
4
MULTI-TERMINAL BINARY
DECISION DIAGRAMS AND

HYBRID DECISION DIAGRAMS
Edmund M. CLARKEl

Masahiro FUJITA2
Xudong ZHAOl

1 School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15219, USA

2 Fujitsu Labs of America Inc.
9950 Scott Blvd. Bldg. #94

Santa Clara, CA 95054-9104, USA

Abstract- Functions that map vectors with binary values into the inte­
gers are important for the design and verification of arithmetic circuits.
We demonstrate how multi-terminal binary decision diagrams (MTBDDs)
can be used to represent such functions concisely. The Walsh transform
and Reed-Muller transform have numerous applications in computer-aided
design, but the usefulness of these techniques in practice has been limited
by the size of the binary valued functions that can be transformed. We
show how to compute the MTBDD representations of the Walsh transform
and Reed-Muller transform for functions with several hundred variables.
Bryant and Chen have proposed binary moment diagrams (BMDs) for rep­
resenting the class of functions that we have considered. We discuss the
relationship between these methods and describe a generalization called
hybrid decision diagrams which is often much more concise.

4.1 INTRODUCTION

Large integer matrices arise naturally in the design and verification of arith­
metic circuits. In this chapter, we describe how to represent and manipulate
such matrices efficiently using multi-terminal binary decision diagrams
(MTBDDs) [7]. An MTBDD is like an ordinary binary decision diagram ex-

T. Sasao et al. (eds.), Representations of Discrete Functions
© Kluwer Academic Publishers 1996

94 CHAPTER 4

cept that the terminal nodes can be arbitrary integer values instead of just 0
and 1. Previously, we have demonstrated how MTBDDs can be used to rep­
resent functions that map vectors with binary values into the integers. Our
representation for integer matrices is based on this technique. An integer ma­
trix with dimensions 2m X 2n can be treated as a function that maps vectors
with binary values of length m + n into the integers. Various matrix operations
can be performed by operations on the corresponding integer functions.

The Walsh transform and the Reed-Muller transform [10] have numerous ap­
plications in computer aided design, particularly in synthesis and testing of
circuits. Unfortunately, the usefulness of these techniques in practice has been
limited by the size of the binary valued functions that can be handled by the
transform. Since these transforms are given as vectors with length of 2n where
n is the number of variables in the function, currently available techniques limit
the functions to less than 20 variables. Since the Walsh matrix and the Reed­
Muller matrix have simple recursive definitions, they can be encoded efficiently
by MTBDDs. In this manner, we can compute concise representations for the
transforms of functions with several hundred variables.

Recently, Bryant and Chen [5] have proposed binary moment diagrams (BMDs)
for representing functions that map vectors with binary values into the inte­
gers. We show that the BMD of a function is the MTBDD that results from
applying the inverse integer Reed-Muller transformation [11] to the function.
The transformation can be computed using the techniques that we have de­
veloped for manipulating large matrices. The transformation matrix in this
case is the Kronecker product [2] of a number of identical 2 x 2 matrices. We
show that the Kronecker products of other 2 x 2 matrices behave in a similar
way. In fact, the transformations obtained from Kronecker products of other
matrices will in many cases be more concise than the BMD. We have further
generalized this idea so that the transformation matrix can be the Kronecker
product of different matrices. In this way, we obtain a representation, called
hybrid decision diagram (HDD), that is more concise than either the MTBDD
or the BMD.

Our chapter is organized as follows: Section 4.2 gives the basic properties of
MTBDDs that are used in the remainder of the chapter. Section 4.3 shows how
the results of the previous section can be used to implement standard opera­
tions like addition and multiplication of very large integer matrices. Section 4.4
describes how BDDs can be obtained for recursively defined integer matrices
and shows how to compute the spectral transforms for binary valued functions.
In Section 4.4 we also illustrate the power of this representation by comput­
ing the transforms of several very large binary valued functions. Section 4.5

MTBDD and HDD 95

describes the relationship between BMOs and the inverse integer Reed-Muller
transformation. This section also introduces Kronecker product and shows how
it can be used to generalize BMOs. The next section introduces hybrid deci­
sion diagrams and provides experimental evidence to show the usefulness of
this representation. The chapter concludes in Section 4.7 with a brief summary
and a discussion of directions for future research.

