Sequential Circuit Verification Using
Symbolic Model Checking

J. R. Burch E. M. Clarke K. L. McMillan

Carnegie Mellon University

David L. Dill
Stanford University

Abstract

The temporal logic model checking algorithm of Clarke, Emer-
son, and Sistla [10] is modified to represent state graphs using binary
decision diagrams (BDDs) [6]. Because this representation captures
some of the regularity in the state space of circuits with data path
logic, we are able to verify circuits with an extremely large num-
ber of states. We demonstrate this new technique on a synchronous
pipelined design with approximately 5 x 10%% states. Our model
checking algorithm handles full CTL with fairness constraints. Con-
sequently, we are able to handle a number of important liveness and
fairness properties, which would otherwise not be expressible in CTL.
We give empirical results on the performance of the algorithm ap-
plied to both synchronous and asynchronous circuits with data path

logic.

1 Introduction

Bugs found late in the design phase of a digital circuit are a major cause of
unexpected delays in the realization of the circuit in hardware. This fact
has stimulated interest in formal verification techniques for hardware de-
signs. A nurmber of different techniques have heen proposed, but nearly ali

This research was sponsored in part by the Avionics Laboratory, Wright Re-
search and Development Center. Aeronantical Systems Division (AFSC), U.S. Air Force,
Wright-Patterson AFB, Ohio 45433-65.13 under Contract F33615-90-C-1465, ARPA Or-
der No, 7597 and in part by the National Science Foundation under contract numbers
CCR-8722633 and MIP-885383807. The third author is supported by an AT&T Bell Lab-
oratories Ph.D. Scholarship. The fourth author js supported at Stanford University by
a CIS Seed Research Grant.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the NSF or the U.S. government.

can be classified in terms of the natural division between the data paths and
the controlling circuitry in digital devices. The most successful methods to
date for verifying data path logic treat only functional behavior, without
considering sequential behavior [17]. These methods are frequently based
on the use of automatic theorem provers or proof checkers and may require
considerable assistance from the user in constructing a correctness proof.
The most effective techniques for reasoning about sequential behavior, on
the other hand, usually require a complete exploration of the state space
of the circuit [5, 12, 14]. The state enumeration techniques are attractive,
because they are highly automatic: the user simply provides a description
of the circuit implementation and its specification; the system does the rest.
In the case of a single controller, the approach is often quite practical, since
the number of states tends not to be excessively large. The approach has
not been very useful with data path circuits, since the number of states is
almost always too large to permit explicit enumeration. In order to reason
about the complex interaction between controllers and data paths, however,
we need techniques that are able to handle both types of circuits. Devel-
oping such techniques has proven to be a very difficult problem. However,
the regularity of data path designs provides some reason to believe that
their state graphs, while large, will often have a relatively simple structure.
Consequently, it may be possible to find a concise representation that ex-
ploits the uniformity of the state space and depends in size more on the
inherent complexity of the data path logic than simply the number of states
it determines.

In this paper, we show how a technique for reasoning about sequential
circuits, called temporal logic model checking [9, 10], can modified to rep-
resent state graphs using binary decision diagrams (BDDs) [6]. Because
this representation captures some of the regularity in the state space de-
termined by the data path logic, we are able to verify sequential circuits
with an extremely large number of states. The algorithm is based on com-
puting fixed points of functions, called predicate transformers, which map
sets of states to sets of states. Predicate transformers are used to model
the way circuits transition from one state to the next. Both state sets and
predicate transformers are represented with BDDs. Thus, we are able to
avoid explicitly constructing the state graph of the circuit. We have tested
the performance of the algorithm on both synchronous and asynchronous
circuits with data path logic.

Previously, most of the applications of BDDs have been to the verifi-
cation of combinational circuits. However, there have been some recent
applications to sequential circuits. One approach uses a symbolic switch-
level simulator, in which a sequence of operations is simulated with symbolic
inputs. The use of symbolic inputs allows one to verify that certain pre-
and post-conditions are satisfied independently of the actual input values
applied. This technique has been used by Bryant to verify a MOS mem-
ory circuit [7]. A second approach due to Bose and Fisher [2] verifies a

pipeline circuit with respect to a simpler abstract model by means of a
representation function, in analogy to abstract data type verification.

