchart of the compositional model checking technique. 

allows various safety and liveness properties of programs 
to be verified automatically. 

The compilation of control programs into a state transi- 
tion tables is also useful for real-time systems since most 
of the computation is done at compile time, and programs 
can be implemented in hardware using standard, regular 
structures. A major disadvantage of this technique is the 
possibility of an explosion in the number of states of 
the controller. This problem typically occurs in controllers 
with several loosely coupled parallel processes, where the 
number of reachable states is exponential in the number of 
processes. The problem can be at least partially avoided by 
writing programs in a compositional or hierarchical manner. 
Use of such design techniques results in an implementation 
composed of a number of relatively small state machines 
and may allow automatic verification with respect to a 
reduced model. 

Figure 1 illustrates the process of implementing and 
verifying a controller. The CSML compiler generates state 
tables for a collection of modules (Moore machines) that 
can be implemented directly in hardware. The modules can 
also be composed to generate a global state table. Using 
a theorem called the interface rule, the state explosion 
involved in this composition can be reduced by first hiding 
some signals, and then minimizing the modules. This 
results in a reduced global state table which preserves 
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the truth value of a subset of formulas in the temporal 
logic CTL. The specification of the program in CTL is 
then verified with respect to this reduced model, using 
an efficient model checking algorithm [2], [9]. If any 
formula in the specification is false, the model checking 
program will generate an execution trace (provided such a 
trace exists) that is a counterexample to the formula. The 
counterexample trace is generally quite useful for finding 
and fixing errors in the controller. 

Effective use of these compositional techniques requires 
a design style with well defined interfaces that hide the 
underlying complexity of subsystems. To illustrate this 
design style, and the compositional model checking method, 
we describe the design and verification of the controller for 
a simple CPU with decoupled access and execution units. 
We show how the controller can be implemented in CSML 
and provide a formal specification in CTL of one of the two 
modules. We then demonstrate how to apply the interface 
rule to reduce the complexity of automatically verifying 
this specification. In this example, using the interface rule 
reduces the number of states by approximately a factor of 6. 

Section I of this paper introduces the logic CTL and the 
interface rule. The SML language on which CSML is based 
is described briefly in Section 11, and the CSML dialect 
is covered in Section 111. Finally, Section IV discusses 
the CPU example and the results of the model checking 
procedure. 

I. THE LOGIC 
The logic we use for formal specification is a branching- 

time temporal logic called CTL [8]. Formulas in CTL 
are built from atomic propositions (the signals of the 
system), boolean connectives (A, V, + and -) and temporal 
operators which are used to specify timing relationships. 

We view each of the Moore machines produced by the 
CSML compiler as an infinite computation tree. Each node 
in the tree corresponds to a global state of the system from 
the Moore machine’s point of view, and hence consists of a 
state of the Moore machine and a valuation of the machine’s 
inputs. At the next clock event, the Moore machine will 
make a transition to a new state and the inputs may change 
to an arbitrary value. The new state of the Moore machine 
plus a new input valuation represents a possible successor 
state in the computation tree. An infinite sequence of nodes, 
each a successor of the previous one, is called a path. 
Each path represents a possible computation of the system 
starting from some initial state. We will also refer to nodes 
in the tree as states. 

Each temporal operator in our logic consists of a path 
quantifier (V or 3) and a modality ( F ,  G ,  X ,  U ,  or W).  
The modality specifies a temporal property of paths, while 
the quantifier specifies that the property must hold for all 
paths or for some path beginning with a given state. The 
following are the modalities we can specify in CTL. 

1) Fp means that cp is true at some point in the future. 
2) G p  means that cp holds in the present and at all points 

in the future. 

Q GP Q FP 

Fig. 2. Basic temporal operators. 

3) X p  means that p is true at the next state. 
4) pU$ means that $ holds at some point in the future, 

5 )  pW$ means that either G p  is true or pU$ is true. 
Figure 2 shows two of the basic temporal operators, each 

with an example computation tree for which the operator is 
true. The solid nodes in the trees represent states where the 
atomic proposition p holds; in the open nodes, 1 p holds. 

The following two examples illustrate the expressive 
power of the logic. 

1) VG(req + V’Fack) specifies that along every path, 
if the signal req occurs, then eventually ack occurs 
also. 

2) VG(send --f V(sendL4 rcud)) states that along every 
path, if send occurs, then rcud must eventually occur 
and send must remain asserted until rcvd occurs. 

Given a finite state machine and a formula in a temporal 
logic, the model checking problem is to find all the states 
where the formula is true. Clarke et al. [9] give an effi- 
cient graph-traversal algorithm to solve the model checking 
problem for the logic CTL. For example, to determine if the 
formula V F p  is true in state s,  we search for an infinite path 
starting at s such that p is false at each state on the path. 
If no such path exists, the formula is true at s; otherwise it 
is false. In a finite Kripke structure, an infinite path from s 
along which p is false in every state exists only if there is a 
loop along which p is always false, and the loop is reachable 
from s via a path where p is always false. If such a loop 
exists, it can be found by computing the strongly connected 
components of the state graph after removing all of the 
states in which p is true. If there exists a strongly connected 
component in this graph reachable from s, then the formula 
V F p  is false, and we can exhibit a looping path which 
demonstrates that the formula is false. A counterexample 
path of this sort can be of help in locating the source of an 
error in a complex finite state system. 

