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Abstract- Functions that map vectors with binary values into the inte­
gers are important for the design and verification of arithmetic circuits. 
We demonstrate how multi-terminal binary decision diagrams (MTBDDs) 
can be used to represent such functions concisely. The Walsh transform 
and Reed-Muller transform have numerous applications in computer-aided 
design, but the usefulness of these techniques in practice has been limited 
by the size of the binary valued functions that can be transformed. We 
show how to compute the MTBDD representations of the Walsh transform 
and Reed-Muller transform for functions with several hundred variables. 
Bryant and Chen have proposed binary moment diagrams (BMDs) for rep­
resenting the class of functions that we have considered. We discuss the 
relationship between these methods and describe a generalization called 
hybrid decision diagrams which is often much more concise. 

4.1 INTRODUCTION 

Large integer matrices arise naturally in the design and verification of arith­
metic circuits. In this chapter, we describe how to represent and manipulate 
such matrices efficiently using multi-terminal binary decision diagrams 
(MTBDDs) [7]. An MTBDD is like an ordinary binary decision diagram ex-
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cept that the terminal nodes can be arbitrary integer values instead of just 0 
and 1. Previously, we have demonstrated how MTBDDs can be used to rep­
resent functions that map vectors with binary values into the integers. Our 
representation for integer matrices is based on this technique. An integer ma­
trix with dimensions 2m X 2n can be treated as a function that maps vectors 
with binary values of length m + n into the integers. Various matrix operations 
can be performed by operations on the corresponding integer functions. 

The Walsh transform and the Reed-Muller transform [10] have numerous ap­
plications in computer aided design, particularly in synthesis and testing of 
circuits. Unfortunately, the usefulness of these techniques in practice has been 
limited by the size of the binary valued functions that can be handled by the 
transform. Since these transforms are given as vectors with length of 2n where 
n is the number of variables in the function, currently available techniques limit 
the functions to less than 20 variables. Since the Walsh matrix and the Reed­
Muller matrix have simple recursive definitions, they can be encoded efficiently 
by MTBDDs. In this manner, we can compute concise representations for the 
transforms of functions with several hundred variables. 

Recently, Bryant and Chen [5] have proposed binary moment diagrams (BMDs) 
for representing functions that map vectors with binary values into the inte­
gers. We show that the BMD of a function is the MTBDD that results from 
applying the inverse integer Reed-Muller transformation [11] to the function. 
The transformation can be computed using the techniques that we have de­
veloped for manipulating large matrices. The transformation matrix in this 
case is the Kronecker product [2] of a number of identical 2 x 2 matrices. We 
show that the Kronecker products of other 2 x 2 matrices behave in a similar 
way. In fact, the transformations obtained from Kronecker products of other 
matrices will in many cases be more concise than the BMD. We have further 
generalized this idea so that the transformation matrix can be the Kronecker 
product of different matrices. In this way, we obtain a representation, called 
hybrid decision diagram (HDD), that is more concise than either the MTBDD 
or the BMD. 

Our chapter is organized as follows: Section 4.2 gives the basic properties of 
MTBDDs that are used in the remainder of the chapter. Section 4.3 shows how 
the results of the previous section can be used to implement standard opera­
tions like addition and multiplication of very large integer matrices. Section 4.4 
describes how BDDs can be obtained for recursively defined integer matrices 
and shows how to compute the spectral transforms for binary valued functions. 
In Section 4.4 we also illustrate the power of this representation by comput­
ing the transforms of several very large binary valued functions. Section 4.5 
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describes the relationship between BMOs and the inverse integer Reed-Muller 
transformation. This section also introduces Kronecker product and shows how 
it can be used to generalize BMOs. The next section introduces hybrid deci­
sion diagrams and provides experimental evidence to show the usefulness of 
this representation. The chapter concludes in Section 4.7 with a brief summary 
and a discussion of directions for future research. 