4.2 MULTI-TERMINAL BINARY
DECISION DIAGRAMS

Ordered binary decision diagrams (BDDs) are a canonical representation for
binary valued functions proposed by Bryant [41. They are often substantially
more compact than traditional normal forms such as conjunctive normal form
and disjunctive normal form. They can also be manipulated very efficiently.
Hence, BODs have become widely used for a variety of CAD applications,
including symbolic simulation, verification of combinational logic and, more
recently, verification of sequential circuits.

A BDD is similar to a binary decision tree, except that its structure is a directed
acyclic graph (DAG) rather than a tree, and there is a strict total order placed
on the occurrence of variables as one traverses the graph from root to leaf.
Algorithms of linear complexity exist for computing BDD representations of
-.f and f V g from the BODs for the functions f and g.

Let f : nm -+ Z be a function that maps vectors with binary values of length m
into integers. Suppose n}, ..• , nN are the possible values of J. The function J
partitions the space nm of vectors with binary values into N sets {51, ... , 5 N },

such that 5i = {x I f(x) = nil. Let j; be the characteristic function of 5i. We
say that J is in normal form if f(x) is represented as L:;:1 j;(x)· ni. This sum
can be represented as a BDO with integers as its terminal nodes. We call such
OAGs Multi-terminal BDDs (MTBODs) [1,71.

Any arithmetic operation 0 on MTBOOs can be performed in the following
way.

h(x) = f(x) 0 g(x)
N N'

= L j;(x) . ni 0 L gj(x) . nj
i=1 j=1

96 CHAPTER 4

N N'
= L L /;(x)gj(x)(n; 0 nj)

;=1 j=1

Since the /;'S are mutually disjoint and the g/s are mutually disjoint, the f;g/s
are also mutually disjoint. Therefore, the summations En;0ni=n~ /;(x)gj(x)
are mutually disjoint binary valued functions.

/0

/ g

Figure 4.2.1 BDDs for / and g.

/00g /00 go

Xi = Xj

Figure 4.2.2 BDD of / 0 g.

We now give an efficient algorithm for computing f(x) 0 g(x).

• If f is a leaf, then for each leaf of g, apply 0 with f as the first argument.

• If 9 is a leaf, then for each leaf of f, apply 0 with 9 as the second argument.

MTBDD and HDD 97

• Otherwise, 1 and g have the form in Figure 4.2.1, and the BDD for 10 g,
depending on the relative order of Xi and Xj, is given in Figure 4.2.2. We
use the notation Xi -< Xj to mean that variable Xi precedes variable Xj in
the total ordering for the BDD variables.

The resulting diagram may not be in normal form. In order to convert it into
normal form, a reduction phase is needed. The algorithm for this phase is es­
sentially identical to the reduction phase in Bryant's algorithm for constructing
BDDs [4J .

Functions that map vectors with binary values into the integers can also be
represented as arrays of BDDs. Each BDD corresponds to one bit of the binary
representation of the function value. In general, it is quite expensive to perform
operations using this representation.

4.3 MATRIX OPERATIONS

Let M be a 2k x 2' matrix over Z. It is easy to see that M can be represented
as a function M: Bk+1 -+ Z, such that Mij = M(x,fi), where x is the binary
vector encoding i and Ii is the binary vector encoding j. Therefore, matrices
with integer values can be represented as integer valued functions using the
MTBDD representation in Section 4.2. We need the following operations for
integer matrices for computing the spectral transforms: absolute value, scalar
multiplication, addition, sorting a vector 01 integers, summation over one di­
mension, and matrix multiplication. The first three operations are trivial and
will not be discussed in this chapter.

• Summing matrices over one dimension

It is sometimes desirable to obtain a 2n vector from a 2n x 2m matrix
that each element in the vector is the summation of the corresponding
column, i.e. M[= E~:O-l Mij. When the matrices are expressed in terms
of integer valued functions, the equation becomes M'(x) = EyM(x,y),
where E y means "sum over all possible assignments to y". In practice,
Ev M(x, fi) can be computed as:

I: M(x, Yt. Y2,···, Ym)
I1tI12···l1m

98 CHAPTER 4

=
1/11/2···l/m-1 I/m

= L (M(X,Yl,Y2,···,Ym-}'0)
1/11/2···l/m-1

+ M(X,Yl, Y2, ... , Ym-l, 1)).

In this way, each variable in y is eliminated by performing an addition.

This operation can also be used to sum the elements of a vector and to
obtain a two dimensional matrix from a three dimensional matrix by sum­
ming over one dimension. Although this operation works well in many
cases, the worst case complexity can be exponential in the number of vari­
ables.