The CTL model checker allows the specification of 
fairness constraints. A fairness constraint restricts the com- 
putation tree to those paths along which a certain formula 
holds infinitely often. This type of restriction is commonly 
used to represent assumptions about fair scheduling in a 
concurrent system. For example, to prove that a process 
eventually terminates assuming it is allowed access to some 
resource infinitely often, we would use a fairness constraint. 

We deal with the state explosion in concurrent systems 
using the interface rule to reduce the number of states. 

and that until that point, cp is true. 
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Fig. 3. The interface rule. 

The idea is to form simple abstractions of the modules 
in the system and to use these abstractions when building 
a state graph for the model checker. Figure 3 illustrates 
the principle. In this figure, PI and P2 represent the 
components of the system we wish to reason about. The 
components are connected by a set of signals S.  Suppose 
we want to determine whether P2 in the context of the entire 
system satisfies some property. In order to do this, we could 
compose P2 in parallel with the environment PI ,  but this 
may result in a model with a very large number of states. 
Instead, we consider how P2 interacts with the environment. 
Intuitively, since Pz can only observe the environment via 
the signals in S ,  replacing PI with any process A1 which 
is equivalent to PI with respect to the signals in S will 
result in equivalent observable behavior of P2. If A1 is 
smaller than PI ,  we have reduced the complexity of the 
verification problem. 

The interface rule formalizes the above line of reasoning. 
To use the interface rule, the state machine A1 must 
be equivalent (E) to PI on S in an appropriate sense, 
which preserves the truth value of logical formulas in the 
composition. For the logic CTL and systems composed of 
Moore machines, the ordinary notion of Moore machine 
equivalence is sufficient [ 101. In the verification process, 
when we want to verify that P2 in the system satisfies a 
property, we will take PI and hide all its outputs except 
for those in S. We then apply the standard Moore machine 
minimization algorithm to obtain Al. After composing A1 
and P2 and checking the desired property, we use the 
interface rule. This rule states that i f  1) PI Al on the set 
5’; 2) cp is a CTL formula whose atomic propositions denote 
signals of P2; and 3) cp is true in A1 1) P2 (the composition 
of A1 and P2), then cp is true in PI llP2. In a loosely coupled 
system, A1 will almost always have far fewer states than 
PI, and thus AlllP2 will be much smaller than PlI(P2. 

11. THE SML PROGRAMMING LANGUAGE 
Since the SML language forms the basis of our new 

compositional language, we give a brief and informal 
description of it here. A full description is contained in 
[3],  [4]. Other state machine languages are described in 
[l], [ll], [15], (161. Although SML was developed for 
specifying complicated finite state machines, it has many 
of the standard control structures found in modern impera- 
tive programming languages, including a while statement, 
a conditional, a case statment, and a parallel execution 

statement. There is even a simple mechanism for declaring 
nonrecursive procedures. However, the only data types 
allowed are booleans and fixed width integers. Thus any 
program written in SML has only a finite number of states 
and can be compiled into a finite state transition table. 

All SML programs represent synchronous circuits. At a 
clock transition, the program examines its input signals and 
changes its internal state and output signals accordingly. 
Since we are dealing with digital circuits, the basic data 
type is boolean. Each boolean variable may be declared to 
be either: 1) an input changed only by the external world 
but visible to the program; 2) an output changed only by the 
program but visible to the external world, or 3) an internal 
variable changed and seen only by the program. Internal 
nonnegative integer variables are also provided but are not 
discussed in this brief survey of the language. 

Since SML programs are intended to be compiled into 
synchronous finite state machines, the semantics of SML 
must specify not only what each statement does, but how 
long the statement takes to execute. These semantics are 
based on the hardware implementation of a state machine. 
In such an implementation, combinational logic is used 
to compute the next state given the current state. At the 
next clock cycle, this new state becomes the current state 
and the process repeats. If the clock is slow enough, 
the combinational logic will always have time to settle. 
In this case, the state machine will operate exactly the 
same as an abstract machine in which the next state is 
computed instantaneously and in which changing state 
requires waiting for the next clock cycle. When an SML 
program is compiled into a finite state machine, the control 
constructs are what determine the next state; thus they 
correspond to combinational logic, and are assumed to 
execute in zero time. Assignment statements change the 
state, and are assumed to take one cycle. This is the basic 
idea behind the semantics of SML. Exact details on the 
timing for the individual statements will be described in 
the following. 

An SML program has the following form: 

program (identifier); 
(declaration list) 
{statement 1 is t) 

endprog 

where (identifier) is the name of the program, 
(declaration list) is a sequence of variable and 
procedure declarations separated by semicolons, and 
(statement list) is a sequence of statements sepa- 
rated by semicolons. 