While both of these approaches are quite powerful for reasoning about
certain classes of circuits, they clearly require much more effort from the
user than state enumeration methods. In each of these approaches, the user
must give a step-by-step specification using pre-condition, post-condition
notation, instead of describing the behavior over time with a single temporal
formula. The method of Bose and Fisher also requires that the user provide
the analog of a data type invariant. An even more serious drawback stems
from the limited expressive power of ordinary propositional logic for this
type of application. Since they are unable to express unbounded execution
histories in propositional logic, their techniques cannot be easily extended
to systems of controllers that operate concurrently, nor can they deal with
liveness properties, which state that an event must occur at some point in
the future but do not provide an explicit time bound on when the event
should occur.

Coudert, Berthet, and Madre describe a system for checking equiva-
lence between deterministic finite automata [11]. Their system performs
a breadth-first search of the state space determined by the product of the
two automata. The set of reachable states is represented using a BDD,
and in this sense. their method is closely related to our own. However, un-
like the technique described in this paper, their method does not deal with
indeterminate computations, asynchronous circuits or liveness properties.

Fujita and Fujisawa [13] describe a verification procedure based on linear
temporal logic that uses binary decision diagrams to represent the transition
conditions in automata derived from temporal logic formulas. However,
their technique still suffers from a form of the state explosion problem,
because they represent states explicitly in automata derived from temporal
formulas. In our work, as in the work by Coudert, Berthet, and Madre,
binary decision diagrams are used to represent both the transition relation
of the model and subsets of the state space, so that the state graph is never
explicitly constructed.

Bose and Fisher [3] have described a BDD-based algorithm for CTL
model checking that is applicable to synchronous circuits. They do not
provide empirical results on the algorithm’s performance, however. In ad-
dition, their algorithm does not handle fairness constraints [10], so it is of
limited use in proving liveness properties.

2 CTL and Model Checking

The logic that we use to specify circuits is a propositional temporal logic of
branching time, called CTL or Computation Tree Logic [10]. In this logic
each of the usual forward-time operators of linear temporal logic (G globally
or invarantly, F sometime n the future, X nezttime and U until) must be

directly preceded by a path quantifier. The path quantifier can either be an
A (for all computation paths) or an E (for some computation path). Thus,
some typical CTL operators are AGf, which will hold in a state provided
that f holds at all points (globally) along all possible computation paths
starting from that state, and EF f, which will hold in a state provided that
there is a computation path such that f holds at some point in the future
on the path.

For explaining our verification procedure, it is convenient to express the
CTL operators with universal path quantifiers in terms of the operators
with existential path quantifiers, taking advantage of the duality between
universal and existential quantification. Consequently, in our description of
the syntax and semantics of CTL, we specify the existential path quantifiers
directly and treat the universal path quantifiers as syntactic abbreviations:

1. Every atomic propoesition is a formula in CTL.

2. If f and g are CTL formulas, then so are = f, f Vg, EXf, E[f U 4]
and EGS.

The semantics of a CTL formula is defined with respect to a labeled
state {ransition graph. A labeled state transition graph is a 5-tuple M =
(P,S,L,N,Sy) where P is a set of atomic propositions, .S is a finite set of
states, L is a function labeling each state with a set of atomic propositions,
N € S x S is a transition relation, and Sy is the set of initial states.
Throughout this paper, for any set R, we say the predicate R(a,b) is true
if and only if {a,b) € R. This notation is used to define a path as an infinite
sequence of states sg, sy, 52, ... such that N(s;,s;4,) 1s true for every i.