4.2 MULTI-TERMINAL BINARY 
DECISION DIAGRAMS 

Ordered binary decision diagrams (BDDs) are a canonical representation for 
binary valued functions proposed by Bryant [41. They are often substantially 
more compact than traditional normal forms such as conjunctive normal form 
and disjunctive normal form. They can also be manipulated very efficiently. 
Hence, BODs have become widely used for a variety of CAD applications, 
including symbolic simulation, verification of combinational logic and, more 
recently, verification of sequential circuits. 

A BDD is similar to a binary decision tree, except that its structure is a directed 
acyclic graph (DAG) rather than a tree, and there is a strict total order placed 
on the occurrence of variables as one traverses the graph from root to leaf. 
Algorithms of linear complexity exist for computing BDD representations of 
-.f and f V g from the BODs for the functions f and g. 

Let f : nm -+ Z be a function that maps vectors with binary values of length m 
into integers. Suppose n}, ..• , nN are the possible values of J. The function J 
partitions the space nm of vectors with binary values into N sets {51, ... , 5 N }, 

such that 5i = {x I f(x) = nil. Let j; be the characteristic function of 5i. We 
say that J is in normal form if f(x) is represented as L:;:1 j;(x)· ni. This sum 
can be represented as a BDO with integers as its terminal nodes. We call such 
OAGs Multi-terminal BDDs (MTBODs) [1,71. 

Any arithmetic operation 0 on MTBOOs can be performed in the following 
way. 

h(x) = f(x) 0 g(x) 
N N' 

= L j;(x) . ni 0 L gj(x) . nj 
i=1 j=1 
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N N' 
= L L /;(x)gj(x)(n; 0 nj) 

;=1 j=1 

Since the /;'S are mutually disjoint and the g/s are mutually disjoint, the f;g/s 
are also mutually disjoint. Therefore, the summations En;0ni=n~ /;(x)gj(x) 
are mutually disjoint binary valued functions. 

/0 

/ g 

Figure 4.2.1 BDDs for / and g. 

/00g /00 go 

Xi = Xj 

Figure 4.2.2 BDD of / 0 g. 

We now give an efficient algorithm for computing f(x) 0 g(x). 

• If f is a leaf, then for each leaf of g, apply 0 with f as the first argument. 

• If 9 is a leaf, then for each leaf of f, apply 0 with 9 as the second argument. 
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• Otherwise, 1 and g have the form in Figure 4.2.1, and the BDD for 10 g, 
depending on the relative order of Xi and Xj, is given in Figure 4.2.2. We 
use the notation Xi -< Xj to mean that variable Xi precedes variable Xj in 
the total ordering for the BDD variables. 

The resulting diagram may not be in normal form. In order to convert it into 
normal form, a reduction phase is needed. The algorithm for this phase is es­
sentially identical to the reduction phase in Bryant's algorithm for constructing 
BDDs [4J . 

Functions that map vectors with binary values into the integers can also be 
represented as arrays of BDDs. Each BDD corresponds to one bit of the binary 
representation of the function value. In general, it is quite expensive to perform 
operations using this representation. 

4.3 MATRIX OPERATIONS 

Let M be a 2k x 2' matrix over Z. It is easy to see that M can be represented 
as a function M: Bk+1 -+ Z, such that Mij = M(x,fi), where x is the binary 
vector encoding i and Ii is the binary vector encoding j. Therefore, matrices 
with integer values can be represented as integer valued functions using the 
MTBDD representation in Section 4.2. We need the following operations for 
integer matrices for computing the spectral transforms: absolute value, scalar 
multiplication, addition, sorting a vector 01 integers, summation over one di­
mension, and matrix multiplication. The first three operations are trivial and 
will not be discussed in this chapter. 

• Summing matrices over one dimension 

It is sometimes desirable to obtain a 2n vector from a 2n x 2m matrix 
that each element in the vector is the summation of the corresponding 
column, i.e. M[ = E~:O-l Mij. When the matrices are expressed in terms 
of integer valued functions, the equation becomes M'(x) = EyM(x,y), 
where E y means "sum over all possible assignments to y". In practice, 
Ev M(x, fi) can be computed as: 

I: M(x, Yt. Y2,···, Ym) 
I1tI12···l1m 
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= 
1/11/2···l/m-1 I/m 

= L (M(X,Yl,Y2,···,Ym-}'0) 
1/11/2···l/m-1 

+ M(X,Yl, Y2, ... , Ym-l, 1)). 

