
A Language for Compositional Specification and
Verification of Finite State Hardware Controllers
EDMUND M. CLARKE, JR., DAVID E. LONG, AND KENNETH L. McMILLAN

Invited Paper

SML is a language for describing complexfinite state hardware
controllers. I t provides many of the standard control structures
found in modern programming languages. The state tables pro-
duced by the SML compiler can be used as input to a temporal
logic model checker that can automatically determine whether a
specification in the logic CTL is satisfied. We describe extensions
to SML for the design of modular controllers. These extensions
allow a compositional approach to model checking which can
substantially reduce its complexity. To demonstrate our methods,
we discuss the specification and verification of a simple CPU
controller.

The programming language, compositional state machine
language (CSML), provides a concise notation for spec-
ifying complicated hardware controllers [4]-[6]. It has
many of the control structures found in modern imperative
programming languages including a while statement, a
conditional statement, a case statement, and a parallel
execution statement. There is even a simple mechanism for
declaring nonrecursive procedures. However, it differs from
standard programming languages in two important respects.
First, the passage of time is explicit in the semantics of
CSML; like ESTEREL, CSML is based on a synchronous
model of time. The actions of a program are presumed to
be instantaneous, and time is measured by events external
to the program. Second, all CSML programs are finite
state, hence programs in CSML may be compiled into state
transition tables that can be implemented in hardware as
PAL’S, PLA’s, or ROM’s. In addition, the state transition
tables can be used as input to a temporal logic verifier that

Manuscript received November 19, 1990; revised February 27,
1991. This work was supported in part by the Defense Advanced
Research Projects Agency, ARPA Order 4976, Amendment 20, under
Contract F33615-87-C-1499, monitored by the Avionics Laboratory, Air
Force Wright Aeronautical Laboratories, Aeronoautical Systems Division
(AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio, and in part by
the National Science Foundation under Contract CCR-8722633. D. E.
Long was supported by an NSF graduate fellowship. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.

The authors are with the School of Computer Science, Carnegie Mellon
University. Pittsburgh, PA 15213.

IEEE Log Number 9102299.

implementation specification

P
i

interface model
rule checker

tools 9 hardware

counterexamples

Fig. 1. Flowchart of the compositional model checking technique.

allows various safety and liveness properties of programs
to be verified automatically.

The compilation of control programs into a state transi-
tion tables is also useful for real-time systems since most
of the computation is done at compile time, and programs
can be implemented in hardware using standard, regular
structures. A major disadvantage of this technique is the
possibility of an explosion in the number of states of
the controller. This problem typically occurs in controllers
with several loosely coupled parallel processes, where the
number of reachable states is exponential in the number of
processes. The problem can be at least partially avoided by
writing programs in a compositional or hierarchical manner.
Use of such design techniques results in an implementation
composed of a number of relatively small state machines
and may allow automatic verification with respect to a
reduced model.

Figure 1 illustrates the process of implementing and
verifying a controller. The CSML compiler generates state
tables for a collection of modules (Moore machines) that
can be implemented directly in hardware. The modules can
also be composed to generate a global state table. Using
a theorem called the interface rule, the state explosion
involved in this composition can be reduced by first hiding
some signals, and then minimizing the modules. This
results in a reduced global state table which preserves

0018-9219/91$01.00 0 1991 IEEE

PROCEEDINGS OF THE IEEE, VOL 7Y. NO. 9, SEPTEMBER 1941 1283

~-

the truth value of a subset of formulas in the temporal
logic CTL. The specification of the program in CTL is
then verified with respect to this reduced model, using
an efficient model checking algorithm [2], [9]. If any
formula in the specification is false, the model checking
program will generate an execution trace (provided such a
trace exists) that is a counterexample to the formula. The
counterexample trace is generally quite useful for finding
and fixing errors in the controller.

Effective use of these compositional techniques requires
a design style with well defined interfaces that hide the
underlying complexity of subsystems. To illustrate this
design style, and the compositional model checking method,
we describe the design and verification of the controller for
a simple CPU with decoupled access and execution units.
We show how the controller can be implemented in CSML
and provide a formal specification in CTL of one of the two
modules. We then demonstrate how to apply the interface
rule to reduce the complexity of automatically verifying
this specification. In this example, using the interface rule
reduces the number of states by approximately a factor of 6.

Section I of this paper introduces the logic CTL and the
interface rule. The SML language on which CSML is based
is described briefly in Section 11, and the CSML dialect
is covered in Section 111. Finally, Section IV discusses
the CPU example and the results of the model checking
procedure.

I. THE LOGIC
The logic we use for formal specification is a branching-

time temporal logic called CTL [8]. Formulas in CTL
are built from atomic propositions (the signals of the
system), boolean connectives (A, V, + and -) and temporal
operators which are used to specify timing relationships.

We view each of the Moore machines produced by the
CSML compiler as an infinite computation tree. Each node
in the tree corresponds to a global state of the system from
the Moore machine’s point of view, and hence consists of a
state of the Moore machine and a valuation of the machine’s
inputs. At the next clock event, the Moore machine will
make a transition to a new state and the inputs may change
to an arbitrary value. The new state of the Moore machine
plus a new input valuation represents a possible successor
state in the computation tree. An infinite sequence of nodes,
each a successor of the previous one, is called a path.
Each path represents a possible computation of the system
starting from some initial state. We will also refer to nodes
in the tree as states.

Each temporal operator in our logic consists of a path
quantifier (V or 3) and a modality (F , G , X , U , or W).
The modality specifies a temporal property of paths, while
the quantifier specifies that the property must hold for all
paths or for some path beginning with a given state. The
following are the modalities we can specify in CTL.

