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Abstract. A central problem in systems biology is to identify param-
eter values such that a biological model satisfies some behavioral con-
straints (e.g., time series). In this paper we focus on parameter synthesis
for hybrid (continuous/discrete) models, as many biological systems can
possess multiple operational modes with specific continuous dynamics
in each mode. These biological systems are naturally modeled as hy-
brid automata, most often with nonlinear continuous dynamics. How-
ever, hybrid automata are notoriously hard to analyze — even simple
reachability for hybrid systems with linear differential dynamics is an
undecidable problem. In this paper we present a parameter synthesis
framework based on δ-complete decision procedures that sidesteps unde-
cidability. We demonstrate our method on two highly nonlinear hybrid
models of the cardiac cell action potential. The results show that our pa-
rameter synthesis framework is convenient and efficient, and it enabled
us to select a suitable model to study and identify crucial parameter
ranges related to cardiac disorders.

1 Introduction

Computational modeling and analysis methods are playing a crucial role in un-
derstanding the complex dynamics of biological systems [1]. In this paper we
address the parameter synthesis problem for hybrid models of biological sys-
tems. This problem amounts to finding sets of parameter values for which a
model satisfies some precise behavioral constraints, such as time series or reach-
ability properties. We focus on hybrid continuous/discrete models, since one of
the key aspects of many biological systems is their differing behavior in various
‘discrete’ modes. For example, it is well-known that the five stages of the cell
cycle are driven by the activation of different signaling pathways. Hence, hybrid
system models are often used in systems biology (see, e.g., [2–9]).

Hybrid systems combine discrete control computation with continuous-time
evolution. The state space of a hybrid system is defined by a finite set of contin-
uous variables and modes. In each mode, the continuous evolution (flow) of the
system is usually given by the solution of ordinary differential equations (ODEs).
At any given time a hybrid system dwells in one of its modes and each variable
evolves accordingly to the flow in the mode. Jump conditions control the switch
to another mode, possibly followed by a ‘reset’ of the continuous variables. Thus,
the temporal dynamics of a hybrid system is piecewise continuous.
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Hybrid models of biological systems often involve many parameters such as
rate constants of biochemical reactions, initial conditions, and threshold values
in jump conditions. Generally, only a few rate constants will be available or
can be measured experimentally — in the latter case the rate constants are
obtained by fitting the model to experimental observations. Furthermore, it is
also crucial to figure out what initial conditions or jump conditions may lead to
an unsafe state of the system, especially when studying hybrid systems used to
inform clinical therapy [10]. All such questions fall within the parameter synthesis
problem, which is extremely difficult for hybrid systems. Even simple reachability
questions for hybrid systems with linear (differential) dynamics are undecidable
[11]. Therefore, the parameter synthesis problem needs to be relaxed in a sound
manner in order to solve it algorithmically — this is the approach we shall follow.

In this paper, we tackle the parameter synthesis problem using δ-complete
procedures [12] for deciding first-order formula with arbitrary computable real
functions, including solutions of Lipschitz-continuous ODEs [13]. Such proce-
dures may return answers with one-sided δ-bounded errors, thereby overcoming
undecidability issues (note that the maximum allowable error δ is an arbitrarily
small positive rational). In our approach we describe the set of states of in-
terest as a first-order logic formula and perform bounded model checking [14]
to determine reachability of these states. We then adapt an interval constrains
propagation based algorithm to explore the parameter space and identify the
sets of resulting parameters. We show the applicability of our method by carry-
ing out a thorough case study characterized by highly nonlinear hybrid models.
We discriminate two cardiac cell action potential models [15, 16] in terms of cell-
type specificity and identify parameter ranges for which a cardiac cell may lose
excitability. The results show that our method can obtain biological insights that
are consistent with experimental observations, and scales to complex systems.
In particular, the analysis we carried out in the cardiac case study is difficult to
be performed by — if not out of the scope of — state-of-the-art tools [17–20].