In this way, each variable in y is eliminated by performing an addition. 

This operation can also be used to sum the elements of a vector and to 
obtain a two dimensional matrix from a three dimensional matrix by sum­
ming over one dimension. Although this operation works well in many 
cases, the worst case complexity can be exponential in the number of vari­
ables. 

• Sorting vectors 

Frequently, it is useful to rearrange the elements in a vector so that they are 
in non-decreasing order. When the number of different values in the vector 
is not very large, the sorted vector can be represented concisely without 
using MTBDDs. In order to uniquely determine a sorted vector, we only 
need to know the set of different values and the number of occurrences 
of each value. Thus, the sorted vector can be represented as a list with 
length m, where m is the number of different values. Each element in the 
list contains the value and number of its occurrences. 

It is easy to find the set of different values, since it is only necessary to 
collect all of the terminal nodes in the MTBDD. The number of occur­
rences Nk of a possible value Ck can be calculated as Nk = E;:~l(if Vi = 
Ck then 1 else 0), where Vi is the ith element of the vector. The oper­
ation of summation over a vector discussed previously can be applied to 
compute this sum. Although, in general, the complexity of the summation 
operation does not have a satisfactory upper bound, summation over a 
vector takes time linear in the size of the MTBDD representing the vector. 
Thus the complexity of the sorting operation is linear in both the number 
of distinct values in the vector and the size of the MTBDD representation 
of the vector. 

• Matrix multiplication 

Suppose that two matrices A and B have dimensions 2k x 21 and 21 X 2m , 

respectively. Let C = A x B be the product of A and B, C will have 
dimension 2k X 2m • If we treat A and B as integer valued functions, we 
can compute the product matrix C as 

C(x, z) = L A(x, y)B(y, z), 
ii 
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using the summation operation discussed above. In general, the complexity 
of this operation can also be exponential in the number of variables. 

4.4 SPECTRAL TRANSFORMATIONS OF 
BINARY VALUED FUNCTIONS 

Two of the most commonly used transformations in digital circuit design are 
the Walsh transform and the Reed-Muller transform [10]. In this section, we 
will show how the MTBDD based techniques described previously can be used 
to compute concise representations of the spectra for these transformations. 

The Walsh matrix Wn has the recursive definition: 

Wo = 1 W n - l ] 
-Wn-l . 

Each element of the matrix is determined by its row and column coordinates. 
We will encode the 2n columns by variables Yn, ... , Yl and the 2n rows by the 
variables x"' ... , Xl' Wn can be represented as an integer valued function: 

= 

Wn(Yn, ... , Yl, Xn,··· ,xI) 

{ Wn-l(Yn- .. ···'Yl,Xn-l, ... ,X.) 
-Wn- 1 (Yn- ..... ' Yl, Xn-l,···, xI) 

= Wn-l(Yn-l,···,Yl,Xn- ..... ,X.) 
·(if XnYn = 1 then -1 else 1). 

if (xnYn # 1) 
if (XnYn = 1) 

The above recursive definition can be expressed by an MTBDD as shown in 
Figure 4.4.1. 

The Walsh transform maps a binary valued vector f with length 2n to an 
integer vector of length 2n, denoted by W" in which each component is between 
- 2n to 2n. The transform can be easily expressed using the Walsh matrix, 
W(J) = Wn x (1 - 2f) [10]. For example, the vector [0,1,1,1,1,0,0, O]T is 
mapped into [0,0,0,0, -4,4,4, 4f. 

Likewise, the Reed-Muller matrix has the recursive definition: 

.no = 1 Rn = [ R n- 1 ° ] 
Rn-l R n- 1 
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-W .. _I 

Figure 4.4.1 MTBDD for W ... 

R .. _I o 

Figure 4.4.2 MTBDD for R ... 

which can be expressed by 

Rn(Yn,"" YI,xn,··· ,xt} 
= if ((,Xn)· Yn) then ° 

else Rn - l (Yn-l, ... ,YI, Xn-l,'" ,Xl) 

and has the MTBDD representation in Figure 4.4.2. 