1) Fp means that cp is true at some point in the future.
2) G p means that cp holds in the present and at all points

in the future.

Q GP Q FP

Fig. 2. Basic temporal operators.

3) X p means that p is true at the next state.
4) pU$ means that $ holds at some point in the future,

5) pW$ means that either G p is true or pU$ is true.
Figure 2 shows two of the basic temporal operators, each

with an example computation tree for which the operator is
true. The solid nodes in the trees represent states where the
atomic proposition p holds; in the open nodes, 1 p holds.

The following two examples illustrate the expressive
power of the logic.

1) VG(req + V’Fack) specifies that along every path,
if the signal req occurs, then eventually ack occurs
also.

2) VG(send --f V(sendL4 rcud)) states that along every
path, if send occurs, then rcud must eventually occur
and send must remain asserted until rcvd occurs.

Given a finite state machine and a formula in a temporal
logic, the model checking problem is to find all the states
where the formula is true. Clarke et al. [9] give an effi-
cient graph-traversal algorithm to solve the model checking
problem for the logic CTL. For example, to determine if the
formula V F p is true in state s, we search for an infinite path
starting at s such that p is false at each state on the path.
If no such path exists, the formula is true at s; otherwise it
is false. In a finite Kripke structure, an infinite path from s
along which p is false in every state exists only if there is a
loop along which p is always false, and the loop is reachable
from s via a path where p is always false. If such a loop
exists, it can be found by computing the strongly connected
components of the state graph after removing all of the
states in which p is true. If there exists a strongly connected
component in this graph reachable from s, then the formula
V F p is false, and we can exhibit a looping path which
demonstrates that the formula is false. A counterexample
path of this sort can be of help in locating the source of an
error in a complex finite state system.

The CTL model checker allows the specification of
fairness constraints. A fairness constraint restricts the com-
putation tree to those paths along which a certain formula
holds infinitely often. This type of restriction is commonly
used to represent assumptions about fair scheduling in a
concurrent system. For example, to prove that a process
eventually terminates assuming it is allowed access to some
resource infinitely often, we would use a fairness constraint.

We deal with the state explosion in concurrent systems
using the interface rule to reduce the number of states.

and that until that point, cp is true.

1284 PROCEEDINGS OF THE IEEE. VOL. 79, NO 9, SEPTEMBER 1991

0 0
Fig. 3. The interface rule.

The idea is to form simple abstractions of the modules
in the system and to use these abstractions when building
a state graph for the model checker. Figure 3 illustrates
the principle. In this figure, PI and P2 represent the
components of the system we wish to reason about. The
components are connected by a set of signals S. Suppose
we want to determine whether P2 in the context of the entire
system satisfies some property. In order to do this, we could
compose P2 in parallel with the environment PI , but this
may result in a model with a very large number of states.
Instead, we consider how P2 interacts with the environment.
Intuitively, since Pz can only observe the environment via
the signals in S , replacing PI with any process A1 which
is equivalent to PI with respect to the signals in S will
result in equivalent observable behavior of P2. If A1 is
smaller than PI , we have reduced the complexity of the
verification problem.

The interface rule formalizes the above line of reasoning.
To use the interface rule, the state machine A1 must
be equivalent (E) to PI on S in an appropriate sense,
which preserves the truth value of logical formulas in the
composition. For the logic CTL and systems composed of
Moore machines, the ordinary notion of Moore machine
equivalence is sufficient [101. In the verification process,
when we want to verify that P2 in the system satisfies a
property, we will take PI and hide all its outputs except
for those in S. We then apply the standard Moore machine
minimization algorithm to obtain Al. After composing A1
and P2 and checking the desired property, we use the
interface rule. This rule states that i f 1) PI Al on the set
5’; 2) cp is a CTL formula whose atomic propositions denote
signals of P2; and 3) cp is true in A1 1) P2 (the composition
of A1 and P2), then cp is true in PI llP2. In a loosely coupled
system, A1 will almost always have far fewer states than
PI, and thus AlllP2 will be much smaller than PlI(P2.

11. THE SML PROGRAMMING LANGUAGE
Since the SML language forms the basis of our new

compositional language, we give a brief and informal
description of it here. A full description is contained in
[3], [4]. Other state machine languages are described in
[l], [ll], [15], (161. Although SML was developed for
specifying complicated finite state machines, it has many
of the standard control structures found in modern impera-
tive programming languages, including a while statement,
a conditional, a case statment, and a parallel execution

statement. There is even a simple mechanism for declaring
nonrecursive procedures. However, the only data types
allowed are booleans and fixed width integers. Thus any
program written in SML has only a finite number of states
and can be compiled into a finite state transition table.

All SML programs represent synchronous circuits. At a
clock transition, the program examines its input signals and
changes its internal state and output signals accordingly.
Since we are dealing with digital circuits, the basic data
type is boolean. Each boolean variable may be declared to
be either: 1) an input changed only by the external world
but visible to the program; 2) an output changed only by the
program but visible to the external world, or 3) an internal
variable changed and seen only by the program. Internal
nonnegative integer variables are also provided but are not
discussed in this brief survey of the language.

Since SML programs are intended to be compiled into
synchronous finite state machines, the semantics of SML
must specify not only what each statement does, but how
long the statement takes to execute. These semantics are
based on the hardware implementation of a state machine.
In such an implementation, combinational logic is used
to compute the next state given the current state. At the
next clock cycle, this new state becomes the current state
and the process repeats. If the clock is slow enough,
the combinational logic will always have time to settle.
In this case, the state machine will operate exactly the
same as an abstract machine in which the next state is
computed instantaneously and in which changing state
requires waiting for the next clock cycle. When an SML
program is compiled into a finite state machine, the control
constructs are what determine the next state; thus they
correspond to combinational logic, and are assumed to
execute in zero time. Assignment statements change the
state, and are assumed to take one cycle. This is the basic
idea behind the semantics of SML. Exact details on the
timing for the individual statements will be described in
the following.

