Automatic Circuit Verification Using Temporal Logic:
Two New Examples

Michacl C. Browne
Edmund M. Clarke
David L. Dill

Carncgic-Mcllon University
Pittsburgh Pennsylvania 15213

1. Introduction

‘Temporal logic is a formal system for rcasoning about the occurrence of events in time. It belongs to the class of
modal logics. originally developed by philosophers in an attempt to classify logical propositions according to their
"possibility” or "impossibility”. [n the case of temporal logic special operators are introduccd that describe how the
truth values of assertions vary with time. A typical operator is G f which is truc now if f is truc at all future
moments (/ is Globally truc). As an examplic of how temporal logic might be used, consider the assertion that two
events S, and S, do not occur simultancously. This is naturally expressed by the formula G(= Sl v - Sz)'

Pnculi [14] was apparently the first to realize that temporal logic might be uscful for reasoning about concurrent
programs. |.ater, Bochmann [4] and Owicki and Malachi [13] showed how his ideas could be extended to handle
sequential circuits. Although these rescarchers contributed significantly toward developing an adequate notation for
specifying propertics of circuits, the problem of showing that a circuit actually met its specifications still required a
tedious hand-constructed proof.

In previous papers ([6], [7]) we have described an automatic, temporal logic based verifier for finite state
concurrent systems. Our verifier uses a simple and cfficient algorithin, called a model checker, to determine the truth
of a temporat formula relative to a state transition graph. If the formula is not true, the model checker wiil provide a
counterexample if possible. Unlike most verifiers, our algorithm has time complexity lincar in both the size of the
specification and the size of the state-transition graph. Experimental results show that the verifier can check
temporal propertics of state transition graphs at a rate of roughly a hundred states a sccond. Moreover, since the
algorithm is lincar in the size of the state graph we can expect the same rate for graphs with several thousand states
that we get for graphs with several hundred states. '

Sequential circuit verification is a natural application for the verifier. In ([1], [11]. [8]) we have described how
the verifice might be used to debug such circuits. The basic idea is to extract a state transition graph from some
representation of the circuit and then use the model checker. In this paper we provide further evidence for the
usefilness of our approach by describing enhancements to the basic verifier that automate the extraction of state
wansition graphs from circuits. We discuss two different techniques. The first approach involves extracting the state
graph direcriy from a wire-list description of lhe circuit and is suitabie for asynchronous circuits. ‘ine second
obtains the state diagram by compilation trom an HDI. specification of the original circuit. Although these ap-
proaches are quite different, we believe that there arc situations in which cach is useful.

2. The Logic and the Model Checker

The logic that we use to specifv circuits is a propositional temporal logic of branching time, called CTL
(Computation Tree Logic). It is similar to those described in (3], [7}, and [12]. The syntax that we usc for CTL in this
paper is given below. We assume the existence of an underlying sct of atomic propositions AP for denoting events.

e Any atuinic propuosition P € APs a CTL formula.
o If fand garc CTL formulas, then -f fag Gf Ff fUgandfugare CTL formulas.

The symbols - and A have their usual meanings. In addition to these formulas, we use the abbreviations f v g and
f = afor«(~fa =g)and - (fa - g), respectively. Intuitively, G /means that fis true in every state (Globally
truc), and ¥ Fmeans that fis eventually crue somewhere zlong every sequence of states (true at some Future time).
Theie are two versious of the unrif operator: the strong until "U™ and the weak until "u”. The strong unil f U g
requires that ¢ must eventually be true and that falways hold until g is true. The weak wntil fu g also requires that f
always be vue untl g becomes true; however, it is permissible for ¢ never to be true if fremains true forever.

The scinantics of CTT formulas is defined with respect to a labeled state transition groph. A CTLL structure or

Automatic Circuit Verification Using Temporal Logic:
Two New Examples

Michael C. Browne
Edmund M. Clarke
David L. Dill

Carnegic-Mecllon University
Pittsburgh Pennsyivania 15213

1. Introduction

‘Temporal logic is a formal system for reasoning about the occurrence of events in time. It belongs to the class of
modal logics. originally developed by philosophers in an attempt to classify logical propositions according to their
"possibility” or "impossibility”. In the case of temporal logic special operators arc introduced that describe how the
truth values of assertions vary with time. A typical operator is G f which is true now if f is true at all future
moments (f is Globally true). As an example of how temporal logic might be used, consider the assertion that two
events SL and 52 do not occur simultancously. This is naturally expressed by the formula G(- S1 v o= Sz)-

Pnculi [14] was apparently the first to realize that temporal logic might be uscful for reasoning about concurrent
programs. Later, Bochmann [4] and Owicki and Malachi [13] showed how his ideas could be extendcd to handie
scquential circuits. Although these researchers contributed significantly toward developing an adequate notation for
specifying properties of circuits, the problem of showing that a circuit actually met its specifications still required a
tedious hand-constructed proof.

In previous papers ([6], [7]) we have described an automatic, temporal logic based verifier for finite state
concurrent svstems. Our verifier uses a simple and cfficient algorithin, called a model checker, to determine the truth
of a temporal formula refative to a state transition graph. If the formula is not true, the model checker will provide a
counterexample if possibie. Unlike most verifiers, our algorithm has time complexity lincar in both the size of the
specification and the size of the state-transition graph. Experimental results show that the verifier can check
temporal propertics of state transition graphs at a rate of roughly a hundred states a sccond. Moreover, since the
aleorithm is lincar in the size of the state graph we can expect the same rate for graphs with several thousand states
that we get for graphs with scveral hundred states.