The propositional connectives = and V have their usual meanings of
negation and disjunction. The other propositional operators can be defined
in terms of these. If a CTL formula f is an atomic proposition, then f is
true of a state s if and only if f € L(s). X is the nezttime operator: EX f
will be true in a state s of .M if and only if s has some successor s’ such
that f is true at s'. U is the until operator: E[f U g] will be true in a state
s of M if and only if there exists a computation path starting in s and an
initial prefix of the path such that g holds at the last state of the prefix
and f holds at all other states along the prefix. The operator G is used to
express the mvariance of some property over time: EGf will be true at a
state s if there is a path starting at s such that f holds at each state on the
path. If fis true in state s of structure M, we write M, s = f. We write
ME fifM,s = f for all states s in Sp. We will identify a CTL formula
f with the set {s: M.s = f} of states that make f true. We also use the
following syntactic abbreviations for CTL formulas:

¢ AXf = -EX-f which means that f holds at all successor states of
the current state (f must hold at each nezt state).

e EFf = E{true U f] which means that for some path, there exists a
state on the path at which f holds (f is possible in the future).

e AFf = -EG~f which means that for every path, there exists a state
on the path at which f holds (f is inewvitable in the future).

o AGf = —-EF-f which means that for every path, at every node on
the path f holds (f holds globally or invariantly along all paths).

¢ A[f Ug]=-E[~y U=fA-g] A-EG-g which means that for every
path, there exists an initial prefix of the path such that g holds at the
last state of the prefix and f holds at all other states along the prefix
(f holds until g holds, along all paths).

There is a program called EMC (Extended Model Checker) that ver-
ifies the truth of a formula in a model by using efficient graph-traversal
techniques. If the model is represented as a state transition graph, the
complexity of the algorithm is linear in the size of the graph and in the
length of the formula. The algorithm is quite fast in practice [4, 10]. How-
ever, an explosion in the size of the model may occur when the labeled
state transition graph is extracted from a circuit, particularly if the circuit
contains many registers or other memory elements. The new model check-
ing algorithm described in this paper was developed to help alleviate this
problem.

3 Binary Decision Diagrams

Binary decision diagrams (BDD) are a canonical form representation for a
boolean formulas. Bryant described algorithms for efficient manipulation of
BDDs [6]. They are often substantially more compact than the traditional
normal forms such as conjunctive normal form and disjunctive normal form,
and hence have found application in symbolic verification of combinational
logic, among other uses. A BDD is similar to a binary decision tree, except
that its structure is a directed acvclic graph rather than a tree, and there
is a strict total order placed on the occurrence of variables as one traverses
the graph from root to leaf. Consider for example, the BDD of figure 1.
It represents the formula (a A b) V (¢ A d), using the variable ordering a <
b < c < d. Given an assignment of boolean values to the variables a, b,
c and d, one can decide whether the assignment satisfies the formula by
traversing the graph beginning at the root, branching at each node based
on the assigned value of the variable which labels that node. For example,
the assignment (¢ — 1,0 — 0,c — 1,d — 1) leads to a leaf node labeled 1,
hence this assignment satisfies the formula.

Bryant showed that there is a unique BDD for a given formula with a
given variable ordering. The size of a BDD depends critically on the variable
ordering. Bryant also gave algorithms of low complexity for computing
the BDD representations of =f and f Vv g given the BDDs for formulas
f and g. The only other operations which we require for the algorithms

i |

Figure 1: A Binary Decision Diagram

that follow are quantification over boolean variables and substitution of
variable names. Bryant described an algorithm for computing the BDD for
" a restricted formula of the form f|,=o0 or fla=1. The restriction a,lgor'ithm
allows us to compute the BDD for the formula Ju[f], where v is a boolean
variable and f is a formula, as f|,—0 V fla=1. The substitution of a formula
g for a variable v in a formula f, denoted f(v — g) can be accomplished
using quantification, since

Flo—g) = Bl(v e g) A S,

More efficient algorithms are possible, however, for the case of quantification
over multiple variables. or multiple renamings.

4 Representing Transition Graphs

Let M = (P, S,L,N,Sy) be a labeled state transition graph. When repre-
senting M symbolically, we assume that any two states in M are uniquely
identified by the truth values they assign to the atomic propositions:

Assumption 1 For any two states s; and s» in S, if L(s1) = L(s2), then

1 = 89.