Boolean input variables cannot be assigned new values, 
since inputs are changed by the environment only. Boolean 
output and boolean internal variables may be changed by: 

raise ( (variable) ) 
lower ( (variable) ) 
invert ( (variable) ) . 

Each of these statements delays until the next clock 
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transition, at which time the value of (variable) will be 
changed. The raise statement will assert (variable) 
(make it active), lower will negate it, and invert will 
force a change of value. 

There are two types of looping statements in SML: the 
while statement and the loop statement. The while 
statement has the following syntax: 

while (boolean expression) do loop 

endloop 
(statement) 

At the beginning of the while, the 
(boolean expression) is evaluated, and nothing is 
done (in zero time) if the expression is false. If it is true, 
(statement) is executed. If (statement) completes 
execution in no time, the while statement delays until 
the next clock transition and then restarts the loop. If 
(statement) completes execution after some delay, the 
while statement is immediately restarted. The exit 
statement is used to jump out of the smallest enclosing 
while or loop statement. We will not discuss the syntax 
and semantics of the loop statement, since its behavior is 
similar to the while statement. Neither will we discuss the 
conditional statement or the switch statement, as they are 
similar to constructs in common imperative programming 
languages. 

The parallel statement provides a form of syn- 
chronous parallelism. This statement has the form: 

parallel 
(statementl) 1 1  
(statement2) I (  

endparallel 

The statements in the parallel construct execute concur- 
rently in lockstep. The parallel terminates when all of 
the statements in the parallel have finished executing or 
a break is executed. The effect of the break statement is 
to immediately jump out of the smallest enclosing switch 
or parallel statement. One of the major uses of the 
break statement is to stop normal processing when an 
“interrupt” occurs. 

In some cases, the timing rules of SML prevent com- 
plicated relationships from being simply described without 
delaying for more than one clock cycle. To alleviate this 
problem, SML has a statement of the form: 

compress (statement) endcompress 

The effect of the compress statement is calculated as if 
variable assignment takes no time in (statement). Then, 
after delaying one clock cycle, any changes made by the 
compress statement actually take effect. As an example, 
consider the following program fragment. 

c ompr e s s 
x := (x+y)*(z-w); 
if (x < 5) then 

x := 0; 
endif 

endcompress 
Without the compress statement, the first assignment 

would take one unit of time, and if the condition in the if 
was true, another time step would be required to set x to 
zero. With the compress, only one time unit is required 
in either case. 

Although our description of the language has been quite 
brief, it should be sufficient to understand the example 
in the next section. The compilation of SML programs 
into Moore Machines is described in more detail in [4]. 
Considerable effort was spent in making the compiler as 
fast and efficient as possible, The state transition tables 
produced by the compiler may be implemented in hardware 
as PAL’S, PLA’s, or ROM’s. Various programs have been 
developed to make this last phase largely automatic. For 
example, a post-processor is available that produces output 
which is compatible with the Berkeley VLSI design tools. 

111. COMPOSITIONAL SML 
The semantics of an SML program is given operationally 

in terms of a Moore machine, which allows us to apply the 
CTL model checking algorithms to verify that a program 
satisfies a formula in CTL. However, the SML language 
lacks a notion of parallel composition that satisfies the 
conditions of the interface rule, and hence is unsuitable 
for compositional specification and verification techniques. 
To remedy this situation, we developed a strict extension of 
SML called CSML (for compositional SML). The seman- 
tics of a CSML program is given in terms of a collection 
of Moore machine modules which execute synchronously 
in parallel. The CSML compiler produces a separate state 
table for each of these modules. A parallel composition 
operator for Moore machines gives an equivalent semantics 
in terms of a single Moore machine. This operator, along 
with the standard definition of Moore machine equivalence, 
satisfies the conditions of the interface rule. This allows us 
to generate reduced interface processes by hiding appro- 
priate outputs and minimizing using the familiar Hopcroft 
algorithm [13]. The composition of these reduced machines 
is produced by a separate program, and is used as input to 
the CTL model checker. Meanwhile, the modules produced 
by the compiler can be input to design tools to be translated 
into various VLSI structures. 

Here we describe the two basic extensions to SML which 
comprise the CSML dialect. The formal definition of Moore 
machine composition which underlies these constructs is 
described in [lo], along with the proof that it satisfies 
the interface rule conditions. The CSML construct which 
corresponds to a Moore machine module is called a process. 
A process in CSML has the following syntax: 
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process (identifier) ; 
(declaration list) 
(statement list) or (process list) 

endproc 

If the process has an SML statement list as its body, 
these statements are compiled according to the usual SML 
semantics into a Moore machine state table. Otherwise, the 
meaning of the process statement is the parallel composition 
of its child processes. Variables of the parent process may 
be referenced by the child processes, provided they are 
declared as either inputs or outputs in the child process. 
Our definition of parallel composition requires that no two 
processes declare the same variable as an output, however. 
Also, by the definition of parallel composition, variables 
which are not declared as outputs by any process become 
external inputs to the program. The compiler generates a 
unique name for any variable declared internal to a process, 
based on the path to that process in the process hierarchy. 
In order to maintain strict upward compatibility with SML, 
the root process is defined with the program keyword. 