Sequential circuit verification is a natural application for the verifier. In ([1], [11]. [8]) we have described how
the verifier might be used to debug such circuits. The basic idea is to extract a state transition graph from some
representation of the circuit and then use the model checker. In this paper we provide further evidence for the
usefulness of our approach by describing cnhancements to the basic verifier that automate the extraction of state
wansition graphs from circuits. We discuss two different techniques. The first approach involves extracting the state
grapn directly from a wire-list descripion of (he circuit and is suitabie for asynchronous cifcuits. "The second
obtains the state diagram by compilation from an HDI. specification of the original circuit. Although these ap-
proaches are quite different, we believe that there arc situations in which cach is useful.

2. The Logic and the Model Checker

The logic that we use to specify circuits is a propositional temporal logic of branching time, called CTL
(Computation Tree Logic). It is similar to those described in 3], [7], and [12]. The syntax that we usc for CTL in this
paper is given below. We assume the existence of an underlying set of atomic propositions AP for denoting cvents.

& Any atoinic propusition P e APis a CTL formula.
o Iffand gare CTL formulas, then -f£ fag Gf F/f fUgandfugarc CTL formulas.

The symbols - and ~ have their usual meanings. In addition to these formulas, we use the abbreviations /v g and
f—afor~(-fa =g)and = (fa - g), respectively. Intitively, G fmeans that fis truc in every state (Globally
true), and ¥ fmeans that fis eventually tue somewhere clong cvery sequence of states (true at some Future time).
There are two versions of the until operator: the strong until "U™ and the weak until "v". The strong until f U g
requires that & must eventually be true and that falways hold until g is e, The weak until fu g also requires that f
always be vue untl g becomes true; however, it is permissible for g never to be true if Sremains true forever.

The scinantics of CTT formulas is defined with respect to a labeled state transition graph. A CTL strucnire ot

model is a state transition graph consisting of:
e A finite sct of states S;
e A function L:S — P(AP), which labels each state with a set of atomic propositions;
e A transition relation R ¢ S x S;
e A start state, Sy

We require that every state have at least one successor. A path from 5; € S is an infinite scquence of states that starts
with 5; and in which R holds between cvery state and its successor.
Below we formally define what it means for a formula f'to be true in a state s, "This is written s, = f

o5, =P iff Pe l.(si).

es,F=fag iff s,F=f and s,Fg

o5 =S iff it is not the case that s, = f.

o5 k= G f iff for cvery state s; on every path from S5 =f

s, = F f iff there exists a state s; on every path from s, such that 5; =1

o5 = f U g iff for every path from 5; there exists a statc s, such that s, = g and for all states 5;
preceding s, on the path, 5; =f

os=/ug iff for cvery path from s; either

k
2. for all states s;on the path S; =f

1. there exists astate s, such that s, F= ¢ and for all states 5; preceding s, on the path, 5; = f,or

A formula is true in a state graph iff the formula is true in s, Figure 2-1 shows some cxamples of CTL formulas and
statc graphs in which they are true.

o e

fug

Figure 2-1: CTL Formulas and State Graphs in Which They Are True

There is a program called EMC ("Extended Model Checker") that verifics the truth of a formula in a model
using these definitions. The algorithin processes a formula bottom up, checking the shortest subformulas before
checking the subformulas that contain them. When it checks each subformula f it labels every state in the graph
with £if fis true in the state. Thus, when EMC is processing a formula it can treat the subformulas as atomic
propusitions. Processing any of the modal or propositional connectives requires at most a singlc depth-first traversal
of the state graph. so the time to check a formula is proportional to the size of the state graph and size of the
formula.

There is one very practical feature of the model checker that should be described: the counterexample facility.
When the model checker determines that a formula is false, it will attempt to find a path in the graph which
demonstrates that the negation of the formula is true. For instance, if the formula has the fornm G/ our system wili

produce a path to a state in which -~fholds. This feature is quite uscful for debugging.
EMC is written in C and runs on a VAX 11/780 under Unix.

3. Verifying Asynchronous Circuits

The difficulty of designing correct asynchronous sequential circuits is well-known. Unlike synchronous cir-
cuits, in which concurrent activitics proceed in lock-step, asynchronous circuits can have a large number of alter-
native exccution sequences, cach resulting from a different sct of delays in the circuit clements. The circuit must
ultimately produce correct results for any of these exccutions.

To be certain that an asynchronous design is correct, the designer must make delay assumptions that are
guaranteed to hold for all instances of the circuit. One common delay model assumes that there is an arbitrary finite
delay on every gate output. We term designs relying on this assumption speed-independent. This is a very conser-
vative model, in the sense that any circuit that appears to be correct will work under a wide variety of realizations.
However, it is often quite difficult to design circuits that are truly speed-independent. When it is possible, the
resulting circuits are often unneccssarily complex and expensive, since “any reasonable implemncntation™ would
satisfy stronger delay assumptions.

We belicve that the design of correct and practical asynchronous circuits could be greatly facilitated by a
verification tool to automate the tedious analysis of circuit executions under varying delays. This tool should be able
to use the designer’s assumptions about circuit delays to avoid considering unreasonable circuit cxecutions.