This assumption causes no loss of generality since extra atomic propositions
can be added in order to make L(s;) # L(s2) for any two distinct states
s1 and sg. Let Vp be the set of possible truth assignments to the atomic
propositions in P. We write a, o, w. etc., to denote elements of Vp. Thus,

6

u(p) = 1 if the atomic proposition p is true in the truth assignment 7;
otherwise, 7(p) = 0. Any M satisfying the above assumption is isomorphic
to a labeled state transition graph with a subset of Vp as its set of states.
This isomorphism maps a state s to the & € Vp such that

L(s)={pe P:d(p) =1}.
Thus, there is no loss of generality in

Assumption 2 M = (P, 5 L,N,Sy) where S = Vp and
Liz)={pe P:u(p) =1}.

Satistying this may require adding additional states to the transition graph,
but these states will be unreachable and will not affect the truth of any CTL
formulas. We need not represent the state set S or the labeling function L
explicitly since they will always have the form described in assumption 2.
Thus, for our purposes. a labeled state transition graph is completely de-
termined by P, N and Sp. In this context, we will often refer to atomic
propositions as state variables.

Given assumption 2, a set of states R of a labeled state transition graph
can be represented by a BDD R(%). The number of variables in the resulting
BDD is equal to |P|. For example, the set of initial states Sy can be
represented with a BDD in this way. Similarly, the next state relation NV
of a labeled state transition graph is represented by a BDD N (%, 7) with
2(|P]) variables.

5 Finding Reachable States

Many of the ideas used in symbolic model checking can be explained by
considering the problem of computing reachable state sets. Let zy be a
BDD that depends only on variables in o. We interpret zp as representing
a set of states, as described in the previous section. We wish to compute a
BDD : that represents the states reachable from zy via the transitions in
the transition relation V. For non-negative integers n, define BDDs Znsl
to represent the set of states reachable in n + 1 or fewer steps, as follows:

Zng1 = 2oV Iu[zn (0 — 11) A N(a, ﬁ)]

To compute z, simply compute z;, z2, and so on until you reach a k where
Zr = Zp41; then z = 2. We call this method of computing = direct iteration.

The above computation can be viewed as finding a least fixed point. Let
£ be a predicate transformer (a function from boolean formulas to boolean
formulas) defined by

F(z) =z v 3u[=(v — a) A N(u,v)].

The set of states reachable from zg is then the least fixed point of F. Direct
iteration is one method for computing this fixed point. It is easy to modify
direct iteration to compute greatest fixed points, as well.

Computing fixed points is a fundamental step used in symbolic model
checking, so it is worthwhile to examine its computational complexity. The
direct iteration method involves repeatedly computing #(z,) and checking
the equivaléence of =, and 2,4, in order to detect if a fixed point has been
reached. Since the formulas are represented by BDDs, checking equivalence
is either a constant time or linear time operation, depending on the BDD
implementation. Most of the computational effort goes into computing
F(z,). The most expensive step of this is computing

3a [22(5 — @) A N(g,7)].

This is an example of computing a relational product. Although relational
products can computed using the normal BDD algorithms for restriction
and boolean connectives, it is much more efficient to use a special purpose
algorithm. We assume the variable ordering for the BDDs is of the form
Uy, b1, ..., Un,tn, where the uy and vy are the boolean variables in.z and o.
The algorithm performs the conjunction and the existential quantification
over the variables in . all in one pass over z, and N(@, 7). Thus, the
relational product is computed without ever constructing the BDD for

2 (T — 0 A N(u, D),

which may be much larger than the BDD for the relational product itself.

The above discussion of the complexity of finding reachable sets is based
on the assumption that a BDD for N(&,) has already been constructed.
Section 7 gives more detail about how N(z,7) is constructed. In practice,
the size of the circuits that can be verified by this method is limited primar-
ily by whether the BDD for N (&,) fits in primary storage. It is possible
to represent the transition relation with more than one BDD such that the
total number of BDD nodes required is much smaller than if one BDD is
used. This is also discussed in Section 7.