Related Work. A survey of modeling and analysis of biological systems using
hybrid models can be found in [21]. Analyzing the properties of biochemical net-
works using formal verification techniques is being actively pursued by a number
of researchers, for which we refer to Brim’s et al. recent survey [22]. Of particular
interest in our context are parameter synthesis methods for qualitative behav-
ior specifications (e.g., temporal logic formulas). The method introduced in [23]
can deal with parameter synthesis for piecewise affine linear systems. For ODEs,
Donzé et al. [24] explore the parameter space using adaptive sampling and sim-
ulation, while Palaniappan et al. [25] use a statistical model checking approach.
Other techniques perform a sweep of the entire (bounded) parameter space, af-
ter it has been discretized [26, 27]. Randomized optimization techniques were
used for parameter estimation in stochastic hybrid systems [28], while identi-
fication techniques for affine systems were used in [29]. The techniques above
can handle nonlinear hybrid systems only through sampling and simulation, and
so are incomplete. Our approach is instead δ-complete. It is based on verified
numerical integration and constraint programming algorithms, which effectively
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enable an over-approximation of the system dynamics to be computed. Thus, if
a model is found to be unfeasible (i.e. an unsat answer is returned, see Section 2
for more details), then this is correct. This behavior better fits with the safety
requirements expected by formal verification.

2 δ-Decisions for Hybrid Models

We encode reachability problems of hybrid automata using a first-order language
LRF over the reals, which allows the use of a wide range of real functions including
nonlinear ODEs. We then use δ-complete decision procedures to find solutions
to these formulas to synthesize parameters.

Definition 1 (LRF -Formulas). Let F be a collection of computable real func-
tions. We define:

t := x | f(t(x)), where f ∈ F (constants are 0-ary functions);

ϕ := t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

By computable real function we mean Type 2 computable, which informally
requires that a (real) function can be algorithmically evaluated with arbitrary
accuracy. Since in general LRF formulas are undecidable, the decision problem
needs to be relaxed. In particular, for any LRF formula φ and any rational δ > 0
one can obtain a δ-weakening formula φδ from φ by substituting the atoms t > 0
with t > −δ (and similarly for t ≥ 0). Obviously, φ implies φδ, but not the vice
versa. Now, the δ-decision problem is deciding correctly whether:

– φ is false (unsat);
– φδ is true (δ-sat).

If both cases are true, then either decision is correct. In previous work [12, 13, 30]
we presented algorithms (δ-complete decision procedures) for solving δ-decision
problems for LRF and for ODEs. These algorithms have been implemented in
the dReal toolset [31]. More details on δ-decision problems are in Appendix.

Now we state the encoding for hybrid models. Recall that hybrid automata
generalize finite-state automata by permitting continuous-time evolution (or
flow) in each discrete state (or mode). Also, in each mode an invariant must
be satisfied by the flow, and mode switches are controlled by jump conditions.

Definition 2 (LRF -Representations of Hybrid Automata). A hybrid au-
tomaton in LRF -representation is a tuple

H = 〈X,Q, {flowq(x,y, t) : q ∈ Q}, {invq(x) : q ∈ Q},
{jumpq→q′(x,y) : q, q

′ ∈ Q}, {initq(x) : q ∈ Q}〉

where X ⊆ R
n for some n ∈ N, Q = {q1, ..., qm} is a finite set of modes, and the

other components are finite sets of quantifier-free LRF -formulas.
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Example 1 (Nonlinear Bouncing Ball). The bouncing ball is a standard hybrid
system model. It can be LRF -represented in the following way:

– X = R
2 and Q = {qu, qd}. We use qu to represent bounce-back mode and qd

the falling mode.

– flow = {flowqu(x0, v0, xt, vt, t), flowqd(x0, v0, xt, vt, t)}. We use x to denote
the height of the ball and v its velocity. Instead of using time derivatives, we
can directly write the flows as integrals over time, using LRF -formulas:

• flowqu(x0, v0, xt, vt, t) defines the dynamics in the bounce-back phase:

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1− βv(s)2)ds)

• flowqd(x0, v0, xt, vt, t) defines the dynamics in the falling phase:

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1 + βv(s)2)ds)

where β is a constant. Again, note that the integration terms define Type 2
computable functions.

– jump = {jumpqu→qd
(x, v, x′, v′), jumpqd→qu(x, v, x

′, v′)} where

• jumpqu→qd(x, v, x
′, v′) is (v = 0 ∧ x′ = x ∧ v′ = v).