In the remainder of this scction we describe in more detail the speed-independent circuit delay model and the
algorithm for cxtracting a statc graph from a circuit. We then discuss the dclay assumptions and how they are
incorporated into the state-graph construction algorithm. Finally, as an example, we describe, specify, and verify a
“real’” asynchronous circuit: a patented queue clement.

3.1. Speed-Independent Circuits

The structural description of a circuit consists of a set of elements, which have inputs and outputs, and nodes,
which are used to interconnect clement inputs and outputs. Every clement input and output must be connected to a
node. Every node must be connected to exactly one element output and can be connected to any number of inputs.

Elements represent circuit components, which compute values from their inputs and, after some delay, supply
these values on their outputs. Circuit elements arc described using flow tables. Lach clement has a set of possible
internal states. ‘L'here is a transition function which gives a set of successor states, given a current statc and values for
the inputs to the clement. There is also a stability predicate which applies to a state and an input assignment, and
returns “true” if the clement can stay in that state/input configuration forever. A “fals¢” value for the stability
predicate indicates that the clement can stay in the configuration arbitrarily long, but must change state in finite
time. Finally, there is an output function which maps the current internal state of the element to boolean values for
its outputs.

A flow table diagram for a two-input NOR gate appears in figure 3-1. The flow table consists of two parts: on
the left is the transition/stability table, with states labeling rows and input assignments labeling columns. The
transition function is represented by arrows and the stable states are circled. The effect of this representation is to
model a gate as an instantaneous boolean function with an inertial delay on its output (i.e., the case where the inputs
of an incrtial delay change twice before the output changes, the first change is ignored).

INO IN1
00 out

01 11
e LA RIRIR) |
SATEléj//

10

Figure 3-1: Flow Table for 2-input NOR Gate

The generality of the flow table model is uscful when clements other than boolean 'gates arc modeled. lor
cxample, many asynchronous circuits (but not our example) are designed using primitive clements other than gates
(for example, flip-flops). In our example, more complex flow tables are used to model the external environment of
the circuit.

Using this clement modcl, a structural circuit description can be converted into a state graph. Fach state in the
global state graph is a tuple of clement states. one state from cach element. The global state detines a set ot values
for the nodes, by taking the combined effect of the output functions for each of the clement states in the global state

tple (remember that the output for cach clement depends only on its internal state). This gives a value for every
node, since every node is connected to exactly one clement output. The global state is labeled with the names of the
nodes having “1” values in the state, for later use by EMC,

Given a global state and its node values, the successors of the state can be found by applying the transition
functions of the individual clements. We choose to use an “interleaved”™ model of concurrency, in which each
successor of the global state corresponds to a state change in cxactly one of the elements. ‘the global state graph for
a correct circuit is often of quite reasonable size, since only the states reachable from a user-specified initial state
need to be represented. This is easily accomplished by constructing the graph recursively in a depth-first manner,
starting with the initial state. States are stored in a table as they are created; whenever an old state is encountered,
the recursion stops.

A more subtle aspect of the element model and state-graph construction is the need for stability predicates. In
order to verify “livencss” propertics of a circuit, which assert that it makes progress towards some state, it is
necessary to avoid checking paths in the state graph in which an clement remains forever in an unstable configura-
tion. The problem is solved using the fairness constraint facility of EMC. A namc is invented for cach state in each
circuit clement. Every global state is labeled with the names for the unstable clement states in it, as determined by
the stability predicates. In addition to the state graph, EMC is supplied with a sct of fairness constraints requiring
cach of the unstable statc names to be false infinitely often. In this way. CTL formulas arc checked only over those
paths in which no elcment stays in an unstable state infinitcly long.

This approach has been used to discover a timing problem in a published speed-indcpendent arbiter design [11]
and to verify a corrected version of the design.

3.2. Almost Speed-independent Circuits

The circuit modcl and state-graph construction described so far arc sufficient to verify truly specd-independent
circuits. However, many asynchronous circuits that are not strictly speed-independent work perfectly well in
practice. Such circuits are vften defended on the grounds that they would work properly, assuming that the delay in
one clement is always less than the delay in another. We can formalize a delay model which includes assumptions of
this type. We call circuits designed under this delay model almost speed-independent.

The almost speed-independent state graph of a circuit is constructed by associating with cach global state a set
of relatiunships (called delay constraintsy of the form x < y, where x and y arc the names of clements that are
unstable in that global state. If x < y is associated with a global state, it means that “x will change state before y
does.” In this case, the global state will have a successor representing a change in x but no successor for a change in
y. Under a speed-independent model, either x or y could change.

Two states are considered to be equivalent if their element tuples are the same and if their delay constraints are
the same. (This is important for the table lookup in the state-graph construction.) The resulting state graph is
similar to the speed-independent state graph, except paths that fail to satisfy the user-supplicd delay constraints have
been removed. This model and algorithm are described in greater detail in another paper [10].

3.3. Example: An Asychronous Queue Element

As an example, we verify an asynchronous queue cell patented by Cogar in 1965 [9]. The suggested application
for this circuit is as a buffer for reading data from recordings. A schematic appears in figure 3-2. The original
circuit diagram was depicted as a collection of diodes and transisters; we have coallesced these into NOR gates,

)
A
INO O -
> jl E Do O ouTo
L
i [l
L\
y &
) D e o 0UT1
.) .
TCL G <J THR
THL G—-L———O@ 4 TCR

Figure 3-2: T.ogic Diagram for Cogar Qucuc Element.