5.1 Iterative Squaring

Iterative squaring can be used as another method for computing fixed points
that can drastically reduce the number of iterations needed. The direct
iteration algorithm computes the least fixed point of F by computing

F(0), F2(@), F3(0), ..., F™(0),...

until a fixed point is reached (superscript n denotes repeated application).
Iterative squaring depends on noting that the predicate transformer F?,
which is

F*(z) = 2V 30 [:(— @) A (N (i@, 5) V 30 [N (@, @) A N, 5)])],

is of the same form as F. Therefore, one can compute z by computing the
sequence

F(0), F(0), F4(0),..., F*(9),. ..

which can converge much more quickly than direct iteration. In effect,
iterative squaring first computes the transitive closure of N, which is then
used to compute =.

Although iterative squaring can reduce the number of iterations neces-
sary to reach a fixed point exponentially smaller, it can be impractical if
the BDDs needed to represent the intermediate computations become too
large. Unfortunately, this is appears to be the normal case in practice.
In our experience, iterative squaring has been more efficient than direct
iteration only on contrived examples.

6 Symbolic Model Checking

Model checking requires determining whether a given CTL formula f is
satisfied in the initial states of a labeled state transition graph. In this
section, we present a model checking algorithm for CTL that uses BDDs
as its internal representation, in order to avoid explicitly enumerating the
states of the model. The algorithm is defined by a procedure CHECK which
recurses over the structure of the formula.

The procedure CHECK takes the CTL formula to be checked as its one
argument. It returns a BDD that depends only on the state variables &
of the model. The vector & has one boolean variable for every atomic
proposition in P. The BDD CHECK(f) is true in a given state if and only
if the formula f is true in that state. Of course, the output of CHECK
depends on the model being checked, so the labeled state transition graph
that the formula is checked against is an implicit argument. Recall that
given assumptions 1 and 2 a labeled state transition graph is determined
by the set of atomic propositions P, the set of initial states Sy, and the.
transition relation V.

The set P is simply represented by a list of identifiers. The set S is
represented by a BDD that depends on the vector of boolean state variables
v; a state is in Sy if and only if the values of the variables in ¥ determined
by that state satisfy the BDD. The representation of the transition relation
N requires a distinct copy & of the state variables. The transition relation
is represented by a BDD N{#, i), where © is the state before the transition,
and @ is the state after the transition. The state & is a successor of b
whenever the BDD is satisfied.

We define CHECK inductively over the structure of CTL formulas. If
f is an atomic proposition p. then CHECK(f) is the BDD that is true if
and only if p is true. The inductive steps for formulas of the form EXf,

9

E[f U yg], and EGS are given in terms of intermediate procedures:

CHECK(EX f) = CHECKEX(CHECK(f)),
CuEcK(E[f U y]) = CuEck EU(CHECK(f), CHECK(g)),
CHECK(EG f) = CHECKEG(CHECK(f)).

The definitions of these intermediate procedures are given below. Notice
that these intermediate procedures take boolean formulas (represented by
BDDs) as their arguments, while CHECK takes a CTL formula as its argu-
ment. The cases of CTL formulas of the form fV g or =f are handled using
the standard algorithms for computing boolean connectives with BDDs.
Since AXf, A[f U 4] and AG/ can all be rewritten using just the above
operators, this definition of CHECK covers all CTL formulas.

The formula EX f is true in a state if and only if there exists a successor
of that state which satisfies f. Thus, we define CHECKEX such that

CHECKEX(z) = Jafz(v — a) A N(9,1)].

Compare the definition of CHECKEX to the relational product in the defi-
nition of z,4, in section 5. They are quite similar except that the first case
computes the set of states from which a state in r can be reached, while
the second computes the states that can be reached from a state in z,.
In other words, CHECKEX performs one step of a backward reachability
search instead of a forward reachability search. In spite of this difference,
the same basic algorithm described in section 5 for computing relational
products can be used here, as well.