• jumpqd→qu(x, v, x
′, v′) is (x = 0∧v′ = αv∧x′ = x), for some constant α.

– initqd is (x = 10 ∧ v = 0) and initqu is ⊥.

– invqd is (x >= 0 ∧ v >= 0) and invqu is (x >= 0 ∧ v <= 0).

We now show the encoding of bounded reachability, which is used for encoding
the parameter synthesis problem. We want to decide whether a given hybrid
system reaches a particular region of its state space after following a (bounded)
number of discrete transitions, i.e., jumps. First, we need to define auxiliary
formulas used for ensuring that a particular mode is picked at a certain step.

Definition 3. Let Q = {q1, ..., qm} be a set of modes. For any q ∈ Q, and i ∈ N,
use biq to represent a Boolean variable. We now define

enforceQ(q, i) = biq ∧
∧

p∈Q\{q}
¬bip

enforceQ(q, q
′, i) = biq ∧ ¬bi+1

q′ ∧
∧

p∈Q\{q}
¬bip ∧

∧
p′∈Q\{q′}

¬bi+1
p′

We omit the subscript Q when the context is clear.

We can now define the following formula that checks whether a goal region of
the automaton state space is reachable after exactly k discrete transitions. We
first state the simpler case of a hybrid system without invariants.
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Definition 4 (k-Step Reachability, Invariant-Free Case). Suppose H is
an invariant-free hybrid automaton, U a subset of its state space represented by
goal, and M > 0. The formula ReachH,U (k,M) is defined as:

∃Xx0∃Xxt
0 · · · ∃Xxk∃Xxt

k∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(x0) ∧ flowq(x0,x

t
0, t0) ∧ enforce(q, 0)

)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′ (x

t
i,xi+1) ∧ enforce(q, q′, i)

∧flowq′(xi+1,x
t
i+1, ti+1) ∧ enforce(q′, i+ 1)

))

∧
∨
q∈Q

(goalq(x
t
k) ∧ enforce(q, k))

where ∃Xx is a shorthand for ∃x ∈ X.

Intuitively, the trajectories start with some initial state satisfying initq(x0) for
some q. Then, in each step the trajectory follows flowq(xi,x

t
i, t) and makes a

continuous flow from xi to xt
i after time t. When the automaton makes a jump

from mode q′ to q, it resets variables following jumpq′→q(x
t
k,xk+1). The auxiliary

enforce formulas ensure that picking jumpq→q′ in the i-the step enforces picking

flow′
q in the (i+ 1)-th step.

When the invariants are not trivial, we need to ensure that for all the time
points along a continuous flow, the invariant condition holds. We need to uni-
versally quantify over time, and the encoding is as follows:

Definition 5 (k-Step Reachability, Nontrivial Invariant). Suppose H con-
tains invariants, and U is a subset of the state space represented by goal. The
LRF -formula ReachH,U (k,M) is defined as:

∃Xx0∃Xxt
0 · · · ∃Xxk∃Xxt

k∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(x0) ∧ flowq(x0,x

t
0, t0) ∧ enforce(q, 0)

∧∀[0,t0]t∀Xx (flowq(x0,x, t) → invq(x))
)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(x

t
i,xi+1) ∧ flowq′(xi+1,x

t
i+1, ti+1) ∧ enforce(q, q′, i)

∧enforce(q′, i+ 1) ∧ ∀[0,ti+1]t∀Xx (flowq′(xi+1,x, t) → invq′(x)))
))

∧
∨
q∈Q

(goalq(x
t
k) ∧ enforce(q, k)).

The extra universal quantifier for each continuous flow expresses the requirement
that for all the time points between the initial and ending time point (t ∈
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[0, ti+1]) in a flow, the continuous variables x must take values that satisfy the
invariant conditions invq(x).

Parameter Identification. The parameter identification problem we tackle is ba-
sically a k-step reachability question: Is there a parameter combination for which
the model reaches the goal region in k steps? If none exists, then the model is
unfeasible. Otherwise, a witness (i.e., a value for each parameter) is returned.
Note that because we ask for δ-decisions, the returned witness might correspond
to a spurious behavior of the system. The occurrence of such behaviors can be
controlled via the precision δ, but in general cannot be eliminated. We have
developed the dReach tool (http://dreal.cs.cmu.edu/dreach.html) that au-
tomatically builds reachability formulas from a hybrid model and a goal descrip-
tion. Such formulas are then verified by our δ-complete solver dReal [31].