An SML program has the following form:

program (identifier);
(declaration list)
{statement 1 is t)

endprog

where (identifier) is the name of the program,
(declaration list) is a sequence of variable and
procedure declarations separated by semicolons, and
(statement list) is a sequence of statements sepa-
rated by semicolons.

Boolean input variables cannot be assigned new values,
since inputs are changed by the environment only. Boolean
output and boolean internal variables may be changed by:

raise ((variable))
lower ((variable))
invert ((variable)) .

Each of these statements delays until the next clock

CLARKE et al.: LANGUAGE FOR FINITE STATE HARDWARE CONTROLLERS 1285

transition, at which time the value of (variable) will be
changed. The raise statement will assert (variable)
(make it active), lower will negate it, and invert will
force a change of value.

There are two types of looping statements in SML: the
while statement and the loop statement. The while
statement has the following syntax:

while (boolean expression) do loop

endloop
(statement)

At the beginning of the while, the
(boolean expression) is evaluated, and nothing is
done (in zero time) if the expression is false. If it is true,
(statement) is executed. If (statement) completes
execution in no time, the while statement delays until
the next clock transition and then restarts the loop. If
(statement) completes execution after some delay, the
while statement is immediately restarted. The exit
statement is used to jump out of the smallest enclosing
while or loop statement. We will not discuss the syntax
and semantics of the loop statement, since its behavior is
similar to the while statement. Neither will we discuss the
conditional statement or the switch statement, as they are
similar to constructs in common imperative programming
languages.

The parallel statement provides a form of syn-
chronous parallelism. This statement has the form:

parallel
(statementl) 1 1
(statement2) I (

endparallel

The statements in the parallel construct execute concur-
rently in lockstep. The parallel terminates when all of
the statements in the parallel have finished executing or
a break is executed. The effect of the break statement is
to immediately jump out of the smallest enclosing switch
or parallel statement. One of the major uses of the
break statement is to stop normal processing when an
“interrupt” occurs.

In some cases, the timing rules of SML prevent com-
plicated relationships from being simply described without
delaying for more than one clock cycle. To alleviate this
problem, SML has a statement of the form:

compress (statement) endcompress

The effect of the compress statement is calculated as if
variable assignment takes no time in (statement). Then,
after delaying one clock cycle, any changes made by the
compress statement actually take effect. As an example,
consider the following program fragment.

c ompr e s s
x := (x+y)*(z-w);
if (x < 5) then

x := 0;
endif

endcompress
Without the compress statement, the first assignment

would take one unit of time, and if the condition in the if
was true, another time step would be required to set x to
zero. With the compress, only one time unit is required
in either case.

Although our description of the language has been quite
brief, it should be sufficient to understand the example
in the next section. The compilation of SML programs
into Moore Machines is described in more detail in [4].
Considerable effort was spent in making the compiler as
fast and efficient as possible, The state transition tables
produced by the compiler may be implemented in hardware
as PAL’S, PLA’s, or ROM’s. Various programs have been
developed to make this last phase largely automatic. For
example, a post-processor is available that produces output
which is compatible with the Berkeley VLSI design tools.

111. COMPOSITIONAL SML
The semantics of an SML program is given operationally

in terms of a Moore machine, which allows us to apply the
CTL model checking algorithms to verify that a program
satisfies a formula in CTL. However, the SML language
lacks a notion of parallel composition that satisfies the
conditions of the interface rule, and hence is unsuitable
for compositional specification and verification techniques.
To remedy this situation, we developed a strict extension of
SML called CSML (for compositional SML). The seman-
tics of a CSML program is given in terms of a collection
of Moore machine modules which execute synchronously
in parallel. The CSML compiler produces a separate state
table for each of these modules. A parallel composition
operator for Moore machines gives an equivalent semantics
in terms of a single Moore machine. This operator, along
with the standard definition of Moore machine equivalence,
satisfies the conditions of the interface rule. This allows us
to generate reduced interface processes by hiding appro-
priate outputs and minimizing using the familiar Hopcroft
algorithm [13]. The composition of these reduced machines
is produced by a separate program, and is used as input to
the CTL model checker. Meanwhile, the modules produced
by the compiler can be input to design tools to be translated
into various VLSI structures.

Here we describe the two basic extensions to SML which
comprise the CSML dialect. The formal definition of Moore
machine composition which underlies these constructs is
described in [lo], along with the proof that it satisfies
the interface rule conditions. The CSML construct which
corresponds to a Moore machine module is called a process.
A process in CSML has the following syntax:

1286 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

process (identifier) ;
(declaration list)
(statement list) or (process list)

endproc

If the process has an SML statement list as its body,
these statements are compiled according to the usual SML
semantics into a Moore machine state table. Otherwise, the
meaning of the process statement is the parallel composition
of its child processes. Variables of the parent process may
be referenced by the child processes, provided they are
declared as either inputs or outputs in the child process.
Our definition of parallel composition requires that no two
processes declare the same variable as an output, however.
Also, by the definition of parallel composition, variables
which are not declared as outputs by any process become
external inputs to the program. The compiler generates a
unique name for any variable declared internal to a process,
based on the path to that process in the process hierarchy.
In order to maintain strict upward compatibility with SML,
the root process is defined with the program keyword.