The queue cells are intended to be chained together with a data source at one end and a data sink at the other.
When a queue cell is empty and data is presented at its input, it reads the data and stores it internally, then makes it
available at its output. In the discussion below, we consider a queuc cell in the middle of a chain of queue cells in
which data flows from left to right. The left neighbor of the cell can cither be another queue cell or a data source;
the right neighbor, cither a queuce ccll or data sink.

"The data is encoded on two wires, a “one” wirc and a “zero” wire. A 1 signal is encoded as a high value on the
“onc” wire and a low value on the “zero” wire. Similarly a 0 is represented by a low value on “one” and a high
valuc on “zero”. “No data” is represented by a low signal on both wires, and it is never the casc that both wires are
high. Each queue cell has a pair of input data wires cntering from the left, and output data wires cxiting from the
right.

In addition to the data wires, there are two control wires going from right to left. Each cell has a “transfer and
hold” (TH) wire and a “transfer and clear” (TC) wire cntering from the right (THR and TCR) and exiting to the left
(THL and TCL). A high valuc on TH indicates that the ccll generating it is about to become empty. A high value
on TC signals that the cell is actually cmpty and may receive data from the cell on its left when TH goces low again.

The exact sequence of signals is shown in figure 3-3. For the interface between the cell and its left neighbor,
DATA is the logical OR of IN0 and IN1, TH is THI., and TC is TCL.. For the right neighbor, DATA is OUTO v
OUT1, TH is THR. and TC is TCR. 'The heavy arrows indicate that if the first event occurs, the second must also
occur — and furthermore, the events must occur in order shown. The light arrows specify that the second event
may or may not occur, but if it does occur it must happen after the first event. The two light arrows represent the
cascs where the left cell provides no data, and where the right ccll stops reading data.

s\
DATA "l/ \-74::

Figure 3-3: Timing Diagram for Cogar Quecue Element.

This timing diagram can be expressed in CTL. Each transition can be uniquely characterized by the values of
the signals immediately after it occurs. The arrows impose a total ordering on the states, which can be specified in
CTL by saying, in essence, “if the signals are in the statc immediately after the tail of an arrow, they must stay in that
state until they take on the values of the state after the head of the arrow”. The light arrows are represented by
formulas using u and the solid arrows by U. For example, the first two arrows in the diagram are expressed by:

G((-TH A -TC A -DATA) —
(~TH A ~TC A -DATA) u(TH A -TC A -DATA)), and

G({TH A -TC A-DATA) —
(TH A =TC A =-DATA) U(TH A TC A ~DATA))

A queue cell can store one of three “values™: 0, 1 and empty. If a cell is empty, its left ncighbor will detect this
by TCL being high. If the neighbor has a stored value, it will put the data on INO and IN1 of the cell. The cell then
stores this value and lowers TCL. When the left neighbor sees TCL go low, it becomes empty and lowers both INO
and IN1.

Even after it has stored data, the cell continues to supply a “no data” signal on OUTO0 and OUT! until its right
neighbor has lowered THR and raised TCR. 1t then puts its stored value on OU'TO and OUTL. After the right
neighbor has stored this, it will lower TCR, causing the cell to clear itself (and eventually remove the data signals).
During the time when the cell is clearing itself, THI. goes high to inhibit the transmission of data by the left
neighbor since TCL may rise before the cell has stabilized in the “empty” state. THL falls after TCI. has risen, to
indicate that the cell is both empty and ready to receive new input.

The gate-level implementation of the queuc cell appears in figure 3-2. The gates A, B, and C together store the
data internal to the cell. When the circuit is stable, only one of them may be high at a time. If the high signal is A, a
1is stored, if it is 1. a 0 is stored, and if it is C, the cell is empty. The gates are cross-wired to ensurc that only one is
high at a time. Additionally, INO is an input to gates A and C and IN1 is an input to B and C, so the high input
wires inhibit the gates that should not be high (thus, A and B are both inhibited when there is no data). The output
of C becomes TCLL. which indicates to the left neighbor that the gate is empty.

The gates D and £ provide the signals OUTT and OUTO to the right neighbor. Once again, only one of these
pates stiould be on at une time. 'The signals INO and INUare inputs 1o these gates. so they are both inhibited when

the cell is storing data from its left ncighbor. They arc also cross-wired so that only one is high at a time. 'The
output of gate C gocs to both gates, so the outputs are low when the cell is emipty. Also, the output of A goes to E so
that QU'10 is low when a 1 is stored; similarly, the output of B goes to D. THR is an input to both gates so that
output is suppressed when the right neighbor is being cleared. Finally, the output of gate F is fed back to both of
the gates. This signal is high only when both 1D and E arc low and when TCR is low. In the case where the cell is
empty, its right neighbor is full, and the cell stores an input from its left ncighbor, the F signal serves to lock the cell
outputs low until TCR goes high (signaling that the right ncighbor has become empty).

Gate G provides the signal to clear the ccll when its right ncighbor has stored the cell output. Suppose that the
output of gate F is high, duc to the circumstances described in the last sentence of the preceding paragraph. When
the right neighbor raises TCR, F will eventually go low. This allows the cell to transmit its output to the right
ncighbor (assuming it is not empty). When the right neighbor has stored the value, TCR will go low. This raiscs the
output of G, which both clears the cell (by lowering A and B), and raises TCL., which turns off output of the left
ncighbor until the cell has stabilized.