CHAPTER 4 

The Reed-Muller transformation [111 maps a binary valued vector of length 2n 

into another binary valued vector of the same length. This transformation can 
be expressed by the matrix multiplication R(f) = Rn x /. However, during 
the matrix multiplication, integer addition is replaced by XOR in order to 
perform the modulo 2 arithmetic. For example, the vector [0,1,1,1,1,0,0, of 
is mapped into [0, 1, 1, 1, 1,0,0, 0IT. 
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Table 4.4.1 Experimental results for spectral transformations. 

example circuit Walsh coef. R-M coef. 
circuit # of output # of IBDDI IMTBDDI time IMTBDDI time 

inputs name gates 
c1908 33 9 880 3607 1850 44 27748 184 
c3540 50 361 1669 520 15985 171 4679 8.2 
c5315 178 813 2307 1397 7069 328 2647 25 

adderso 100 Cso 250 151 7456 23 249 2.3 
adder}oo 200 ClOO 500 301 29906 128 499 11 

When the number of variables is large, the transformations can be computed by 
representing the matrices and the vectors as MTBDDs and matrix operations 
can be performed as described in Section 4.3 and Section 4.4. 

To illustrate the power of these techniques, we have computed the Walsh trans­
formation and Reed-Muller transformation for some large combinatorial cir­
cuits, including two adders and some of the ISCAS benchmarks (Table 4.4.1). 
The examples were run on a DEC-5000 and run time is shown in seconds. We 
use the notation IBDDI to indicate the size of a BDD. A similar convention is 
used for MTBDDs. 

4.5 KRONECKER TRANSFORMATIONS 

Recently, Bryant and Chenl5] have developed a new representation for functions 
that map vectors with binary values to integer values. This representation is 
called the binary moment diagram (BMD) of the function. Instead of the 
Shannon expansion I = xiI + (1- x}/o, they use the expansion I = 10 + xf', 
where I' is equal to It - 10' After merging the common sub expressions, a DAG 
representation for the function is obtained. They prove in their paper that this 
gives a compact representation for certain functions which have exponential 
size if represented by MTBDDs directly. 

There is a close relationship between this representation and the inverse integer 
Reed-Muller transformation. The matrix for the inverse integer Reed-Muller 
transformation is defined recursively by 

So = 1 Sn = [Sn-l 0] 
-Sn-l Sn-l 
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Figure 4.5.1 MTBDD for inverse integer Reed-Muller transformation matrix. 

which has a linear MTBDD representation as shown in Figure 4.5.1. Let 7 E Bn 
be the binary representation of the integer 0 :::; i < 2n. A function / : Bn -+ Z 
can be represented as a column vector where the value of the i-th entry is 
/(7). We will not distinguish between a function and its corresponding column 
vector. The inverse integer Reed-Muller transformation can be obtained by 
multiplying the transformation matrix and the column vector S(f) = S x / 
using the technique described in the previous section. 

Theorem 4.5.1 The MTBDD 0/ the inverse integer Reed-Muller transform 0/ 
/ is isomorphic to the BMD 0/ /. 

The Kronecker product of two matrices is defined as follows: 

A0B = ( 
all aIm) 

: 0B 

anI anm 

( allB al~B ) . 

anIB ., . anmB 
= 

The inverse integer Reed-Muller matrix can be represented as the Kronecker 
product of n identical 2 x 2 matrices: 
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n 

The inverse integer Reed-Muller transformation is not the only method that can 
be used to reduce the size of the BDD representation. Other transformations 
that are defined as Kronecker products of 2 x 2 matrices may also provide 
concise representations for functions mapping vectors with binary values into 
integers. In particular, Reed-Muller matrix Rn and Walsh matrix Wn can be 
represented as Kronecker products shown below: 

= 

= 

= 

= 

( Rn-I 0 ) _ (1 0) (9 R 
Rn - I Rn - I - 1 1 n-I 

(~ ~) (9 •.. (9 (~ ~) and 
, , .. 