The other way in which CSML extends SML is the
process type statement, which defines a reusable

program prodcom;
output produce,consume;
internal req,ack;

processtype Producer(request,ackouledge,produce);
input request;
output acknouledge=false,produce=false;

whlle(!request) do loop skip endloop;
raise(produce); lower(produce);
raisefachowledge);
while(request) do loop sklp endloop;
loaer(achow1edge)

loop

endloop
endtype

processtype Consumer(achowledge,request,consume);
input acknowledge;
output request=false,consume=false;
loop
raise(request);
while(!acknouledge) do loop sklp endloop;
raise(consume) ; lower(consume) ;
lower (request) ;
while(acknow1edge) do loop skip endloop

endloop
endtype

process producerl: Producer(req,ack,produce) ;
process consumerl: Consumer(ack,req,consume);

endprog

process type. The process type statement may appear
in the declaration list of a program or process, and has the

Fig. 4. Producer-consumer program.

following form:

processtype (identifier)
((formal parameter list)) ;
(declaration list)
(statement list) or (process list)

endtype

The formal parameters must be declared as inputs or outputs
in the declaration list. Process type identifiers which are
defined in this way may be referenced only in the lexical
scope of the process in which they are defined. A process
type is instantiated by a statement of the following form:

process (process identifier) :
(processtype identifier)
((actual parameter list)) ;

This creates a process by substituting the variables in the
actual parameter list for variables in the formal parameter
list of the process type declaration. Any other input or
output variable names in the process type declaration are
resolved in the context of the process-type definition. In
other words, CSML variables are staticly scoped rather than
dynamically scoped. The hierarchical renaming of variables
implements this static scoping in a manner similar to the
ALGOL 60 copy rule [14].

Figure 4 gives a simple example of a CSML program-a
system composed of a producer process and a consumer
process which synchronize using a four-phase handshake.
A process type is defined in the main program for producer
and consumer. The handshake signals exchanged between
the two processes are defined as internal variables in the

main program, and two control outputs produce and
consume are also defined. The producer process waits
for the consumer to assert its request input. It then
pulses produce and completes the handshake by asserting
acknowledge, waiting for request to be negated, then
negating acknowledge. The consumer process asserts
request then waits for acknowledge to be asserted,
pulses consume, and completes the handshake. Both these
process types are instantiated in the body of the main
program as producerl and consumerl.

IV. APPLICATION: A SIMPLE CPU
To illustrate to the use of CSML and compositional

methods in designing and verifying controllers, we examine
the controller of a simple CPU, with decoupled access
and execution units. We define one CSML process to
control the access unit, and another process to control
the execution unit. We then use the interface rule and
the Hopcroft minimization algorithm to produce a reduced
interface process to represent the execution unit process.
We use this interface process to verify a collection of CTL
formulas which comprise the formal specification of the
access unit controller.

A . Architectural Description

A block diagram of the CPU is given in Fig. 5. The CPU
is divided into two modules, the access unit (AU) and the
execution unit (EU), in order to increase its performance by
carrying out memory accesses and instruction executions in
parallel. The AU’s function is to fetch instructions and store
them in the instruction queue (IQ), and to maintain a cache

CLARKE ef al.: LANGUAGE FOR FINITE STATE HARDWARE CONTROLLERS 1287

read acces5 req signals
write unit
ack jcontroller rdy

I I
Vcontrols j I I

con t r o 1 s V

execution

signal?controlle‘
unit

Table 1 Access Unit Control Signals

Signal Function

fetch PC t PC + 1 (f e t c h =
f e t ch - Tcq A f e t c h - T d y)

PC-MAB

PC-IDB

branch PC t I D B

M A B (memory address bus) c PC

I D B (internal data bus) t PC

push SP t SP - 1 (p u s h =
p I L A ~ - rcq A p u s h - r d y)

POP
Fig. 5. CPU block diagram.

SP t SP + 1 (p o p =
p o p - req A p o p - ~ d y)

of the top location of the stack in a special top-of-stack
register (TS). The EU’s function is to interpret instructions
of the CPU’s stack based machine code.

The instruction set has two addressing modes: stack and
immediate, and three basic classes of instructions: control,
one-operand, and two-operand. Instructions that take one
operand specify an addressing mode for both source and
destination. Instructions that take two operands specify both
source addressing modes, and use stack mode implicitly for
the destination. The control instructions (branch, call, and
return) specify one of eight conditions codes and select
either direct or program counter relative addressing.

The access unit has four registers: the program counter
(PC), the stack pointer (SP), the instruction queue (IQ),
which can hold two instruction words, and the top-of-stack
register (TS) (see Fig. 5). The PC is equipped with an
incrementer, and the SP with an incrementeddecrementer.
The signals generated by the AU controller and their RTL
functions are summarized in Table 1. These definitions will
be of interest later when we discuss the formal specification
of the controller.

The execution unit has two operand registers (OPR1
and OPR2), an instruction register (IR), a condition code
register (CCR), and an ALU. There is an internal data bus
(IDB) by which data are communicated between the EU
and AU. The function of the ALU and the signals which
control the execution unit data path will not be described
here for the sake of brevity.

The access and execute unit controllers communicate via
three request signals, push-req, pop-req and fetch-req, three
corresponding ready signals, push-rdy, pop-rdy and fetch-
rdy, as well as the signal branch, which causes the PC
to be loaded and the instruction queue to be flushed. The
execution unit signals its intention to perform a push, pop
or (instruction) fetch operation by asserting the appropriate
request signal. If the ready signal is already asserted it
proceeds, otherwise it waits for the ready signal to be
asserted.