3 Case Study

To exemplify different aspects of our parameter synthesis framework, we carried
out a case study on models of cardiac cell electrical dynamics. All experiments
reported below were done using a machine with an Intel Core i5 3.4GHz processor
and 8GB RAM. The precision δ was set to 10−4. The model files are available
at http://www.cs.cmu.edu/~liubing/cmsb14/.

3.1 Hybrid Models of Cardiac Cells

The heart rhythm is enabled by the electrical activity of cardiac muscle cells,
which make up the atria and ventricles. The electrical dynamics of cardiac cells
is governed by the organized opening and closing of ion channel gates on the cell
membrane. Improper functioning of the cardiac cell ionic channels can cause the
cells to lose excitability, which disorders electric wave propagation and leads to
cardiac abnormalities such as ventricular tachycardia or fibrillation. In order to
understand the mechanisms of cardiac disorders, hybrid automata models have
been recently developed, including the Fenton-Karma (FK) model [15] and the
Bueno-Cherry-Fenton (BCF) model [16].

BCF Model. In this model, the change of cells transmembrane potential u, in
response to an external stimulus ε from neighboring cells, is regulated by a fast
ion channel gate v and two slow gates w and s. Figure 1(a) shows the four modes
associated with the BCF model. In Mode 1, gates v and w are open and gate s
is closed. The transmembrane potassium current causes the decay of u. The cell
is resting and waiting for stimulation. We assume an external stimulus ε equal
to 1 that lasts for 1 millisecond. The stimulation causes u to increase, which
may trigger jump1→2 : u ≥ θo. When this jump takes place, the system switches
to Mode 2 and v starts closing, and the decay rate of u changes. The system
will jump to Mode 3 if u ≥ θw. In Mode 3, w is also closing; u is governed by
the potassium current and the calcium current. When u ≥ θv, Mode 4 can be
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Fig. 1. Hybrid models of cardiac cells. (a) BCF model. (b) FK model.

reached, which signals a successful action potential (AP) initiation. In Mode 4,
u reaches its peak due to the fast opening of the sodium channel. The cardiac
muscle contracts and u starts decreasing.

FK Model. As shown in Figure 1(b), this model comprises the same four modes
and equations of the BCF model, except that the current change induced by
gate s is reduced to an explicit term which is integrated in the right-hand side
of du/dt. Similarly to the BCF model, an AP can be successfully initiated when
Mode 4 is reached.

We specified both the BCF and the FK models using dReach’s modeling
language. Starting from the state (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1])
in Mode 1 (note that the value of s does not matter to FK, which does not
contains s), we checked whether Mode 4 is reachable using the parameter values
presented in [16]. This was true (i.e., dReach returned δ-sat) for both models
(Table 1, Run#1 and Run#2). The simulation of a few witness trajectories are
shown in Figure 2 (the stimulus ε was reset every 500 milliseconds).

3.2 Model Falsification

Both the BCF and the FK models were able to reproduce essential characteris-
tics (e.g., steady-state action potential duration) observed in human ventricular
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Fig. 2. The simulated witness trajectories of the BCF and the FK models

cells [15, 16]. However, ventricular cells comprise three cell types, which pos-
sess different dynamical characteristics. For instance, Figure 3 shows that time
courses of APs for epicardial and endocardial human ventricular cells have dif-
ferent morphologies [32]. The important spike-and-dome AP morphology can
only be observed in epicardial cells but not endocardial cells. Hence, in a model-
based study, one needs to identify cell-type-specific parameters to take account
into cellular heterogeneity. The feasibility of this task will depend on the model
of choice, as for certain models it would be impossible to reproduce a dynamical
behavior no matter which parameter values are used. Here we illustrate that
such models can be ruled out efficiently using our δ-decision based parameter
synthesis framework.