We have not considered a number of other possible sequences of events. These might arisc due to diffcrences
of speeds of the various gates when input changes arc presented simultancously to scveral of them. Also, changes in
the input signals from the left and right neighbors can occur at many different times relative to each other and to the
internal state of the cell. ‘This task is better left to the verifier.

3.4. Verifying the Circuit

In order to verify the queue cell, we first defined flow tables for elements representing a data source and sink,
which exhibit the most general behavior satisfying the above protocol. We then verify the system consisting of a
single queue clement with a source as its left ncighbor and a sink to its right. Note that the outputs to these elements
are connected to the inputs of the cell; thus, the circuit satisfics the requirement that all nodes be connected to an
output. We spccify a set of properties, most of which are not presented here, sufficient to cnsure that the queue
clement would behave properly as part of a multi-cell queue.

The state graph constructed using specd-independent assumptions had 226 states. The property “if the cell is
empty and INO is high, then INO stays high until 0 is stored in the cell”, written ‘

G({(~A A=BAC AINQ)— (INO U(=4 A B A-C)))

fails to check (as do formulas for some of the arrows in the timing diagram). Supposc that the cell is empty, and the
source provides a 0 input (rasing IN0). Gate C will go low, as it should. But this lowers TCI. which signals to the
source that it should lower INO. If gate B is sufficiently slow, INO will disappcar before B has changed state, leaving
all of A. B, and C low. At this point the circuit is forced to make a non-deterministic choice between raising onc of
them. In reality even worse situations could occur, including a metastable state between some combination of the
gates or a common-mode oscillation.

It is reasonable to defend the circuit on the grounds that the source cell to the left would not be as fast as gate B,
because there would be a substantial amount of logic between the TCL signal entering the source and the gate that
cventually turned off INO. This is certainly true if the source is actually another qucue cell.

What happens if the source is assumed to be slower than cither A or B? Adding this assumption to the circuit
description results in a state graph with 72 states that satisfies all of our specifications (including those not given
here). In this case, there are fewer states in the second graph partly because of the reduced non-determinism in the
circuit operation.

4. Veritying High Level Descriptions of Circuits

In practice, many circuits arc designed as finite state machines before they are implemented in hardware. Since
this finite statc machine is close to the form of state graph used by EMC, there is no need to extract it from a
lower-level description of the circuit (as in the previous section). Therefore, we can verify the design before it is
implemented in hardware. Ifa VI.S1 design tool that correctly implements finite state machines is used to layout the
verified design, we can be sure that the resuiting circuit is correct.

In order to assist with the design and verification of finite statc machines, we have designed a language named
SMI. (state machine language). In addition to being uscful for verification, SML also provides a succinct notation
for describing complicated finite state machines. A program written in SML is compiled into a finite state machine,
which can then be verified using the model checker or implemented in hardware. At CMU, we have implemented
an SML compiler that runs on a VAX 11/780. We also have access to design tools that can implement a finite state
machine produced by the compiler as cither a ROM. a PLA, or a PAL.

4.1. The Description Language and its Semantics

An SML. program represents a synchronous circuit that implements a Moore machine. At a clock transition,
the program cxamines its input signals and changes its internal state and output signals accordingly. Since we are
dealing with digital circuits where wires are cither high or low, the major data type is boolean. Each boolean
variable may be declared to be cither an input changed only by the external world but visible to the program, an
output changed only by the program but visible to the cxternal world, or an internal changed and scen only by the
program. The hardware implementation of boolean variables may also be declared to be cither active high or active
low. The usc of mixed logic in SML is permitted. Internal integer variables are also provided.

SMI. programs arc similar in appearance to many imperative programming languages. SML statements in-
clude if, while, and loop/exit. A parallel is provided to allow scveral statements to exccute concurrently in lockstep.
The break statement can be used to terminate a parallel before all of the concurrent statements have finished
exccuting. There is also a simple macro facility.

The semantics of SML programs arc different from most programming languages. since we arc not only
interested in what a statement does, but how much time it takes to do it. In this respect, SML was influenced by the
semantics of ESTEREL [2]. The complete semantics for SML will not be given here, but they will appear in a
forthcoming paper [S]. A program state is an ordered pair, <S, s>, consisting of a statement S and a function s that
gives valucs to all of the identifiers. The semantics consist of a set of rewrite rules that describe how a program state
can be transformed into new program statc. Each rewrite rule also specifies whether it takes a clock cycle to make
the transformation or not. For example, two typical rewritc rules are:

<raise (I); S, s> 4 <S, s> .
where s’ = s[I — true]

E = false
G E then Sy endif; Sy, s> 2 <Sy, s>

The first rule states that a raise statement followed by an arbitrary statement S can be rewritten in onc clock cycle to
statement S while simultancously changing s so that s’ (I) = true. The sccond rule states that an if statement
followed by an arbitrary statement S, can be rewritten in no time to statement S, if the condition is false.

Given any program state, we can repcatedly apply the rewrite rules to find a new state that can be rcached in
one clock cycle. This new state is a successor of the original statc in the finite state machine. So starting from the
initial program state (which consists of the entire program and a function which assigns 0 to all integers and false to
all booleans), we can repeatedly find successor states until we have built the entire finite state machine.