• Sorting vectors

Frequently, it is useful to rearrange the elements in a vector so that they are
in non-decreasing order. When the number of different values in the vector
is not very large, the sorted vector can be represented concisely without
using MTBDDs. In order to uniquely determine a sorted vector, we only
need to know the set of different values and the number of occurrences
of each value. Thus, the sorted vector can be represented as a list with
length m, where m is the number of different values. Each element in the
list contains the value and number of its occurrences.

It is easy to find the set of different values, since it is only necessary to
collect all of the terminal nodes in the MTBDD. The number of occur­
rences Nk of a possible value Ck can be calculated as Nk = E;:~l(if Vi =
Ck then 1 else 0), where Vi is the ith element of the vector. The oper­
ation of summation over a vector discussed previously can be applied to
compute this sum. Although, in general, the complexity of the summation
operation does not have a satisfactory upper bound, summation over a
vector takes time linear in the size of the MTBDD representing the vector.
Thus the complexity of the sorting operation is linear in both the number
of distinct values in the vector and the size of the MTBDD representation
of the vector.

• Matrix multiplication

Suppose that two matrices A and B have dimensions 2k x 21 and 21 X 2m ,

respectively. Let C = A x B be the product of A and B, C will have
dimension 2k X 2m • If we treat A and B as integer valued functions, we
can compute the product matrix C as

C(x, z) = L A(x, y)B(y, z),
ii

MTBDD and HDD 99

using the summation operation discussed above. In general, the complexity
of this operation can also be exponential in the number of variables.

4.4 SPECTRAL TRANSFORMATIONS OF
BINARY VALUED FUNCTIONS

Two of the most commonly used transformations in digital circuit design are
the Walsh transform and the Reed-Muller transform [10]. In this section, we
will show how the MTBDD based techniques described previously can be used
to compute concise representations of the spectra for these transformations.

The Walsh matrix Wn has the recursive definition:

Wo = 1 W n - l]
-Wn-l .

Each element of the matrix is determined by its row and column coordinates.
We will encode the 2n columns by variables Yn, ... , Yl and the 2n rows by the
variables x"' ... , Xl' Wn can be represented as an integer valued function:

=

Wn(Yn, ... , Yl, Xn,··· ,xI)

{ Wn-l(Yn- .. ···'Yl,Xn-l, ... ,X.)
-Wn- 1 (Yn- ' Yl, Xn-l,···, xI)

= Wn-l(Yn-l,···,Yl,Xn- ,X.)
·(if XnYn = 1 then -1 else 1).

if (xnYn # 1)
if (XnYn = 1)

The above recursive definition can be expressed by an MTBDD as shown in
Figure 4.4.1.

The Walsh transform maps a binary valued vector f with length 2n to an
integer vector of length 2n, denoted by W" in which each component is between
- 2n to 2n. The transform can be easily expressed using the Walsh matrix,
W(J) = Wn x (1 - 2f) [10]. For example, the vector [0,1,1,1,1,0,0, O]T is
mapped into [0,0,0,0, -4,4,4, 4f.

Likewise, the Reed-Muller matrix has the recursive definition:

.no = 1 Rn = [R n- 1 °]
Rn-l R n- 1

100

-W .. _I

Figure 4.4.1 MTBDD for W ...

R .. _I o

Figure 4.4.2 MTBDD for R ...

which can be expressed by

Rn(Yn,"" YI,xn,··· ,xt}
= if ((,Xn)· Yn) then °

else Rn - l (Yn-l, ... ,YI, Xn-l,'" ,Xl)

and has the MTBDD representation in Figure 4.4.2.

CHAPTER 4

The Reed-Muller transformation [111 maps a binary valued vector of length 2n

into another binary valued vector of the same length. This transformation can
be expressed by the matrix multiplication R(f) = Rn x /. However, during
the matrix multiplication, integer addition is replaced by XOR in order to
perform the modulo 2 arithmetic. For example, the vector [0,1,1,1,1,0,0, of
is mapped into [0, 1, 1, 1, 1,0,0, 0IT.

MTBDD and HDD 101

Table 4.4.1 Experimental results for spectral transformations.

example circuit Walsh coef. R-M coef.
circuit # of output # of IBDDI IMTBDDI time IMTBDDI time

inputs name gates
c1908 33 9 880 3607 1850 44 27748 184
c3540 50 361 1669 520 15985 171 4679 8.2
c5315 178 813 2307 1397 7069 328 2647 25

adderso 100 Cso 250 151 7456 23 249 2.3
adder}oo 200 ClOO 500 301 29906 128 499 11

When the number of variables is large, the transformations can be computed by
representing the matrices and the vectors as MTBDDs and matrix operations
can be performed as described in Section 4.3 and Section 4.4.