The other way in which CSML extends SML is the 
process type statement, which defines a reusable 

program prodcom; 
output produce,consume; 
internal req,ack; 

processtype Producer(request,ackouledge,produce); 
input request; 
output acknouledge=false,produce=false; 

whlle(!request) do loop skip endloop; 
raise(produce); lower(produce); 
raisefachowledge); 
while(request) do loop sklp endloop; 
loaer(achow1edge) 

loop 

endloop 
endtype 

processtype Consumer(achowledge,request,consume); 
input acknowledge; 
output request=false,consume=false; 
loop 
raise(request); 
while(!acknouledge) do loop sklp endloop; 
raise(consume) ; lower(consume) ; 
lower (request) ; 
while(acknow1edge) do loop skip endloop 

endloop 
endtype 

process producerl: Producer(req,ack,produce) ; 
process consumerl: Consumer(ack,req,consume); 

endprog 

process type. The process type statement may appear 
in the declaration list of a program or process, and has the 

Fig. 4. Producer-consumer program. 

following form: 

processtype (identifier) 
((formal parameter list)) ; 
(declaration list) 
(statement list) or (process list) 

endtype 

The formal parameters must be declared as inputs or outputs 
in the declaration list. Process type identifiers which are 
defined in this way may be referenced only in the lexical 
scope of the process in which they are defined. A process 
type is instantiated by a statement of the following form: 

process (process identifier) : 
(processtype identifier) 
((actual parameter list)) ; 

This creates a process by substituting the variables in the 
actual parameter list for variables in the formal parameter 
list of the process type declaration. Any other input or 
output variable names in the process type declaration are 
resolved in the context of the process-type definition. In 
other words, CSML variables are staticly scoped rather than 
dynamically scoped. The hierarchical renaming of variables 
implements this static scoping in a manner similar to the 
ALGOL 60 copy rule [14]. 

Figure 4 gives a simple example of a CSML program-a 
system composed of a producer process and a consumer 
process which synchronize using a four-phase handshake. 
A process type is defined in the main program for producer 
and consumer. The handshake signals exchanged between 
the two processes are defined as internal variables in the 

main program, and two control outputs produce and 
consume are also defined. The producer process waits 
for the consumer to assert its request input. It then 
pulses produce and completes the handshake by asserting 
acknowledge, waiting for request to be negated, then 
negating acknowledge. The consumer process asserts 
request then waits for acknowledge to be asserted, 
pulses consume, and completes the handshake. Both these 
process types are instantiated in the body of the main 
program as producerl and consumerl. 

IV. APPLICATION: A SIMPLE CPU 
To illustrate to the use of CSML and compositional 

methods in designing and verifying controllers, we examine 
the controller of a simple CPU, with decoupled access 
and execution units. We define one CSML process to 
control the access unit, and another process to control 
the execution unit. We then use the interface rule and 
the Hopcroft minimization algorithm to produce a reduced 
interface process to represent the execution unit process. 
We use this interface process to verify a collection of CTL 
formulas which comprise the formal specification of the 
access unit controller. 

A .  Architectural Description 

A block diagram of the CPU is given in Fig. 5.  The CPU 
is divided into two modules, the access unit (AU) and the 
execution unit (EU), in order to increase its performance by 
carrying out memory accesses and instruction executions in 
parallel. The AU’s function is to fetch instructions and store 
them in the instruction queue (IQ), and to maintain a cache 
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Table 1 Access Unit Control Signals 

Signal Function 

fetch PC t PC + 1 ( f e t c h  = 
f e t ch  - Tcq A f e t c h  - T d y )  

PC-MAB 

PC-IDB 

branch PC t I D B  

M A B  (memory address bus) c PC 

I D B  (internal data bus) t PC 

push SP t SP - 1 ( p u s h  = 
p I L A ~  - rcq  A p u s h  - r d y )  

POP 
Fig. 5. CPU block diagram. 

SP t SP + 1 ( p o p  = 
p o p  - req A p o p  - ~ d y )  

of the top location of the stack in a special top-of-stack 
register (TS). The EU’s function is to interpret instructions 
of the CPU’s stack based machine code. 

The instruction set has two addressing modes: stack and 
immediate, and three basic classes of instructions: control, 
one-operand, and two-operand. Instructions that take one 
operand specify an addressing mode for both source and 
destination. Instructions that take two operands specify both 
source addressing modes, and use stack mode implicitly for 
the destination. The control instructions (branch, call, and 
return) specify one of eight conditions codes and select 
either direct or program counter relative addressing. 