( 
( ~ , 

1 
-1 

n 

.. 
n 

1 
-1 

_~) (9Wn - 1 

). 
, 

In fact, the Kronecker product of any non-singular 2 x 2 matrices can be used 
as a transformation matrix and will produce a canonical representation for 
the function. We call such transformations Kronecker transformations. If 
the entries of the 2 x 2 matrix are restricted among {O, 1, -1 }, there are six 
interesting matrices 

o 
-1 

All other matrices are either singular or would produce BDDs that are isomor­
phic to one of the six matrices. 

We have applied these transformations to the functions discussed in paper[5]. 
The transformation can be partitioned into two groups ofthree each. The MTB­
DDs of the results after applying the transformations in the same group have 
the same complexity. Let X = E7=o xi2i, Y = Ej=o Yj2 j , Xj = E~;o xij2 i , 
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the sizes of the results after the Kronecker transformation are shown in Table 
4.5.1. The six base matrices can be divided into 2 classes, the first class consists 

of matrices (~ ~), (~ ~), and (~ ~) j the second class consists of 

matrices ( _ ~ ~), ( _ ~ ~) and ( _ ~ ~) . 

Table 4.5.1 Size of BDDs after Kronecker transformations. 

class X X2 XY X Ic TIi=oXj 
1 0(2n) 0(22n) 0(2n+m) 0(2Icn ) O(TIi=o 2nj ) 
2 O(n) 0(n2) O(nm) O(n lc ) O(TIj:-o nj) 

The possibility of using BMDs to represent binary valued functions is discussed 
in [5]. In general, the BMD does not appear to be better than the ordinary 
BDD for representing binary valued functions. In order to see why this is 
true, consider the binary Reed-Muller transformation [11], in which operations 
are performed over Z2 instead of the integers. The DAG representation of this 
transformation is sometimes called the Functional Decision Diagram or FDD[9]. 
This transformation can be obtained by applying the modulo 2 operations 
to all of the terminal nodes of the BMD. Consequently, the size of FDD is 
always smaller than the size of the BMD. Since the inverse binary Reed-Muller 
transformation is the same as the binary Reed-Muller transformation, the FDD 
for the binary Reed-Muller transformation for I is identical to the original BDD 
for I. Therefore, for every function I such that IFDDII < IBDDII, there exists 
another function I' which is the binary Reed-Muller transform of I such that 
IBDD!, I < IFDD I'I. In particular, both the BMD and the FDD representations 
for the middle bit of a multiplier are still exponential. 

4.6 HYBRID DECISION DIAGRAMS 

In the previous sections, we have discussed transformations that can be repre­
sented as the Kronecker product of a number of identical 2 x 2 matrices. If the 
transformation matrix is a Kronecker product of different 2 x 2 matrices, we 
still have a canonical representation of the function. We call transformations 
obtained from such matrices hybrid transformations. 
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A similar strategy has been tried by Becker [8]. However, his technique only 
works for the binary domain. When using his technique, all of the transforma­
tion matrices, the original function and the resulting function must have binary 
values. Our technique, on the other hand, works over the integers. By allowing 
integer values, we can handle a wider range of functions. Moreover, we can 
obtain larger reduction factors since we have more choices for transformation 
matrices. 

We can apply this idea to reduce the size of MTBDD representation of func­
tions. Since there is no known polynomial algorithm to find the hybrid trans­
formation that minimizes MTBDD size, we use a greedy algorithm to reduce 
the size. If we restrict the entries in the matrix to the set {O, 1, -I}, then there 
are six matrices we can try. For each variable, we select the matrix that gives 
the smallest MTBDD size. The MTBDDs obtained from such transformations 
are called hybrid decision diagrams (HDDs). 

Although a hybrid transformation can be performed by matrix multiplication, 
there is a more efficient way of computing it. It can be shown that [2] 

k k 

® Ai = IT (12.-1 ® Ai ® 12k-.), 
i=O i=O 

where each Ai is a 2 X 2 matrix and h is the identity matrix of size k x k. A 
transformation of the form (12.-1 ® Ai ® 12k-.) is called a basic transformation. 