4.2. Example: An ACIA Controller

The best way to illustrate the use of SML is by an example. In this example, SML will be used to dcsign some
of the controlling circuitry for an Asynchronous Communications Interface Adapter (ACIA) similar to the 6350 [15].

An ACIA converts scrial data to parailel data so that it can be used by a microprocessor. The serial data is a
fixed number of bits that are transmitted at a known frequency, preceded by a start bit (0) and foilowed by one or
two stop bits (1). As the data arrives, it is shifted into a data register thatcan be read by the microprocessor. Once a
complete byte has been received or a transmission crror has been detected, the ACIA sets the appropriate bits in its
status register and interrupts the microprocessor if necessary. The microprocessor can read the status register to find
out what happened and then clear both registers by reading the data.

In our example, the peripheral providing the data has two connections to the ACIA, DATA and DCD. DATA
is the input data stream of 5 bit bytes, synchronized to the ACIA controller clock by another state machine. DCD is
the data carrier detect signal that indicates that valid data is being transmitted. If this signal goes low, the transfer
has been aborted by the peripheral and the microprocessor should be interrupted so that it can find the problem.

The microprocessor has three input connections to the ACIA, COMM AND, CI, and C0. When COMMAND
is high, the other two inputs indicate which function the microprocessor wants to perform. The functions are:

€l (0 Function
0 0 Enable/Disable interrupt when byte has been received.
0 1 Read data register.

1 0 Rcad status register.

1 1 Master resct.

"The ACIA controller has four outputs. When the S7/71T signal is high, the incoming data will be shifted into

the data register. Once a complete byte has been received, the RDRF (read data register full) status bit should be set
high. RDRF should be cleared if the ACIA is resct, the carrier is lost, or if the microprocessor rcads the data after
reading the status and finding RDR/I high. The /RQ output is connected to the microprocessor to signal an
interrupt request. The request is cancelled if the ACIA is resct or if the microprocessor reads the status and data
registers. The DCDQO (data carrier detect outstanding) status bit is sct high whenever there has been a loss of carrier
that hasn't been handled by the microprocessor. 1t is sct high as soon as the DCD input goes low. It remains high as
long as DCD remains low. If the microprocessor cither reads the status and data registers or rescts the ACIA while
DCD is low. DCDO will go low as soon as the carricr is restored. Otherwise, DCDO will remain high until the status
and data registers are read or the ACIA is resct.

4.3. An Implementation of the ACIA Controller in SML

1 program acis;

2

3 tnput CO, C1, COMMAND, DCD, DATA:;

4 output SHIFT, RORF, IRQ, DCDO:

§ internal NEWIRQ, DCDST, OCDRD, RIE;

<]

7 #define RESET (COMMAND & C1 & CO)

8 #define READSTAT (COMMAND & C1 & !1CO)

9 #def ine READDATA (COMMAND & 1C1 & CO)

10 -

1 procedure watt(exp)

12 whtle !(exp) do loop skip endloop

13 endproc

14

186 paraliel

18 loop

17 paraliel

18 loo0p

19 if 1DCD | RESET then bresk endtif
20 gndioop

21 [

22 Teop

23 wait(1DATA);

24 raise(SHIFT):

25 dalay 4;

28 Tower (SHIFT):

27 parallel

28 1f RIE then

28 paraliel ratse(IRQ) || raise(NEWIRQ) endparaiiel
30 endif

31 i

a2 raise (RDRF)

33 endparallel

34 endloop

k1 endparallal;

38 parallel lTower(SHIFT) || lower(RDRF) ondparallel
a7 endloop

38 I

39 loop

40 walt(!10CD):

41 parailel

42 raise(0CDO)

43 1

44 if |RESET then

AS parallel raise(IRQ) || raise(NEWIRQ) |} raise(DCDST) || raise(DCORD) endparaliel
48 andif

47 [

48 wait(DCD)

49 endparailel;

80 DCDO :+ DCORD;

51 endloop

62 i

63 loop

54 wa it (COMMAND):

58 switch

&8 case READSTAT:

657 parallel lower (NEWIRQ) || lower(DCDST) endparaliel;
58 break;

69 case READDATA:

60 parailel

81 Yower (RORF) || IRQ :» NEWIRQ || DCORD := DCDST
62 andparallel;

83 break;

84 case RESET:

86 parallel lower(IRQ) || lower(MEWIRQ) || lower(DCDST) || lower(DCORD) endparallel:
86 break;

87 default: -- change read faterrupt onable
68 fnvert(RIE):

69 break:

70 andswitch

71 endioop

72 endparallal

73 andprog

Figure 4-1: A First Attempt at Writing the ACIA Controller in SML

Figure 4-1 shows a program that attempts to implement the ACIA controtler. The numbers at the beginning of
cach line were added for casy reference and are not part of the language.

A few comments are nccessary to explain the operation of this program.

Lines 3-5: In addition to declaring the input and output signals, four internal boolcans are also declared.
NEWIRQ is true when an interrupt has been gencrated but the microprocessor has not discovered why by reading
the status register. DCDST is true when the carrier has been lost but the microprocessor hasn’t rcad the status
register to discover the problem. DCDRD is true when the carricr has been lost and the microprocessor has not
handled this by reading the status register and then the data register. RIE (receive interrupt cnable) is true if the
microprocessor should be interrupted when a complete byte has been received.

Lines 7-9: The SML compiler includes a preprocessor similar to the C preprocessor. -These lines define three
macros that arc uscd to decode the command that the microprocessor is issuing.