To illustrate the power of these techniques, we have computed the Walsh trans­
formation and Reed-Muller transformation for some large combinatorial cir­
cuits, including two adders and some of the ISCAS benchmarks (Table 4.4.1).
The examples were run on a DEC-5000 and run time is shown in seconds. We
use the notation IBDDI to indicate the size of a BDD. A similar convention is
used for MTBDDs.

4.5 KRONECKER TRANSFORMATIONS

Recently, Bryant and Chenl5] have developed a new representation for functions
that map vectors with binary values to integer values. This representation is
called the binary moment diagram (BMD) of the function. Instead of the
Shannon expansion I = xiI + (1- x}/o, they use the expansion I = 10 + xf',
where I' is equal to It - 10' After merging the common sub expressions, a DAG
representation for the function is obtained. They prove in their paper that this
gives a compact representation for certain functions which have exponential
size if represented by MTBDDs directly.

There is a close relationship between this representation and the inverse integer
Reed-Muller transformation. The matrix for the inverse integer Reed-Muller
transformation is defined recursively by

So = 1 Sn = [Sn-l 0]
-Sn-l Sn-l

102 CHAPTER 4

Figure 4.5.1 MTBDD for inverse integer Reed-Muller transformation matrix.

which has a linear MTBDD representation as shown in Figure 4.5.1. Let 7 E Bn
be the binary representation of the integer 0 :::; i < 2n. A function / : Bn -+ Z
can be represented as a column vector where the value of the i-th entry is
/(7). We will not distinguish between a function and its corresponding column
vector. The inverse integer Reed-Muller transformation can be obtained by
multiplying the transformation matrix and the column vector S(f) = S x /
using the technique described in the previous section.

Theorem 4.5.1 The MTBDD 0/ the inverse integer Reed-Muller transform 0/
/ is isomorphic to the BMD 0/ /.

The Kronecker product of two matrices is defined as follows:

A0B = (
all aIm)

: 0B

anI anm

(allB al~B) .

anIB ., . anmB
=

The inverse integer Reed-Muller matrix can be represented as the Kronecker
product of n identical 2 x 2 matrices:

MTBDD and HDD 103

n

The inverse integer Reed-Muller transformation is not the only method that can
be used to reduce the size of the BDD representation. Other transformations
that are defined as Kronecker products of 2 x 2 matrices may also provide
concise representations for functions mapping vectors with binary values into
integers. In particular, Reed-Muller matrix Rn and Walsh matrix Wn can be
represented as Kronecker products shown below:

=

=

=

=

(Rn-I 0) _ (1 0) (9 R
Rn - I Rn - I - 1 1 n-I

(~ ~) (9 •.. (9 (~ ~) and
, , ..

(
(~ ,

1
-1

n

..
n

1
-1

_~) (9Wn - 1

).
,

In fact, the Kronecker product of any non-singular 2 x 2 matrices can be used
as a transformation matrix and will produce a canonical representation for
the function. We call such transformations Kronecker transformations. If
the entries of the 2 x 2 matrix are restricted among {O, 1, -1 }, there are six
interesting matrices

o
-1

All other matrices are either singular or would produce BDDs that are isomor­
phic to one of the six matrices.

We have applied these transformations to the functions discussed in paper[5].
The transformation can be partitioned into two groups ofthree each. The MTB­
DDs of the results after applying the transformations in the same group have
the same complexity. Let X = E7=o xi2i, Y = Ej=o Yj2 j , Xj = E~;o xij2 i ,

104 CHAPTER 4

the sizes of the results after the Kronecker transformation are shown in Table
4.5.1. The six base matrices can be divided into 2 classes, the first class consists

of matrices (~ ~), (~ ~), and (~ ~) j the second class consists of

matrices (_ ~ ~), (_ ~ ~) and (_ ~ ~) .