The access unit has four registers: the program counter 
(PC), the stack pointer (SP), the instruction queue (IQ), 
which can hold two instruction words, and the top-of-stack 
register (TS) (see Fig. 5). The PC is equipped with an 
incrementer, and the SP with an incrementeddecrementer. 
The signals generated by the AU controller and their RTL 
functions are summarized in Table 1. These definitions will 
be of interest later when we discuss the formal specification 
of the controller. 

The execution unit has two operand registers (OPR1 
and OPR2), an instruction register (IR), a condition code 
register (CCR), and an ALU. There is an internal data bus 
(IDB) by which data are communicated between the EU 
and AU. The function of the ALU and the signals which 
control the execution unit data path will not be described 
here for the sake of brevity. 

The access and execute unit controllers communicate via 
three request signals, push-req, pop-req and fetch-req, three 
corresponding ready signals, push-rdy, pop-rdy and fetch- 
rdy, as well as the signal branch, which causes the PC 
to be loaded and the instruction queue to be flushed. The 
execution unit signals its intention to perform a push, pop 
or (instruction) fetch operation by asserting the appropriate 
request signal. If the ready signal is already asserted it 
proceeds, otherwise it waits for the ready signal to be 
asserted. 

The AU communicates with memory via two buses, the 
memory data bus (MDB) and the memory address bus 
(MAB), and via three control signals: mem-rd, mem-wr and 
mem-ack. The protocol for a memory access is as follows. 

M A B  t SP SP-MAB 

MDB-IQ IQ t M D B  

IQ-IDB I D B  +- IQ 

TS-MDB M D B  t TS 

TS-IDB I D B  + TS 

MDB-TS TS t M D B  

IDB-TS T S  t I D B  

The AU first asserts one of the memory control signals 
(mem-rd for a read, and mem-wr for a write), and causes 
the appropriate address to be driven onto the MAB (using 
signals PC-MAB or SP-MAB). On a write, the AU drives 
the MDB (using the signal TS-MDB). On a read, it loads the 
MDB data into one of its registers (using signals MDB-ZQ 
or MDB-TS). It then waits for mem-ack to be asserted by 
the memory system, at which time it completes the access 
by lowering its control signals. 

B. Implementing the Controllers 
In this section, we give an informal specification of the 

access unit controller and describe some of the CSML code. 
The AU controller has two functions, which it performs 
conceptually in parallel: the management of the instruction 
queue and the management of the top-of-stack cache. We 
will examine the latter function in some detail. We distin- 
guish three states of the TS register: INVALID, VALID, 
and MODIFIED. The TS is in the VALID state when its 
contents match the value in memory pointed to by the SP; 
it is MODIFIED when the TS has been written, but the 
contents have not yet been copied back to memory, and it 
is INVALID otherwise. In particular, the AU is not ready 
for a push operation when the TS is MODIFIED, because 
previously pushed data would be lost, and it is not ready for 
a pop operation when the TS is INVALID, because incorrect 
data would be read. Figure 6 gives an abstract state diagram 
which defines the effects of the AU controller operations 
on the TS register state. This serves as our model of the 
data path when designing the controller. The CSML code 
in Fig. 7 computes the status of the TS and stores it in a 

1288 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991 



TS-loa VALID 

Fig. 6. TS manager state diagram 

loop 
compress 

switch 
case push: 

louer(push-rdy); raise(pop-rdy); 
TS-st :=  MODIFIED, break; 

lower(pop-rdy) ; raise(push-rdy) ; 
TS-st :=  INVALID; break; 

case pop: 

case TS-load-done: 
case TS-store-done: 

raise(push-rdy) ; raise(pop-rdy) ; 
TS-st : =  VALID; break; 

default: skip; 
endswitch 

endcompress 
endloop 

Fig. 7. Code for TS manager. 

variable called TS-st. It also manages the outputs push-  
r d y  and pop-rdy  which signal to the EU that the TS 
register is ready for a push or pop operation, respectively. 

In its other capacity as instruction queue manager, the 
AU controller must simultaneously keep track of the status 
of the IQ register, fetching a new instruction word when the 
IQ becomes empty, and flushing the queue when a branch 
occurs. We will not discuss this function in detail. 

Finally, a third parallel thread of control, which acts like 
a monitor, insures that the TS manager and IQ manager 
do not attempt to access memory at the same time. The 
monitor thread waits in a loop for either the IQ to become 
EMPTY, or the TS to become MODIFIED or INVALID. 
It then performs the appropriate memory access: ZQ-load, 
TS-load, or TS-store, respectively. The CSML code appears 
in Fig. 8. Note that when the TS register is in the INVALID 
state, we allow a push request to take priority over a TS- 
load operation (line *), but once the TS-load operation is 
started, we lower push- rdy  to prevent push operations 
from interfering with the memory cycle (line **). A 
corresponding relationship exists between TS-store and pop. 

The routine read  takes as its arguments a control signal 
to drive the MAB bus, and a control signal to load the IQ 
or TS registers. It is defined in Fig. 9. When read  is called 
inside a compress statement, only the while loop actually 
takes time. 