The AU communicates with memory via two buses, the
memory data bus (MDB) and the memory address bus
(MAB), and via three control signals: mem-rd, mem-wr and
mem-ack. The protocol for a memory access is as follows.

M A B t SP SP-MAB

MDB-IQ IQ t M D B

IQ-IDB I D B +- IQ

TS-MDB M D B t TS

TS-IDB I D B + TS

MDB-TS TS t M D B

IDB-TS T S t I D B

The AU first asserts one of the memory control signals
(mem-rd for a read, and mem-wr for a write), and causes
the appropriate address to be driven onto the MAB (using
signals PC-MAB or SP-MAB). On a write, the AU drives
the MDB (using the signal TS-MDB). On a read, it loads the
MDB data into one of its registers (using signals MDB-ZQ
or MDB-TS). It then waits for mem-ack to be asserted by
the memory system, at which time it completes the access
by lowering its control signals.

B. Implementing the Controllers
In this section, we give an informal specification of the

access unit controller and describe some of the CSML code.
The AU controller has two functions, which it performs
conceptually in parallel: the management of the instruction
queue and the management of the top-of-stack cache. We
will examine the latter function in some detail. We distin-
guish three states of the TS register: INVALID, VALID,
and MODIFIED. The TS is in the VALID state when its
contents match the value in memory pointed to by the SP;
it is MODIFIED when the TS has been written, but the
contents have not yet been copied back to memory, and it
is INVALID otherwise. In particular, the AU is not ready
for a push operation when the TS is MODIFIED, because
previously pushed data would be lost, and it is not ready for
a pop operation when the TS is INVALID, because incorrect
data would be read. Figure 6 gives an abstract state diagram
which defines the effects of the AU controller operations
on the TS register state. This serves as our model of the
data path when designing the controller. The CSML code
in Fig. 7 computes the status of the TS and stores it in a

1288 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

TS-loa VALID

Fig. 6. TS manager state diagram

loop
compress

switch
case push:

louer(push-rdy); raise(pop-rdy);
TS-st := MODIFIED, break;

lower(pop-rdy) ; raise(push-rdy) ;
TS-st := INVALID; break;

case pop:

case TS-load-done:
case TS-store-done:

raise(push-rdy) ; raise(pop-rdy) ;
TS-st : = VALID; break;

default: skip;
endswitch

endcompress
endloop

Fig. 7. Code for TS manager.

variable called TS-st. It also manages the outputs push-
r d y and pop-rdy which signal to the EU that the TS
register is ready for a push or pop operation, respectively.

In its other capacity as instruction queue manager, the
AU controller must simultaneously keep track of the status
of the IQ register, fetching a new instruction word when the
IQ becomes empty, and flushing the queue when a branch
occurs. We will not discuss this function in detail.

Finally, a third parallel thread of control, which acts like
a monitor, insures that the TS manager and IQ manager
do not attempt to access memory at the same time. The
monitor thread waits in a loop for either the IQ to become
EMPTY, or the TS to become MODIFIED or INVALID.
It then performs the appropriate memory access: ZQ-load,
TS-load, or TS-store, respectively. The CSML code appears
in Fig. 8. Note that when the TS register is in the INVALID
state, we allow a push request to take priority over a TS-
load operation (line *), but once the TS-load operation is
started, we lower push- rdy to prevent push operations
from interfering with the memory cycle (line **). A
corresponding relationship exists between TS-store and pop.

The routine read takes as its arguments a control signal
to drive the MAB bus, and a control signal to load the IQ
or TS registers. It is defined in Fig. 9. When read is called
inside a compress statement, only the while loop actually
takes time.

The overall structure of the AU controller code is a three-
way p a r a l l e l statement as shown in Fig. 10. The job of
the execution unit is more straightforward. It has only one

loop
switch
case IQ.st == EMPTY:
compress read(PC-MAB,HDB-IQ) endcompress;
break;

* case TS.st == INVALID R 'push-req:
** compress louer(push-rdy); read(SP-MAB,MDB-TS) endcompress;

break;

compress lover(pop-rdy); write(SP-MAB,TS-MDB) endcompress
break;

case TS.st == MODIFIED R 'pop-req:

default: skip;
endswitch

endloop

Fig. 8. Code for memory access monitor.

procedure read(addrct1,datactl)
raise(mem-rd) ; raise(addrct.1) ; raise(datact1) ;
while !mem-ack do loop skip endloop;
lover(mem-rd) ; lower(addrct1) ; lower(datact1) ;

endproc;

Fig. 9. Routine read.

process AU;
. . . declarations . . .
. . . procedures . _ .
parallel
. . . memory access monitor
I I
. . . TS manager . . .
I I
. . . IQ manager . . .

endparallel
end proc

Fig. 10. Overall structure of AU controller code.

thread of control, and proceeds as follows. It first loads an
instruction from the IQ into the IR (i.e., performs a fetch
operation). It then decodes the instruction and jumps to an
appropriate routine to interpret that instruction. When the
instruction is completed, it starts again. When compiled,
the AU and EU controller processes have 13 and 98 states,
respectively.

C. Formal Specification for the Access Unit
In this section we present a formal CTL specification of

the access unit controller process. Before proceeding we de-
fine a few predicates which will simplify the specifications
and the following discussion:

p u s h
p o p =

TS- load

TS-s tore
TS- s tore -done

TS- load-done =

p u s h - r e q A p u s h - r d y
p o p - r e q A p o p - r d y

mem-rd A SP-MAB A MDB-TS
TS- load A mem-ack
mem-wr A SP-MAB A TS-MDB
TS-store A mem-ack.