Table 4.5.1 Size of BDDs after Kronecker transformations.

class X X2 XY X Ic TIi=oXj
1 0(2n) 0(22n) 0(2n+m) 0(2Icn) O(TIi=o 2nj)
2 O(n) 0(n2) O(nm) O(n lc) O(TIj:-o nj)

The possibility of using BMDs to represent binary valued functions is discussed
in [5]. In general, the BMD does not appear to be better than the ordinary
BDD for representing binary valued functions. In order to see why this is
true, consider the binary Reed-Muller transformation [11], in which operations
are performed over Z2 instead of the integers. The DAG representation of this
transformation is sometimes called the Functional Decision Diagram or FDD[9].
This transformation can be obtained by applying the modulo 2 operations
to all of the terminal nodes of the BMD. Consequently, the size of FDD is
always smaller than the size of the BMD. Since the inverse binary Reed-Muller
transformation is the same as the binary Reed-Muller transformation, the FDD
for the binary Reed-Muller transformation for I is identical to the original BDD
for I. Therefore, for every function I such that IFDDII < IBDDII, there exists
another function I' which is the binary Reed-Muller transform of I such that
IBDD!, I < IFDD I'I. In particular, both the BMD and the FDD representations
for the middle bit of a multiplier are still exponential.

4.6 HYBRID DECISION DIAGRAMS

In the previous sections, we have discussed transformations that can be repre­
sented as the Kronecker product of a number of identical 2 x 2 matrices. If the
transformation matrix is a Kronecker product of different 2 x 2 matrices, we
still have a canonical representation of the function. We call transformations
obtained from such matrices hybrid transformations.

MTBDD and HDD 105

A similar strategy has been tried by Becker [8]. However, his technique only
works for the binary domain. When using his technique, all of the transforma­
tion matrices, the original function and the resulting function must have binary
values. Our technique, on the other hand, works over the integers. By allowing
integer values, we can handle a wider range of functions. Moreover, we can
obtain larger reduction factors since we have more choices for transformation
matrices.

We can apply this idea to reduce the size of MTBDD representation of func­
tions. Since there is no known polynomial algorithm to find the hybrid trans­
formation that minimizes MTBDD size, we use a greedy algorithm to reduce
the size. If we restrict the entries in the matrix to the set {O, 1, -I}, then there
are six matrices we can try. For each variable, we select the matrix that gives
the smallest MTBDD size. The MTBDDs obtained from such transformations
are called hybrid decision diagrams (HDDs).

Although a hybrid transformation can be performed by matrix multiplication,
there is a more efficient way of computing it. It can be shown that [2]

k k

® Ai = IT (12.-1 ® Ai ® 12k-.),
i=O i=O

where each Ai is a 2 X 2 matrix and h is the identity matrix of size k x k. A
transformation of the form (12.-1 ® Ai ® 12k-.) is called a basic transformation.

Let Ai = (aoo aOI), and let 9 be a function represented as a MTBDD,
alO all

then the basic transformation g' = (12.-1 ® Ai ® 12k-') X 9 can be computed as

g' = if Xi then alO glz.=o + an glz.=1
else aOO glz.=o + aOI glz.=I.

As a result of this observation, the Kronecker transformation can be performed
by a series of basic transformations. Moreover, it can be proved that the order
of the basic transformations does not effect the final result.

Suppose the transformation matrix for a hybrid decision diagram can be rep-

k (a'I a'2) resented as ®i=O I I • Then the hybrid decision diagram nodes at
ai3 ai4

level i is shown in Figure 4.6.1.

We have tried to represent the ISCAS85 benchmark circuits using hybrid de­
cision diagrams 4.6.1. In some cases we have been able to reduce the size of

106 CHAPTER 4

Figure 4.6.1 A hybrid decision diagram node at level i.

Table 4.6.1 Experimental results for hybrid transformations of some
ISCAS85 circuits.

circuit without reordering wi th reordering
circuit IBDDI IBMDI IHDDT IBDDI IBMDI IHDDI
c1355 9419 1217689 2857 4407 478903 1518
c1908 3703 140174 1374 1581 154488 632
c5315 679593 2820 521 108 5106 107

BDD representation by a factor of 1300. However, reductions of this mag­
nitude usually occur when the original function has a bad variable ordering.
If dynamic variable ordering is used, then our method gives a much smaller
reduction factor.

We have tried several techniques to increase the number of possible matrices.
The first technique involves increasing the number of entries in the matrices.
This can be accomplished by allowing the entries to take larger values or by us­
ing the complex numbers {O, 1, -1, i, -i, 1 +i, 1- i, i-I, -i -I}. Unfortunately,
neither extension improved the results significantly.

The second technique involves using transformation matrices that are Kro­
necker products of larger matrices. For example, we have tried hybrid trans­
formations based on 4 x 4 matrices instead of 2 x 2 matrices. Although we
have been able to reduce the BDD size even further using this technique, the
time it takes to find such transformations is much bigger since the number of
possibilities is considerably larger.