Let Ai = (aoo aOI ), and let 9 be a function represented as a MTBDD, 
alO all 

then the basic transformation g' = (12.-1 ® Ai ® 12k-') X 9 can be computed as 

g' = if Xi then alO glz.=o + an glz.=1 
else aOO glz.=o + aOI glz.=I. 

As a result of this observation, the Kronecker transformation can be performed 
by a series of basic transformations. Moreover, it can be proved that the order 
of the basic transformations does not effect the final result. 

Suppose the transformation matrix for a hybrid decision diagram can be rep-

k (a'I a'2) resented as ®i=O I I • Then the hybrid decision diagram nodes at 
ai3 ai4 

level i is shown in Figure 4.6.1. 

We have tried to represent the ISCAS85 benchmark circuits using hybrid de­
cision diagrams 4.6.1. In some cases we have been able to reduce the size of 
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Figure 4.6.1 A hybrid decision diagram node at level i. 

Table 4.6.1 Experimental results for hybrid transformations of some 
ISCAS85 circuits. 

circuit without reordering wi th reordering 
circuit IBDDI IBMDI IHDDT IBDDI IBMDI IHDDI 
c1355 9419 1217689 2857 4407 478903 1518 
c1908 3703 140174 1374 1581 154488 632 
c5315 679593 2820 521 108 5106 107 

BDD representation by a factor of 1300. However, reductions of this mag­
nitude usually occur when the original function has a bad variable ordering. 
If dynamic variable ordering is used, then our method gives a much smaller 
reduction factor. 

We have tried several techniques to increase the number of possible matrices. 
The first technique involves increasing the number of entries in the matrices. 
This can be accomplished by allowing the entries to take larger values or by us­
ing the complex numbers {O, 1, -1, i, -i, 1 +i, 1- i, i-I, -i -I}. Unfortunately, 
neither extension improved the results significantly. 

The second technique involves using transformation matrices that are Kro­
necker products of larger matrices. For example, we have tried hybrid trans­
formations based on 4 x 4 matrices instead of 2 x 2 matrices. Although we 
have been able to reduce the BDD size even further using this technique, the 
time it takes to find such transformations is much bigger since the number of 
possibilities is considerably larger. 

Note that our technique can achieve comparable and sometimes better results 
than dynamic variable reordering. Thus, in some cases, it can serve as an 
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alternative to dynamic variable reordering. We conjecture that the combination 
of both techniques together may result in reductions that neither technique can 
achieve alone. 

In order to make the techniques described in the previous sections more useful, 
it is desirable to be able to perform various arithmetic operations and arithmetic 
relations on hybrid decision diagrams. This problem is discussed in [6) with 
detail. 

4.7 SUMMARY AND DIRECTIONS FOR 
FUTURE RESEARCH 

In this chapter, we have used MTBDDs to represent functions that map vectors 
with binary values into integers. We have also shown how to represent large 
integer matrices concisely and perform standard matrices operations such as 
scalar multiplication, matrix addition and matrix multiplication. 

The Walsh and Reed-Muller transforms are given by matrices that have simple 
recursive definitions. Because of this, the transforms can be computed effi­
ciently using MTBDDs. In fact, we are able to find the transforms of binary 
valued functions with several hundred variables. 

We discuss the relationship between spectral transforms and binary moment 
diagrams and describe a generalization called the hybrid decision diagram which 
is often much more concise. We have also discussed a method to generalize the 
hybrid decision diagrams by using permutations. 

In [7], we show how our technique for computing the Walsh transform can 
be used in technology mapping. Permutation and complementation of input 
variables does not change the sorted absolute values of the Walsh spectrum of 
a binary valued function. Thus, by comparing the Walsh spectra of two binary 
valued functions, we obtain a necessary condition for determining if one can be 
changed to the other by these operations. 

There are other possible applications of the techniques discussed in this chapter. 
MTBDDs enable us to represent and manipulate very large matrices efficiently. 
Some potential applications include image compression, numerical solution of 
partial differential equations and computation of limit state probabilities for 
Markov Chains. Since hybrid decision diagrams tend to be more concise than 



108 CHAPTER 4 

multi-terminal BDDs, they may prove even more useful for this type of appli­
cation. 
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