Robustness. We first considered the robustness property of the models. To ensure
proper functioning of cardiac cells in noisy environments, an important property
of the system is to filter out insignificant stimulation. Thus, we expected to
see that AP could not be initiated for small ε. Starting from the state (u = 0,
v = 1, w = 1, s = 0, ε ∈ [0.0, 0.25]) in Mode 1, we checked the reachability of
Mode 4. The unsat answer was returned by dReach for both the BCF and FK
model (Table 1, Run#3 and Run#4), showing that the models are robust to
stimulation amplitude.

AP morphology. Next we tested whether the models could reproduce the spike-
and-dome AP morphology of epicardial cells. We introduced three auxiliary
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Epicardial AP Endocardial AP 

Fig. 3. Different AP morphologies observed in epicardial and endocardial cells [32]

modes (Mode 5, 6 and 7). If time ≥ 1, the system will jump from Mode 4
to Mode 5, in which ε will be reset to 0. The system will jump from Mode 5
to Mode 6 if time ≥ 10, and will jump from Mode 6 to Mode 7 if time ≥ 30.
In Modes 6 and 7, we enforced invariants 1.0 ≤ u ≤ 1.15 and 1.18 ≤ u ≤ 2.0,
respectively, to depict the spike-and-dome morphology observed experimentally
[32]. We then checked reachability of Mode 7, starting from Mode 1 in state
(u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1], τsi ∈ [1, 2], us ∈ [0.5, 2]), where
τsi and us are two model parameters that govern the dynamics of u and s in
Mode 3 and 4 (see Figure 1). The δ-sat answer was returned for BCF (Table 1,
Run#5), while unsat was returned for FK (Table 1, Run#6), indicating that the
FK model cannot reproduce spike-and-dome shapes using reasonable parameter
values. Hence, FK is not suitable to study the dynamics of epicardial cells.

We remark that any unsat answer is guaranteed to be correct. This effectively
means that we proved that the FK model cannot reach Mode 7 for any starting
state in the rectangle (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1], τsi ∈ [1, 2],
us ∈ [0.5, 2]). Sampling-based approaches cannot have the same level of certainty,
while other approaches cannot handle the complexity of the flows in the model.

3.3 Parameter Identification for Cardiac Disorders

When the system cannot reach Mode 4, the cardiac cell loses excitability, which
might lead to tachycardia or fibrillation. Starting with Mode 1, our task was
to identify parameter ranges for which the system will never go into Mode 4.
In what follows, we focused our study on the BCF model. Grosu et al. [33]
have tackled this parameter identification problem by linearizing the BCF model
into a piecewise-multiaffine system (referred as MHA). With this simplification,
parameter ranges could be identified using the Rovergene tool [23]. However,
the BCF and MHA models have different sets of parameters. Here we identify
disease-related ranges of the original BCF parameters. It can be derived from
the model equations that τo1 and τo2 govern the dynamics of u in Mode 1 and
Mode 2 respectively, and hence determine whether jump1→2 and jump2→3 can
be triggered. For τo1, we performed a binary search in value domain (0, 0.01]
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to obtain a threshold value θo1 such that Mode 4 is unreachable if τo1 < θo1
while Mode 4 is reachable if τo1 ≥ θto1. The search procedure is illustrated in
Algorithm 1. Specifically, we set candidate θio1 to be the midpoint of the search
domain. We then checked the reachability of Mode 4 with the initial state (u = 0,
v = 1, w = 1, s = 0, θo1 = θio1). If δ-sat was returned (e.g., Table 1, Run#7), we
would recursively check the left-hand half of the search domain; otherwise (e.g.,
Table 1, Run#8), we would check the other half.

Algorithm 1. Identify parameter threshold value using binary search

1 BinarySearch(M , vmin, vmax, δ)
input : A dReach model M ; lower and upper bounds of parameter v: vmin,

vmax; precision δ
output: A threshold value θv

2 initialization: θv ← (vmin + vmax)/2;
3 if |vmin − vmax| ≤ δ then
4 return θv ;
5 else
6 Res ← dReach(M , θv, δ) ;
7 if Res = δ-sat then
8 return BinarySearch(M , vmin, θv, δ)
9 else