The overall structure of the AU controller code is a three- 
way p a r a l l e l  statement as shown in Fig. 10. The job of 
the execution unit is more straightforward. It has only one 

loop 
switch 
case IQ.st == EMPTY: 
compress read(PC-MAB,HDB-IQ) endcompress; 
break; 

* case TS.st == INVALID R 'push-req: 
**  compress louer(push-rdy); read(SP-MAB,MDB-TS) endcompress; 

break; 

compress lover(pop-rdy); write(SP-MAB,TS-MDB) endcompress 
break; 

case TS.st == MODIFIED R 'pop-req: 

default: skip; 
endswitch 

endloop 

Fig. 8. Code for memory access monitor. 

procedure read(addrct1,datactl) 
raise(mem-rd) ; raise(addrct.1) ; raise(datact1) ; 
while !mem-ack do loop skip endloop; 
lover(mem-rd) ; lower(addrct1) ; lower(datact1) ; 

endproc; 

Fig. 9. Routine read. 

process AU; 
. . .  declarations . . .  
. . .  procedures . _ .  
parallel 
. . .  memory access monitor 
I I  
. . . TS manager . . . 
I I  
. . . IQ manager . . . 

endparallel 
end proc 

Fig. 10. Overall structure of AU controller code. 

thread of control, and proceeds as follows. It first loads an 
instruction from the IQ into the IR (i.e., performs a fetch 
operation). It then decodes the instruction and jumps to an 
appropriate routine to interpret that instruction. When the 
instruction is completed, it starts again. When compiled, 
the AU and EU controller processes have 13 and 98 states, 
respectively. 

C. Formal Specification for the Access Unit 
In this section we present a formal CTL specification of 

the access unit controller process. Before proceeding we de- 
fine a few predicates which will simplify the specifications 
and the following discussion: 

p u s h  
p o p  = 

TS- load  

TS-s tore  
TS- s tore -done  

TS- load-done  = 

p u s h - r e q  A p u s h - r d y  
p o p - r e q  A p o p - r d y  

mem-rd A SP-MAB A MDB-TS 
TS- load  A mem-ack 
mem-wr A SP-MAB A TS-MDB 
TS-store A mem-ack. 

The predicate push indicates that a data word is being 
pushed onto the stack from the internal data bus. Likewise, 
pop indicates that a data word is being popped off the stack. 
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TS-load is true when a memory cycle is in progress which 
is loading the TS. It indicates that the stack pointer contents 
are being driven onto the memory address bus (SP-MAB), 
and that the data on the memory data bus is being gated 
into the TS register (MDB-TS). TS-load-done is true on the 
last clock cycle of such a memory cycle (when mem-ack 
is asserted). In a similar fashion, TS-store is true when a 
memory cycle is in progress which is storing the TS value 
into memory, and TS-store-done indicates the last clock 
cycle of the TS store operation. 

The conditions for correct management of the TS man- 
ager are derived from the state transition diagram of Fig. 6. 
If the TS is in the VALID state, any of the operations push, 
pop, TS-load and TS-store are allowable (the latter two are 
not present in the diagram, but executing them in this state 
will cause no harm, since the memory contents match the 
TS register). In the MODIFIED state, however, we cannot 
allow another push operation, or a TS-load operation to 
occur before either a pop or TS-store is completed. This 
condition is expressed by the following formula: 

M O D I F I E D  =V[l(push V TS - load) 
. W(pop V TS - store - done]. 

Since the MODIFIED state is entered if and only if a push 
operation occurs, we specify the following formula: 

V G ( p ~ s h  -+ ~ ~ ( M O D I F I E D ) )  

In the INVALID state, pop or TS-store must not occur 
before either a push or TS-load is completed. We express 
this condition in CTL as 

I N V A L I D  =V[l(pop V TS - store) 
. W (  TS - load - done V push] 

Since the INVALID state is entered if and only if a pop 
operation occurs, we specify the following: 

Of course, we also require that the TS manager not 
spuriously drive the MAB or MDB buses or overwrite the 
TS register: 

VG(MDB - TS -+ TS - load), 
VG( TS - MDB -+ TS - store), 

The first of these, for example, states that the top-of-stack 
register is loaded from the memory data bus only during a 
TS-load operation. 

In order for stack memory cycles to operate correctly, we 
have the following requirements. First, the address, data and 
control signals must remain stable during an entire memory 
cycle. This means that, if a TS-load or TS-store condition 
occurs, that condition must persist up to and including 
the clock cycle when mem-ack is asserted by the memory 
system. Further, as the address must not change during a 
memory cycle, we require that the stack pointer not change 

during TS-load and TS-store cycles. These requirements are 
expressed in the following formulas: 

V(( TS - 1oadA ,(push V pop)) W T S  - load - done) 

VG TS - store -+ ( 
V(( TS - storeA ,(push V pop)) W TS - store - done) 

Six more formulas, which we omit here, define correct 
management of the instruction queue. The following two 
formulas state that no spurious memory accesses occur. 