Recall that the formula E[f U g] means that there is a computation
beginning in the current state in which g is true in some future state s, and
f is true in all the states preceding s. This means that either g is true in the
current state, or f is true in the current state and there exists a successor
state in which E[f U g] is true. In other words, it is the least fixed point
of the equation

E[f Uy) =gV (f AEXE[f U y)).

Using this fixed point characterization. CHECKEU(z, y) can be computed
by finding the least fixed point : of the equation

r=yV(zACHECKEX(:)).

This fixed point can be computed with either the direct iteration or iterative
squaring methods described earlier.

The formula EG f states that there exists a computation beginning with
the current state in which f is globally (invariantly) true. This means that
f is true in the current state, and EGJf is true in some successor state.
This condition is the greatest fixed point of the equation

EGf = fAEXEG/.

10

Thus, CHECKEG () can be computed by finding the greatest fixed point =z

of the equation
=1z A CHECKEX(z).

Again, this fixed point can be computed with either the direct iteration or
iterative squaring methods described earlier.

After determining the set S of states that satisfy a formula f, the algo-
rithm checks whether Sy is a subset of S. If it is, then the model satisfies

f.

6.1 Fairness Constraints

Next, we consider the issue of fairness. In many cases, we are only inter-
ested in correctness along fair computation paths. For example, we may
wish to consider only those computations in which some resource-that is
continuously requested by a process will eventually be granted to the pro-
cess. This type of property cannot be expressed directly in CTL. In order to
handle such properties we must modify the semantics of the logic slightly.
A fairness constraint can be an arbitrary CTL formula. A path is said to
be fair with respect to a set of fairness constraints if each constraint holds
infinitely often along the path. The path quantifiers in CTL formulas are
now restricted to fair paths. In the remainder of this section we describe
how to modify the new algorithm to handle fairness constraints. We assume
the fairness constraints are given by a set of CTL formulas C = ¢y, ..., ¢n.

We define a new procedure CHECKFAIR for checking CTL formulas
relative to the fairness constraints in . We do this by giving defini-
tions for new intermediate procedures CHECKFAIREX, CHECKFAIREU,
and CHECKFAIREG which correspond to the intermediate procedures used
to define CHECK.

Consider the formula EGf given fairness constraints C. The formula
means that there exists a computation beginning with -the current state in
which f holds globally (invariantly) and each formula in C holds infinitely
often. The set of such states z is the largest set satisfying the following two
conditions:

1. All of the states in = satisfy f, and

2. for all ¢p € C, for all s € =, there is a path of length one or greater
from s to a state satisfying cx such that all states on the path satisfy
f.) ,
[t is easy to show that if these conditions hold, each state in the set is the
beginning of an infinite computational path on which f is always true, and
every formula in C holds infinitely often. This gives us a characterization
of CHECKFAIREG(2) as the greatest fixed point z of the equation
n
=z A [\ CHECKEX(CHECKEU(x, 2 A CHECK(ct))).
k=1

11

The above fixed point can be evaluated in the same manner as before.
The main difference is that in this case, each time the above expression is
evaluated, 1t causes several CHECKEU calls to be executed, each of which
involves computing a fixed point.

The cases of EXf and E[f U g] under fairness constraints are a bit
simpler. Define the set of all states which are on some fair computation as

farr = CHECKFAIR(EGirue).

Then,
CHECKFAIREX({z) = CHECKEX(2 A fazr),
CHECKFAIREU(2,y) = CHECKEU(x, y A fair)].

7 Empirical Results

Using BDDs for testing boolean satisfiability is only efficient in a heuristic
sense. The problem is, of course, NP-complete in general; the only claim
that is made for BDDs is that they perform well for certain useful classes
of boolean functions. Likewise, using BDDs for representing state sets in
CTL model checking is only of heuristic value, and does not improve the
asymptotic complexity of model checking. Therefore, in order to evalu-
ate the method, we need empirical results showing the performance of the
method on some problems of practical interest,

We have examined two classes of digital circuits in evaluating the method
empirically. The first is a class of simple synchronous pipelines, which
include data path as well as control circuitry. The number of states in these
systems is far too large to apply traditional model checking techniques, but
we have obtained very encouraging results using the BDD method.