10 return BinarySearch(M , θv, vmax, δ)
11 end

12 end

In this manner, we identified θo1 to be 0.006, which suggest that when τo1 ∈
(0, 0.006), the system will always stay in Mode 1 (Table 1, Run#9). Similarly,
we also obtained a threshold value of 0.13 for τo2, such that Mode 3 cannot
be reached when τo2 ∈ (0, 0.13) (Table 1, Run#10). Furthermore, whether the
system can jump from Mode 3 to Mode 4 depends on the interplay between τso1
and τso2. For each value τ iso2 of τso2 sampled from domain [0, 100], we performed
the binary search in [0, 5] to find the threshold value θso1 such that Mode 4
is unreachable when τso1 ∈ [0, θso1] and τso2 = τ iso2. By linear regression of
the obtained values of θso1, we identified one more condition that Mode 4 is
unreachable: 6.2 · τso1 + τso2 ≥ 9.9 (e.g., τso1 ∈ [10, 40] ∧ τso1 ∈ [0.5, 2], see
Table 1, Run#11). Taken together, we identified the following disease-related
parameter ranges:

τo1 ∈ (0, 0.006) ∨ τo2 ∈ (0, 0.13) ∨ 6.2 · τso1 + τso2 ≥ 9.9

Figure 4 visualizes these results by showing the simulated trajectories using
corresponding parameter values.
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Fig. 4. Simulation results using disease related parameter values. (a) Normal condition
(original parameters) (b) τo1 = 0.0055 (c) τo2 = 0.125 (d) τso1 = 1.2, τso2 = 1.0.

Table 1. Experimental results. Var = number of variables in the unrolled formula,
Result = bounded model checking result, Time = CPU time (s), δ = 10−4.

Run Model Initial State Var Result Time

1 BCF (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1]) 53 δ-sat 303
2 FK (u = 0, v = 1, w = 1, ε ∈ [0.9, 1.1]) 53 δ-sat 216
3 BCF (u = 0, v = 1, w = 1, s = 0, ε ∈ [0, 0.25]) 53 unsat 2.09
4 FK (u = 0, v = 1, w = 1, ε ∈ [0.0, 0.25]) 53 unsat 0.78
5 BCF (u = 0, v = 1, w = 1, s = 0, ε ∈ [0.9, 1.1]) 89 δ-sat 7,904
6 FK (u = 0, v = 1, w = 1, ε∈[0.9, 1.1], τsi∈[1, 2], us∈[0.5, 2]) 119 unsat 0.06
7 BCF (u = 0, v = 1, w = 1, s = 0, τo1 = 30.02) 53 δ-sat 0.89
8 BCF (u = 0, v = 1, w = 1, s = 0, τo1 = 0.0055) 53 unsat 1.33
9 BCF (u = 0, v = 1, w = 1, s = 0, τo1 ∈ (0.0, 0.006)) 62 unsat 0.76
10 BCF (u = 0, v = 1, w = 1, s = 0, τo2 ∈ (0.0, 0.13)) 62 unsat 0.32
11 BCF (u = 0, v = 1, w = 1, s = 0, τso1∈[10, 40], τso1∈[0.5, 2]) 71 unsat 0.11

4 Conclusion

We have presented a framework using δ-complete decision procedures for the
parameter identification of hybrid biological systems. We have used δ-satisfiable
formulas to describe parameterized hybrid automata and to encode parame-
ter synthesis problems. We have employed δ-decision procedures to perform
bounded model checking, and developed an algorithm to obtain the resulting
parameters. Our verified numerical integration and constraint programming al-
gorithms effectively compute an over-approximation of the system dynamics. An
unsat answer can always be trusted, while a δ-sat answer might be due to the
over-approximation (see Section 2 for more details). We chose this behavior as
it better fits with the safety requirements expected by formal verification. We
have demonstrated the applicability of our method on a highly nonlinear hybrid
model of a cardiac cell that are difficult to analyze with other verification tools.
We have successfully ruled out a model candidate which did not fit experimental
observations, and we have identified critical parameter ranges that can induce
cardiac disorders.
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It is worth noting that our method can be applied to ODE based models
with discrete events, which are special forms of hybrid automata. Such models
are often specified using the Systems Biology Markeup Language (SBML) and
archived in the BioModels database [34]. Currently, we are currently developing
an SBML-to-dReal translator to facilitate the δ-decision based analysis of SBML
models. Further, our method also has the potential to be applied to other model
formalisms such as hybrid functional Petri nets [35] and the formalisms realized
in Ptolemy [36]. We plan to explore this in future work. Another interesting
direction is applying our method for parameter estimation from experimental
data. By properly encoding the noisy wet-lab experimental data using logic for-
mulas, bounded model checking can be utilized to find the unknown parameter
values. In this respect, the specification logic used in [25] promises to offer helpful
pointers.
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Appendix: LRF -Formulas and δ-Decidability