VG(mem - wr -+ TS - store) ,  

m e m  - rd -+ ( T S  - load V IQ - load) 

All of the above formulas represent safety properties, i.e., 
they are characterized by the statement “nothing bad ever 
happens.” Unfortunately, they cannot form a complete spec- 
ification, since a controller which did nothing at all would 
satisfy all of the above assertions. Thus we include the 
following liveness requirement, which states, in effect, that 
the CPU always eventually executes another instruction: 

’dGVF.fetch. 

D. Summary of Model Checking Results 
Finally, we describe the application of the CTL model 

checker to automatically verify that our controller meets the 
above specification. Compiling the CSML code produces a 
file with state tables for two Moore machines, representing 
the AU and EU controllers. The AU controller has 13 states, 
while the EU controller has 98 states. If we computed the 
parallel composition of the two machines at this stage, 
the result would have 1274 states. Instead, we apply the 
interface rule. Because the specification concerns only the 
inputs and outputs of the AU controller, we can restrict 
the EU controller to those signals which interface with the 
AU controller. This means hiding the outputs which control 
the EU data path. We then minimize the EU controller, 
obtaining an equivalent interface process with only 17 
states. Finally, we compute the composition of the AU 
module with this interface process, plus a two state interface 
process representing the memory system, obtaining a Moore 
machine with 196 states. This is the machine that we use as 
input to the CTL model checker to verify the specification. 

A sample run of the model checker is depicted in 
Fig. 11. The first input to the model checker is a set of 
fairness constraints, which allow the user to specify which 
computation paths are considered to be fair executions. 
In this case, we consider an execution to be fair if the 
memory system eventually produces an acknowledge signal 
for every request. The fairness constraint is that infinitely 
often, either the AU controller is not asserting a request, or 
the memory system is asserting acknowledge. After reading 
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7, mcb -c  cpu.fsm 
CTL MODEL CHECKER (vers ion  Bl .0)  

F a i r n e s s  c o n s t r a i n t :  mem-ack I *(mem_rdlmem-ar). 
Fa i rness  c o n s t r a i n t :  

I =  p u s h 0  := push-req P push-rdy. 
Macro push def ined .  

I= MODIFIED0 := (-(push I TS-load)) Ah' (pop I TS-store-done) 
Macro MODIFIED def ined .  

I= I N V A L I D 0  := (-(pop 1 TS-store)) Ah'  (push I TS-load-done). 
Macro INVALID def ined .  

I= AG (push -> AX MODIFIED). 
The formula i s  TRUE. 

I =  A G  (pop -> AX INVALID) 
The formula i s  TRUE. 

I= AG AF f e t c h .  
The formula i s  TRUE. 

I =  AG (push -> AX MODIFIED). 
The formula i s  FALSE. 
Do you want t o  spec i fy  t h e  input i n  t h e  i n i t i a l  s t a t e ?  tnl 
S t a t e  0-0: push-rdy 
S t a t e  1-4096: fe tch- req  push-rdy mem-rd M D B - I Q  PC-HAB 
S t a t e  2-0: fe tch- req  mem-ack push-rdy mem-rd MDB-IQ PC-MAB 
S t a t e  3-4096: fetch-req push-rdy fetch-rdy 
S t a t e  5-0: fetch-rdy mem-rd MDB-TS SP-MAB 
S t a t e  33-4097: pc0 fetch-req fetch-rdy mem-rd MDB-TS SP-MAB 
S t a t e  62-40: exeu-ir2 exeu-ir4 mem-ack mem-rd MDB-TIS SP-MAB 
S t a t e  94-0: push-req pop-rdy push-rdy 
S t a t e  121-0: pop-rdy mem-rd MDB-IQ PC.MAB 
S t a t e  121-4096: pop-rdy mem-rd MDB-IQ PC-MAB 
S t a t e  120-0: mem-ack pop-rdy mem-rd MDB-IQ PC-MAB 
S t a t e  123-4096: pop-rdy fetch-rdy 
S t a t e  135-4096: branch fetch-rdy mem-wr MDB-TS SP-MAB 
S t a t e  141-0: mem-ack mem-ar MDB-TS SP-MAB 
S t a t e  39-4096: fe tch- req  pop-rdy push-rdy 
S t a t e  71-4096: fe tch- req  pop-rdy push-rdy mem-rd MDB-IQ PC-MAB 
S t a t e  113-0: fe tch- req  mem-ack pop-rdy push-rdy mem-rd MDB-IQ PC-MAB 
S t a t e  88-4096: fetch-req pop-rdy push-rdy fetch-rdy 
S t a t e  57-4096: pop-rdy push-rdy fetch-rdy 
S t a t e  89-4097: pc0 fe tch- req  pop-rdy push-rdy fetch-rdy 
S t a t e  60-40: exeu-ir2 exeu-ir4 pop-rdy push-rdy 
S t a t e  90-0: push-req pop-rdy push-rdy mem-rd MDB-IQ PC-MAE 