Lines 11-13; Wait is defined to be a macro that does nothing until its argument becomes true.

Lines 22-34: This loop handles the incoming data. The procedure is to wait for the start bit (line 23) and then
start shifting (line 24). After 4 morc bits have been received, stop shifting (lines 25 and 26). The data register is now
full, and an interrupt should be sent if interrupts arc enabled (lines 27-33). The loop is restarted, and the ACIA
waits for the next start bit.

Lines 18-20: At any time. it is possible for the carrier to go away or the microproccssor to exccute a reset.
Should this happen, the current transfer should be aborted. This loop waits for either event to occur, and then
breaks out of the parallel, thus terminating the exccution of the loop at lines 22-34.

Line 36: If the carricr is lost or the ACIA should be reset, the break on line 19 causes exccution to resume
here. This statement stops shifting and empties the data register. Then the normal incoming data loop is restarted.

Lines 39-51: This loop handles the loss of carrier. To begin with, the controller waits for the carrier to go
away (line 40). Once the carrier has been lost, the DCD status bit is set (line 42). If the ACIA is not being resct, the
ACIA interrupts the microprocessor and indicates that a new loss of carrier has been detected (lines 44-46). Then
the ACIA waits for the carrier to be restored (line 48). Once the carrier has been restored, the DCD status bit is
clearcd (line 50) if the microprocessor has done something about the loss of carrier (and DCDRD has been resct asa
result).

Lines 53-71: 'This loop handles requests from the microprocessor. Nothing is done until a valid commmand is
received (line 54). If the command is a read status, the microprocessor will know about any interrupt or loss of
carrier, so NEWIRQ and DCDST arc cleared (lines 56-58). If the command is a read data, the data register has
been emptied, so RDRF should be cleared (lines $9-63). In addition, if a prior read status has found out about an
interrupt (NEWIRQ is low), the interrupt should be cancelled. If a prior read status has found out about a loss of
carrier (DCDST is low), then we should indicate that the loss has been handled by lowering DCDRD. If the
command is a reset, the ACIA cancels any interrupt and ignores a simultaneous loss of carrier (lines 64-66). If the
command is enable/disable interrupts, the current value of RIE is changed (lines 67-69). After processing the
command, the loop is restarted and the ACIA waits for the next command.

This program was compiled into a minimal 450 state machine in approximately 25 scconds of CPU time on a
VAX.

4.4. Verifving the ACIA Controller Using the Model Checker

The correct behavior of a controller such as the ACIA is typically described by a set of timing diagrams, such as
the one in figure 4-2. In this section, we describe how this timing diagram can be expressed in CTL.

In order to simplify the CTL. description of this timing diagram, we introduce a set of macro definitions. Since
DCD, DCDO and TRQ are usually high and COMM AND is usually low, we define normal to be DCD A DCDO A
IRQ A ~COMMAND. In addition, readstat is defined to be COMMAND A CL A -0 and readdata is defined to
be COMMAND A =C1 A CO. Using these simple definitions, we introduce a macro nextcommand(ype,next) that is
true if along all paths where DCD remains high and the next microprocessor request is (ype, DCDO and IRQ
remain high and next becomes true after the command is received. The definition of nextcommand is:

nextcommand(zype,next) : = [normal u =normal A (DCD A type — DCDO A IRQ A X next)]

In English, this formula states that along all paths, DCD, DCDO and IRQ arc high and COMMAND is low until
something changes. At this point, if DCD is still high and the microprocessor has issued a type command, then
DCDO and /R should remain high and next should be true in all next statcs.

Now that we have defined nextcommand, it is a simple matter to describe this timing diagram in CTI. by the
formula:

G (=DCD A —-COMMAND A ~DCDO A = RIT =+

LL LL

-"']--J 77 7=
DCD

Read Status oAk l_l At
Read Data A+ ok r—|
'/ '/ r/ '/
DCDO ——[L_
L/ &4
RQ — L
RIE ok v

Figure 4-2: A Sample Timing Diagram for the ACIA

% emc -c actal.asm
CTL MODEL CHECKER (version B1.0)

Reading acila...
Fairness constraint:

time: (1088 244)

|= G (~DCD =-> X DCDO).
The equation is TRUE.

time: (338 89)

{= G (~DCD & ~COMMAND & ~DCDO & ~RIE =>
X noxtcommsnd{readstat, nextcommand{readdatz, ~DCDO & ~IRQ))}).
The equation is FALSE along the path:
State 0:
State 1: C1 COMMAND DCD NEWIRQ DCOST DCDRD IRQ DCDO
State 377: CO COMMAND DCD OCDRD SHIFT IRQ DCDO
State 250: COMMAND DCD SHIFT DCDO

time: (2392 636)
i= .

End of session.
%

Figure 4-3: Verifying the First ACIA Controller Program

% emc -c aclaz.asm
CTL MODEL CHECKER (version B1.0)

Reading acie...
Fairness constratnt: .

time: (813 252)
j= G {~DCD => X 0CDO).
The eguation 1s TRUE.
time: (275 68)
|= G (~DCD & ~COMMAND & ~DCDO & ~RIE ->
X nextcommand{readstat, nextcommend(readdata, ~0CDO & ~IRQ))}.
The equation is TRUE.
time: (1870 581)
1= .