We will use a logical language over the real numbers that allows arbitrary com-
putable real functions [37]. We write LRF to represent this language. Intuitively, a
real function is computable if it can be numerically simulated up to an arbitrary
precision. For the purpose of this paper, it suffices to know that almost all the
functions that are needed in describing hybrid systems are Type 2 computable,
such as polynomials, exponentiation, logarithm, trigonometric functions, and
solution functions of Lipschitz-continuous ordinary differential equations.

More formally, LRF = 〈F , >〉 represents the first-order signature over the reals
with the set F of computable real functions, which contains all the functions
mentioned above. Note that constants are included as 0-ary functions. LRF -
formulas are evaluated in the standard way over the structure RF = 〈R,FR, >R〉.
It is not hard to see that we can put any LRF -formula in a normal form, such
that its atomic formulas are of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0,
with t(x1, ..., xn) composed of functions in F . To avoid extra preprocessing of
formulas, we can explicitly define LF -formulas as follows.

Ptolemy.org
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Definition 6 (LRF -Formulas). Let F be a collection of computable real func-
tions. We define:

t := x | f(t(x)), where f ∈ F (constants are 0-ary functions);

ϕ := t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces
atomic formulas t > 0 with −t ≥ 0, atomic formulas t ≥ 0 with −t > 0, switches
∧ and ∨, and switches ∀ and ∃.
Definition 7 (Bounded LRF -Sentences). We define the bounded quantifiers
∃[u,v] and ∀[u,v] as ∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ) and ∀[u,v]x.ϕ =df

∀x.((u ≤ x ∧ x ≤ v) → ϕ) where u and v denote LRF terms, whose variables
only contain free variables in ϕ excluding x. A bounded LRF -sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn),

where Q
[ui,vi]
i are bounded quantifiers, and ψ(x1, ..., xn) is quantifier-free.

Definition 8 (δ-Variants). Let δ ∈ Q
+ ∪ {0}, and ϕ an LRF -formula

ϕ : QI1
1 x1 · · ·QIn

n xn ψ[ti(x,y) > 0; tj(x,y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k+ 1, ...,m}. The δ-weakening ϕδ of ϕ is defined as
the result of replacing each atom ti > 0 by ti > −δ and tj ≥ 0 by tj ≥ −δ:

ϕδ : QI1
1 x1 · · ·QIn

n xn ψ[ti(x,y) > −δ; tj(x,y) ≥ −δ].

It is clear that ϕ → ϕδ (see [13]).

In [12], we have proved that the following δ-decision problem is decidable, which
is the basis of our framework.

Theorem 1 (δ-Decidability [12]). Let δ ∈ Q
+ be arbitrary. There is an al-

gorithm which, given any bounded LRF -sentence ϕ, correctly returns one of the
following two answers:

– δ-True: ϕδ is true.
– False: ϕ is false.

When the two cases overlap, either answer is correct.

The following theorem states the (relative) complexity of the δ-decision problem.
A bounded Σn sentence is a bounded LRF -sentence with n alternating quantifier
blocks starting with ∃.
Theorem 2 (Complexity [13]). Let S be a class of LRF -sentences, such that
for any ϕ in S, the terms in ϕ are in Type 2 complexity class C. Then, for any
δ ∈ Q

+, the δ-decision problem for bounded Σn-sentences in S is in (ΣP
n )

C.

Basically, the theorem says that increasing the number of quantifier alternations
will in general increase the complexity of the problem, unless P = NP (recall
that ΣP

0 = P and ΣP
1 = NP). This result can specialized for specific families of

functions. For example, with polynomially-computable functions, the δ-decision
problem for bounded Σn-sentences is (Σ

P
n )-complete. For more details and results

we again point the interested reader to [13].
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