The predicate push indicates that a data word is being
pushed onto the stack from the internal data bus. Likewise,
pop indicates that a data word is being popped off the stack.

CLARKE et al.: LANGUAGE FOR FINITE STATE HARDWARE CONTROLLERS 1289

TS-load is true when a memory cycle is in progress which
is loading the TS. It indicates that the stack pointer contents
are being driven onto the memory address bus (SP-MAB),
and that the data on the memory data bus is being gated
into the TS register (MDB-TS). TS-load-done is true on the
last clock cycle of such a memory cycle (when mem-ack
is asserted). In a similar fashion, TS-store is true when a
memory cycle is in progress which is storing the TS value
into memory, and TS-store-done indicates the last clock
cycle of the TS store operation.

The conditions for correct management of the TS man-
ager are derived from the state transition diagram of Fig. 6.
If the TS is in the VALID state, any of the operations push,
pop, TS-load and TS-store are allowable (the latter two are
not present in the diagram, but executing them in this state
will cause no harm, since the memory contents match the
TS register). In the MODIFIED state, however, we cannot
allow another push operation, or a TS-load operation to
occur before either a pop or TS-store is completed. This
condition is expressed by the following formula:

M O D I F I E D =V[l(push V TS - load)
. W(pop V TS - store - done].

Since the MODIFIED state is entered if and only if a push
operation occurs, we specify the following formula:

V G (p ~ s h -+ ~ ~ (M O D I F I E D))

In the INVALID state, pop or TS-store must not occur
before either a push or TS-load is completed. We express
this condition in CTL as

I N V A L I D =V[l(pop V TS - store)
. W (TS - load - done V push]

Since the INVALID state is entered if and only if a pop
operation occurs, we specify the following:

Of course, we also require that the TS manager not
spuriously drive the MAB or MDB buses or overwrite the
TS register:

VG(MDB - TS -+ TS - load),
VG(TS - MDB -+ TS - store),

The first of these, for example, states that the top-of-stack
register is loaded from the memory data bus only during a
TS-load operation.

In order for stack memory cycles to operate correctly, we
have the following requirements. First, the address, data and
control signals must remain stable during an entire memory
cycle. This means that, if a TS-load or TS-store condition
occurs, that condition must persist up to and including
the clock cycle when mem-ack is asserted by the memory
system. Further, as the address must not change during a
memory cycle, we require that the stack pointer not change

during TS-load and TS-store cycles. These requirements are
expressed in the following formulas:

V((TS - 1oadA ,(push V pop)) W T S - load - done)

VG TS - store -+ (
V((TS - storeA ,(push V pop)) W TS - store - done)

Six more formulas, which we omit here, define correct
management of the instruction queue. The following two
formulas state that no spurious memory accesses occur.

VG(mem - wr -+ TS - store) ,

m e m - rd -+ (T S - load V IQ - load)

All of the above formulas represent safety properties, i.e.,
they are characterized by the statement “nothing bad ever
happens.” Unfortunately, they cannot form a complete spec-
ification, since a controller which did nothing at all would
satisfy all of the above assertions. Thus we include the
following liveness requirement, which states, in effect, that
the CPU always eventually executes another instruction:

’dGVF.fetch.

D. Summary of Model Checking Results
Finally, we describe the application of the CTL model

checker to automatically verify that our controller meets the
above specification. Compiling the CSML code produces a
file with state tables for two Moore machines, representing
the AU and EU controllers. The AU controller has 13 states,
while the EU controller has 98 states. If we computed the
parallel composition of the two machines at this stage,
the result would have 1274 states. Instead, we apply the
interface rule. Because the specification concerns only the
inputs and outputs of the AU controller, we can restrict
the EU controller to those signals which interface with the
AU controller. This means hiding the outputs which control
the EU data path. We then minimize the EU controller,
obtaining an equivalent interface process with only 17
states. Finally, we compute the composition of the AU
module with this interface process, plus a two state interface
process representing the memory system, obtaining a Moore
machine with 196 states. This is the machine that we use as
input to the CTL model checker to verify the specification.

A sample run of the model checker is depicted in
Fig. 11. The first input to the model checker is a set of
fairness constraints, which allow the user to specify which
computation paths are considered to be fair executions.
In this case, we consider an execution to be fair if the
memory system eventually produces an acknowledge signal
for every request. The fairness constraint is that infinitely
often, either the AU controller is not asserting a request, or
the memory system is asserting acknowledge. After reading

1290 PROCEEDINGS OF THE IEEE. VOL. 19, NO. 9, SEPTEMBER 1991

7, mcb -c cpu.fsm
CTL MODEL CHECKER (vers ion Bl .0)

F a i r n e s s c o n s t r a i n t : mem-ack I *(mem_rdlmem-ar).
Fa i rness c o n s t r a i n t :

I = p u s h 0 := push-req P push-rdy.
Macro push def ined .

I= MODIFIED0 := (-(push I TS-load)) Ah' (pop I TS-store-done)
Macro MODIFIED def ined .

I= I N V A L I D 0 := (-(pop 1 TS-store)) Ah' (push I TS-load-done).
Macro INVALID def ined .

I= AG (push -> AX MODIFIED).
The formula i s TRUE.

I = A G (pop -> AX INVALID)
The formula i s TRUE.

I= AG AF f e t c h .
The formula i s TRUE.