End of session.
*

Fipure 4-4: Verilying the Corrected ACTA Controtler Program

X nextcommand(readstat, nextcommand(readdata, ~DCDO A = IRQ)))

At the begining of figure 4-2, DCD, COMMAND, DCDO, and RII are all low. Whenever this situation occurs,
DCDO and IRQ will go high and remain high until a read status command is reccived (this is the meaning of
nextcommand(readstat...)). After the read status, DCDO and IRQ will remain high until a rcad data command is
reccived (according to the nested nextcommand). After the read data, DCDO and /RQ will both go low.

Figure 4-3 shows a transcript of the model checker running on the program in figure 4-1. The numbers in
parentheses are the total user cpu time and "system timce", in 1/60Ms of a sccond.

As the transcript shows, the program does raisc DCDO whenever DCD goes high, but it doesn’t lower DCDO if
DCD goes low before a read data occurs. Therefore, we change lines 59-63 of the original program to be:

69 case READDATA:

80 parallel

81 lower (RDRF) || IRQ := NEWIRQ || OCDRD := DCDST || OCDO :- DCDST | tDCD
82 endparallel:

83 break;

With this change, DCDO will be lowered if DCD is high and DCDST is low (indicating that a rcad status has
occurred). The new program compiles into 352 states in approximately 20 seconds of CPU time. The correctness of
this program is shown by the transcript in figure 4-4.

5. Directions For Future Research

Some circuits scem casier to specify by using a timing diagram like figure 3-3 than by a CTL formula. Of
course, CTL is more general since there is no analoguc of negation, disjunction, or conjunction for timing diagrams.
It may be possible to cither systematically translate timing diagrams into CTL formulas or check them directly using
an algorithm similar to the one used by EMC. If so, this would simplify the task of specifying a complicated circuit
and also allow the designer to be more confident that specifications actually mean what he thinks they mean.

In the casc of asynchronous circuits more research is nceded on realistic timing models. Clearly the arbitrary
delay model used in [11] is too conservative. The use of delay constraints as described in section 3 is a step in the
right direction. But it still docs not handle timing assumptions like the 3/2 rule, which requires that the delay
through any three gates be greater than the delay through any two. A more general scheme for delay constraints that
will handle the 3/2 rule and other similar timing assumptions is under development.

More rescarch is also nceded on how to extend the approach described in this paper to large, hicrarchically
constructed circuits. A first step in this direction is discussed in [8]. If one uses a subset of CTL, lower level circuits
can be simplified by "hiding" some of their internal nodes (more precisely, making it illegal to usc them in CTL
formulas) and merging groups of states that become indistinguishable into single states.

Finally, we believe in practice it may be possible to verify circuits that consist of arrays of identical cells by
using the model checker to verify a gencric instance of the cell design and then applying some form of induction.
Because CTL is propositional, however, the induction rule will probably have to be formulated outside of the logic.

References
{1] M. Browne, E. Clarke, D. Dill, B. Mishra, “Automatic Verification of Sequential Circuits”, CH DI85, Tokyo,
August 1983.

2] G. Berry and L. Cosserat, “The ESTEREL Synchronous Programming Language and its Mathematical
Semantics”, Tech. report, Ecole Nationale Supericune des Mines de Paris, 1934.

3] M. Ben-Ari, Z.Manna, A.Pnculi, “The Logic of Nextime”, 8th ACM Symposium on Principles of
Programming, Jan. 1981.

{4] G. V. Bochmann, “Hardware Specification with Temporal Logic: An Example”, IEEE Transactions on
Computers, Vol. C-31, No. 3, March 1982,

[5] M.C.Browne, E.M.Clarke, “SML-A Finite Statc Language”.

[6] E.M. Clarke, E.A. Emerson, “Synthesis of Synchronization Skeletons for Branching Time Temporal Logic”,
in Proc. of the Workshop on Logic of Programs, Yorktown Heights, NY, 1981.

{7 E.M. Clarke, E.A. Emerson, A.P. Sistla, “Automatic Verification of Finite-State Concurrcnt Systems using
Temporal Logic Specifications: A Practical Approach™, Tenth ACM Symposium on Principles of Program-
ming Languages, Austin, Texas, 1983,

(8] E.M. Clarke and B.Mishra, “Automatic Verilication of Asynchronous Circuits”, in Proc. of Logics of
Programs, Pittsburgh. Pa., Is. Clarke and D. Kozen, eds., 1983,

{91 George Cogar, “Asynchronous Sclf Controlled Shift Register™, U.S. Patent Oifice 3,160,715, January, 1965.

[10] David L. Dill, “Verification of Asynchronous Chrcuits with Tirning Dependencics™

{11} David L. Dill and Edmund M. Clarke, “Automatic Verification of Asyncleonons Circuits using Temporal

(12}
(13]
(14]

(15]

Logic”. 1985 Chapel Hill Conference on VI.51, Computer Science Press, May 1985.

E.A. Emcrson, EM. Clarke, “Characterizing Propertics of Parallel Programs as Fixpoints”, in Proc. of the
Seventh [nternational Colloguium on Automata, Languages and Programming, 1981,

Y. Malachi and S.S. Owicki, “Temporal Specifications of Sclf-Timed Systems”, VLSI Systems and
Computations, 1981. v

A. Pneuli, “The Temporal Semantics of Concurrent Programs”, /8th Symposium on Foundations of Computer
Science, 1977.

Veronis, Andrew, Microprocessors: Design and Applications, ,1978.