Fig. 12. A bug found by the model checker. 
Fig. 11. Sample model checking session. 

in the fairness constraints, the model checker is ready to 
accept macro definitions and CTL formulas to check. For 
each CTL formula, the model checker determines whether 
the formula is true or false in the model, and also produces 
a counterexample for formulas which are false. In fact, in 
the original version of the controller, there were two bugs 
in the design which were pointed out by the model checker. 
The first was that, during a branch, the EU controller did 
not check to make sure that a IQ-load operation was not in 
progress before modifying the PC. This caused the address 
on the MAB to change during a memory cycle. The second 
bug was that the TS-store code in the memory access loop 
incorrectly asserted MDB-TS instead of TS-MDB. Figure 12 
shows the counterexample produced by the model checker 
which pointed out this error. The total time to verify the 
16 formulas of the AU specification on the (corrected and 
reduced) 196 state model was 36 seconds, running on a 
Sun-3 workstation. 

Using the interface rule, we are able to reduce a 1274 
state model of the controller to a 196 state model which is 
equivalent with respect to all CTL formulas over the inputs 
and outputs of the AU controller. This amount of reduction 
is largely due to the nature of the interface between EU 
and the AU. While the EU interprets a large number of 
instructions, the memory accesses for these instructions 
fall into a few basic patterns. For this reason, very little 
of the complexity of the EU is observable via the signals 
connecting it to the AU, thus the EU controller reduces 
to a very simple interface process. This might be viewed . 
as a principle of good interface design: that interfaces 
should reveal as little of the complexity of the underlying 
modules as possible. Design according to this principle will 
reduce the global effects of local changes in the design, and 
simplify the verification process. The interface rule provides 
a way of quantifying this effect in terms of the number of 
states in the interface processes. 

V. FUTURE DIRECTIONS AND CONCLUSIONS 
We should point out that the task of verifying the CPU 

does not end with the verification of the controllers. It is 
necessary, of course, to provide a formal specification of 
the CPU as a whole, and to prove on the basis of the 
controller specification and a formal model of the data path 
circuitry that the CPU specification is valid. The techniques 
described here are not sufficient to do this in an automated 
way, because of the very large state space of the data path 
part of the system. A technique called symbolic model 
checking, which uses Boolean decision diagrams [7] might 
be used for this purpose. Another approach to this problem 
might be to integrate the CTL model checker with an 
automatic theorem prover (or proof checker), which could 
perform the final step. We leave the problem of integrating 
control and data as an open one here, and an area for future 
research. 

Even with the module feature, CSML has some limita- 
tions. Perhaps the most difficult issue is how to deal with 
nondeterminism. Currently, SML processes are completely 
synchronous and deterministic. In practice, however, it is 
important to be able to reason about processes that run 
on different clocks or execute asynchronously. Another 
important use of nondeterministic processes is to form an 
abstract representation of a class of deterministic machines. 
Such a process can be used to prove properties of the 
entire class, often with greatly reduced complexity [13]. 
More research is needed to handle this problem within our 
current framework. 

Clearly, the CPU design presented here was not intended 
to be a practical one. From a practical point of view, 
however, at least one criticism of CSML should be made. 
The Moore-machine semantics of CSML (and its predeces- 
sor SML) require that raising or lowering a signal always 
involves one clock cycle of delay. As an example, in 
the instruction fetch routine of the EU, one clock cycle 
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is simply wasted in order to raise the signal fetch-reg. 
This same consideration also made it necessary to use 
“ready” signals (essentially a preacknowledge), since it is 
not possible to respond to a request with an acknowledge in 
the same clock cycle. One advantage of the Moore-machine 
semantics is that all signals between modules effectively 
pass through a pipeline register. This means that critical 
path timing of modules can be verified independently. 
Nonetheless, a language with Mealy machine semantics 
might be more useful for practical designs. 

Finally, additional research is needed on techniques for 
compositional reasoning about SML processes. The inter- 
face rule handles formulas that are boolean combinations of 
temporal properties of the individual processes. We are cur- 
rently unable to handle more general properties involving 
temporal assertions about several processes. Furthermore, in 
some verification problems it may be necessary to combine 
the use of the interface rule with proofs of validity for 
certain CTL formulas. In general, such proofs require a 
complex decision procedure. We believe, however, that it 
will be possible to use the model checker to verify temporal 
formulas over complex models, which can then be used as 
lemmas in simple hand-constructed proofs, which might be 
checked automatically. 

As we have seen, the technique of compiling reactive 
control programs into state transition tables need not suffer 
from the state explosion problem, provided compositional 
techniques are used. Dividing such a system into communi- 
cating modules can also reduce the complexity of automatic 
verification, provided the interfaces between modules hide 
most of their internal complexity. Although we applied the 
technique to a hardware example, the same tools can be 
applied to reactive software systems as well, provided some 
portion of the system involves finite state control. Driving 
the system from the state tables produced by the CSML 
compiler would not only increase the performance of the 
system, but would also allow some properties of the system 
to be verified automatically. 
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