I = AG (push -> AX MODIFIED).
The formula i s FALSE.
Do you want t o spec i fy t h e input i n t h e i n i t i a l s t a t e ? tnl
S t a t e 0-0: push-rdy
S t a t e 1-4096: fe tch- req push-rdy mem-rd M D B - I Q PC-HAB
S t a t e 2-0: fe tch- req mem-ack push-rdy mem-rd MDB-IQ PC-MAB
S t a t e 3-4096: fetch-req push-rdy fetch-rdy
S t a t e 5-0: fetch-rdy mem-rd MDB-TS SP-MAB
S t a t e 33-4097: pc0 fetch-req fetch-rdy mem-rd MDB-TS SP-MAB
S t a t e 62-40: exeu-ir2 exeu-ir4 mem-ack mem-rd MDB-TIS SP-MAB
S t a t e 94-0: push-req pop-rdy push-rdy
S t a t e 121-0: pop-rdy mem-rd MDB-IQ PC.MAB
S t a t e 121-4096: pop-rdy mem-rd MDB-IQ PC-MAB
S t a t e 120-0: mem-ack pop-rdy mem-rd MDB-IQ PC-MAB
S t a t e 123-4096: pop-rdy fetch-rdy
S t a t e 135-4096: branch fetch-rdy mem-wr MDB-TS SP-MAB
S t a t e 141-0: mem-ack mem-ar MDB-TS SP-MAB
S t a t e 39-4096: fe tch- req pop-rdy push-rdy
S t a t e 71-4096: fe tch- req pop-rdy push-rdy mem-rd MDB-IQ PC-MAB
S t a t e 113-0: fe tch- req mem-ack pop-rdy push-rdy mem-rd MDB-IQ PC-MAB
S t a t e 88-4096: fetch-req pop-rdy push-rdy fetch-rdy
S t a t e 57-4096: pop-rdy push-rdy fetch-rdy
S t a t e 89-4097: pc0 fe tch- req pop-rdy push-rdy fetch-rdy
S t a t e 60-40: exeu-ir2 exeu-ir4 pop-rdy push-rdy
S t a t e 90-0: push-req pop-rdy push-rdy mem-rd MDB-IQ PC-MAE

Fig. 12. A bug found by the model checker.
Fig. 11. Sample model checking session.

in the fairness constraints, the model checker is ready to
accept macro definitions and CTL formulas to check. For
each CTL formula, the model checker determines whether
the formula is true or false in the model, and also produces
a counterexample for formulas which are false. In fact, in
the original version of the controller, there were two bugs
in the design which were pointed out by the model checker.
The first was that, during a branch, the EU controller did
not check to make sure that a IQ-load operation was not in
progress before modifying the PC. This caused the address
on the MAB to change during a memory cycle. The second
bug was that the TS-store code in the memory access loop
incorrectly asserted MDB-TS instead of TS-MDB. Figure 12
shows the counterexample produced by the model checker
which pointed out this error. The total time to verify the
16 formulas of the AU specification on the (corrected and
reduced) 196 state model was 36 seconds, running on a
Sun-3 workstation.

Using the interface rule, we are able to reduce a 1274
state model of the controller to a 196 state model which is
equivalent with respect to all CTL formulas over the inputs
and outputs of the AU controller. This amount of reduction
is largely due to the nature of the interface between EU
and the AU. While the EU interprets a large number of
instructions, the memory accesses for these instructions
fall into a few basic patterns. For this reason, very little
of the complexity of the EU is observable via the signals
connecting it to the AU, thus the EU controller reduces
to a very simple interface process. This might be viewed .
as a principle of good interface design: that interfaces
should reveal as little of the complexity of the underlying
modules as possible. Design according to this principle will
reduce the global effects of local changes in the design, and
simplify the verification process. The interface rule provides
a way of quantifying this effect in terms of the number of
states in the interface processes.

V. FUTURE DIRECTIONS AND CONCLUSIONS
We should point out that the task of verifying the CPU

does not end with the verification of the controllers. It is
necessary, of course, to provide a formal specification of
the CPU as a whole, and to prove on the basis of the
controller specification and a formal model of the data path
circuitry that the CPU specification is valid. The techniques
described here are not sufficient to do this in an automated
way, because of the very large state space of the data path
part of the system. A technique called symbolic model
checking, which uses Boolean decision diagrams [7] might
be used for this purpose. Another approach to this problem
might be to integrate the CTL model checker with an
automatic theorem prover (or proof checker), which could
perform the final step. We leave the problem of integrating
control and data as an open one here, and an area for future
research.

Even with the module feature, CSML has some limita-
tions. Perhaps the most difficult issue is how to deal with
nondeterminism. Currently, SML processes are completely
synchronous and deterministic. In practice, however, it is
important to be able to reason about processes that run
on different clocks or execute asynchronously. Another
important use of nondeterministic processes is to form an
abstract representation of a class of deterministic machines.
Such a process can be used to prove properties of the
entire class, often with greatly reduced complexity [13].
More research is needed to handle this problem within our
current framework.

Clearly, the CPU design presented here was not intended
to be a practical one. From a practical point of view,
however, at least one criticism of CSML should be made.
The Moore-machine semantics of CSML (and its predeces-
sor SML) require that raising or lowering a signal always
involves one clock cycle of delay. As an example, in
the instruction fetch routine of the EU, one clock cycle

CLARKE et al.: LANGUAGE FOR FINITE STATE HARDWARE CONTROLLERS 1291

is simply wasted in order to raise the signal fetch-reg.
This same consideration also made it necessary to use
“ready” signals (essentially a preacknowledge), since it is
not possible to respond to a request with an acknowledge in
the same clock cycle. One advantage of the Moore-machine
semantics is that all signals between modules effectively
pass through a pipeline register. This means that critical
path timing of modules can be verified independently.
Nonetheless, a language with Mealy machine semantics
might be more useful for practical designs.