Note that our technique can achieve comparable and sometimes better results
than dynamic variable reordering. Thus, in some cases, it can serve as an

MTBDD and HDD 107

alternative to dynamic variable reordering. We conjecture that the combination
of both techniques together may result in reductions that neither technique can
achieve alone.

In order to make the techniques described in the previous sections more useful,
it is desirable to be able to perform various arithmetic operations and arithmetic
relations on hybrid decision diagrams. This problem is discussed in [6) with
detail.

4.7 SUMMARY AND DIRECTIONS FOR
FUTURE RESEARCH

In this chapter, we have used MTBDDs to represent functions that map vectors
with binary values into integers. We have also shown how to represent large
integer matrices concisely and perform standard matrices operations such as
scalar multiplication, matrix addition and matrix multiplication.

The Walsh and Reed-Muller transforms are given by matrices that have simple
recursive definitions. Because of this, the transforms can be computed effi­
ciently using MTBDDs. In fact, we are able to find the transforms of binary
valued functions with several hundred variables.

We discuss the relationship between spectral transforms and binary moment
diagrams and describe a generalization called the hybrid decision diagram which
is often much more concise. We have also discussed a method to generalize the
hybrid decision diagrams by using permutations.

In [7], we show how our technique for computing the Walsh transform can
be used in technology mapping. Permutation and complementation of input
variables does not change the sorted absolute values of the Walsh spectrum of
a binary valued function. Thus, by comparing the Walsh spectra of two binary
valued functions, we obtain a necessary condition for determining if one can be
changed to the other by these operations.

There are other possible applications of the techniques discussed in this chapter.
MTBDDs enable us to represent and manipulate very large matrices efficiently.
Some potential applications include image compression, numerical solution of
partial differential equations and computation of limit state probabilities for
Markov Chains. Since hybrid decision diagrams tend to be more concise than

108 CHAPTER 4

multi-terminal BDDs, they may prove even more useful for this type of appli­
cation.

REFERENCES
[1) R.1. Babar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and

F. Somenzi, " Algebraic Decision Diagrams and their applications," Proceeding~
of the 1993 IEEE International Conference on Computer Aided De~ign, pp. 188-
191, IEEE Computer Society Press, November 1993.

(2) R. Bellman, Introduction to Matrix Analysi~, chapter 12, pp. 231-248, McGraw­
Hill, 1970.

(3) J. Bern, C. Meinel, and A. Slobodova, " Efficient OBDD-based Boolean manipu­
lation in CAD beyond current limits," Proceeding~ of the 32nd ACM/IEEE De­
~ign Automation Conference, pp. 408-413, IEEE Computer Society Press, June
1995.

[4] R. E. Bryant, " Graph-based algorithms for Boolean function manipulation,"
IEEE Transactio~ on Computer~, C-35(8), pp. 677-691, 1986.

[5] R. E. Bryant and Y. A. Chen, " Verification of arithmetic functions with Binary
Moment Diagrams," Proceeding~ of the 32nd ACM/IEEE Design Automation
Conference, pp. 535-541, IEEE Computer Society Press, June 1995.

[6] E. M. Clarke, M. Fujita, and X. Zhao, " Hybrid Decision Diagrams - overcoming
the limitations of MTBDDs and BMDs," Proceedings of the 1995 Proceedings of
the IEEE International Conference on Computer Aided Design, pp. 159-163,
IEEE Computer Society Press, November 1995.

[7] E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang, " Spectral trans­
forms for large Boolean functions with applications to technology mapping,"
Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 54-60,
IEEE Computer Society Press, June 1993.

[8] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski, " Efficient
representation and manipulation of switching functions based on Ordered Kro­
necker Functional Decision Diagrams," Proceedings of the 32nd ACM/IEEE De­
sign Automation Conference, pp. 415-419, IEEE Computer Society Press, June
1994. (Also Chapter 7 of this book).

[9] R. Drechsler, M. Theobald, and B. Becker, " Fast OFDD based minimization
of fixed polarity Reed-Muller expressions," Proceedings of the 199~ European
Design Automation Conference, pp. 2-7, IEEE Computer Society Press, June
1994.

[10] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in Digital Logic,
Academic Press, 1985.

[11] D. E. Muller, " Application of Boolean algebra to switching circuit design and
error detection", IRE Trans., 1:6-12, pp. 6-12, 1954.