Finally, additional research is needed on techniques for
compositional reasoning about SML processes. The inter-
face rule handles formulas that are boolean combinations of
temporal properties of the individual processes. We are cur-
rently unable to handle more general properties involving
temporal assertions about several processes. Furthermore, in
some verification problems it may be necessary to combine
the use of the interface rule with proofs of validity for
certain CTL formulas. In general, such proofs require a
complex decision procedure. We believe, however, that it
will be possible to use the model checker to verify temporal
formulas over complex models, which can then be used as
lemmas in simple hand-constructed proofs, which might be
checked automatically.

As we have seen, the technique of compiling reactive
control programs into state transition tables need not suffer
from the state explosion problem, provided compositional
techniques are used. Dividing such a system into communi-
cating modules can also reduce the complexity of automatic
verification, provided the interfaces between modules hide
most of their internal complexity. Although we applied the
technique to a hardware example, the same tools can be
applied to reactive software systems as well, provided some
portion of the system involves finite state control. Driving
the system from the state tables produced by the CSML
compiler would not only increase the performance of the
system, but would also allow some properties of the system
to be verified automatically.

REFERENCES
[l] G. Berry and L. Cosserat, “The Esterel synchronous pro-

gramming language and its mathematical semantics,” Ecole
Nationale Superieure des Mines de Paris, Tech. Rep., 1984.

(21 M. C. Browne, “An improved algorithm for automatic verifi-
cation of finite state machines using temporal logic,” in Proc.
Conf: on Logic in Computer Science, June 1986.

[3] -, “Automatic verification of finite state machines using
temporal logic,” Ph.D. dissertation, Carnegie Mellon University,
Pittsburgh, PA, 1989.

[4] M. C. Browne and E. M. Clarke, “SML: A high level language
for the design and verification of finite state machines,” in
IFIP WG 10.2 Int. Working Conf: from HDL Descriptions to
Guaranteed Correct Circuit Designs, Grenoble, France, IFIP,
Sept. 1986.

[5] M. C. Browne. E. M. Clarke, and D. L. Dill. “Automatic
circuit verification using temporal logic: Two new examples,” in
Formal Aspects of VLSI Design. New York: Elsevier Science,
1986.

[6] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra,
“Automatic verification of sequential circuits using temporal
logic,” IEEE Trans. Computers, vol. C-35, Dec. 1986.

[7] R. E. Bryant, “Two papers on a symbolic analyzer for MOS
circuits,” Tech. Rep. 87-106, Carnegie Mellon University, 1987.

[8] E. M. Clarke and E. A. Emerson, “Synthesis of synchronization
skeletons ,for branching time temporal logic,” Springer LNCS
131, pp, 52-71, 1981.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
verification of finite-state concurrent systems using temporal
logic specifications,” ACM Trans. Programming Languages and
Systems, vol. 8, no. 2, pp. 244-263, 1986.

[l o] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional
model checking,” in Proc. Fourth Symp. on Logic in Computer
Science, 1989.

[ll] P. Naur (Ed.), Revised report on the algorithmic language
ALGOL 60, Comm. ACM, vol. 6, no. 1, pp. 1-20, 1963.

[12] D. Harel, “Statecharts: A visual approach to complex systems,”
Tech. Rep. CS84-OS, Weizmann Inst. of Science, Feb. 1984.

[13] J. E. Hopcroft, “An T L ~ O ~ T I algorithm for minimizing the
states in a finite automaton,” in Tbe Tbeury of Machines and
Computation.

[14] R. P. Kurshan, “Reducibility in analysis of coordination,” in
LNCS, Springer-Verlag, vol. 103, pp. 19-39, 1987.

[lS] D. L. Parnas, “ A language for describing the functions of
synchronous systems,” Conrnzun. Ass. Comput. Much., vol. 9,
pp. 72-75, Feb. 1966.

New York:
Computer Science Press, 1984.

New York: Academic, 1971, pp. 189-196.

[16] J. D. Ullman, Computational Aspects of VLSI.

Edmund M. Clarke, Jr. received the B.A. de-
gree in mathematics from the University af Vir-
ginia, Charlottesville, in 1967, the M.A. degree
in mathematics from Duke University, Durham,
NC, in 1968, and the Ph.D. degree in computer
science from Cornell University, Ithaca, NY in
1976.

After leaving Cornell, he taught in the Depart-
ment of Computer Science at Duke University
for two years. In 1979 he joined Harvard Univer-
sity, Cambridge, MA where he was an Assistant

Professor of Computer Science in the Division of Applied Sciences. He is
currently a Professor of Computer Science at Carnegie Mellon University,
Pittsburgh, PA. His interests include software and hardware verification
and automatic theorem proving.

Dr. Clarke is a member of the Association for Computing Machinery,
Sigma Xi, and Phi Beta Kappa.

David E. Long received the B.S. degree in
computer science from the California Institute of
Technology, Pasadena, in 1987. He is currently
enrolled in the Ph.D. program at Carnegie Mel-
lon University, Pittsburgh, PA.

His interests include formal verification of
hardware and software, programming language
design and implementation, and computer type-
setting.

Kenneth L. McMillan received the B.S. degree
in electrical engineering from the University
of Illinois at Urbana-Champaign in 1984, and
the M.S. degree in electrical engineering from
Stanford University, Stanford, CA in 1986. He
is currently working on his doctoral dissertation
at Carnegie Mellon University, Pittsburgh, PA,
on hardware verification.

His interests include verification of hardware
and communication protocols, noninterleaving
models of concurrency, parallel computer archi-

tectures, and synthesis of sequential circuits.

1292 PROCEEDINGS OF THE IEEE, VOL 79, NO 9, SEPTEMBER 1991

___- ~