The second class of circuits are asynchronous designs with data paths.
Convergence of the fixed -point expressions in these systems generally re-
quires a much larger number of steps, since a large number of independent
asynchronous transitions may be required to complete operations which are
synchronized on a single clock transition in a synchronous design. The re-
sults on the performance of the BDD method for these circuits are more
ambiguous than those for the synchronous pipelines; it is not yet clear to
us to what degree the BDD method is applicable to this kind of circuit.

7.1 Synchronous pipelines

The circuits we have used as examples of this category are very simple
pipelines that perform three-address logical and arithmetic operations on
a register file. The complete state of the register file and pipe registers are
modeled. The pipelines have three stages: the operands are read from the
register file, then an ALU operation is performed, then the result is written
back to the register file. The ALU has a register bypass path, which allows

12

Read Port A Write Port C
» Addr
Data Addr =
Register File
= Addr Data f=
—— Data
Read Port B
- Control a
Inst.
Reg. l l
=1 Alu
Rlej:é?seier Rgé?s%er

Register Bypass Path

Figure 2: Block diagram of simple pipeline design

the result of an ALU operation to be used immediately as an operand on
the next clock cycle, as is typical in RISC instruction pipelines. The inputs
to the circuits are an instruction code, containing the register addresses of
the source and destination operands, and a STALL signal, which indicates
that the instruction stream is stalled. When this occurs, a “no-operation”
is propagated through the pipe. A functional block diagram of a typical
pipeline is given in figure 2.

Since vectors of boolean values are used to represent binary numbers in
these designs, it is useful to introduce some notation for vectors of propo-
sitions in logical formulas. First, we define the standard logical and modal
operators to operate on vectors of propositions in a component-wise man-
_ner. For example,

P1 q1 pAq

P2 q2 p2 N q2
. N . = .

Pn n Pn N

13

and

P1 Fp

pa Fpa
'l I = .

Pn L Fen

In order to deal with the register file, it is also useful to define arrays of
propositions (vectors of vectors) and a function select(v,, vo) which returns
the element of v; indexed by the binary number represented by v2. Note
that select can be written as a boolean function, in much the same way one
might implement a multiplexer using logic gates. It is implemented as a
macro in the model checker.

The latency in the example pipelines is three clock cycles. For this
reason, the specification of the pipeline cannot be given in a straightforward
manner using simply pre- and post- conditions on operations. We can,
however, use temporal operators and the above notation to specify the
behavior of the pipeline, taking into account the pipe latency. When we
specify a register transfer level operation for the pipeline, it is understood
that the results of the operation will not affect the register file until three
clocks cycles in the future, and the inputs to the operation correspond to
the state of the register file two clock cycles in the future. The state of
the register file n clock cycles in the future can be expressed using the
(vector) modal operator “X”, as X"R. Thus, taking into account the pipe
latency, an RTL specification such as R¢ — Ra @ Ry, can be expressed as
a temporal formula in the following way:

se!eci(XaR, c¢) = select(X*R.a) & select(X°R.b)

where a, b and ¢ are each bit-fields in the operation code. As similar formu-
las can be derived for other RTL expressions, we will write RTL syntax in
our specifications, with the understanding that it is to be interpreted in the
“above (temporal) way. Since X"pis a path formula and not a state formula,
1t cannot be evaluated directly by the CTL model checker (which can only
evaluate state formulas). We can show, however, that the state of the reg-
ister file R two or three clock cycles in the future is uniquely determined
by the current state of the system. We can show this by automatically
checking the CTL formulas

AG((EX)’R = (AX)’R)

and
AG(EX)*R = (AX)°R)

Thus, we can substitute the state formula (EX)*R. for the path formula
X"R, since the two are equivalent. Likewise, we can substitute (EX)*R.
for X°R.. :

14

Using the above temporal interpretation for RTL specifications, we write
the specification for our simplest pipeline (which has only an exclusive-or
instruction) as follows:

AG-STALL = (R¢ — Ra @ Ry) (1)

and
AGVc'(c #¢'VSTALL = (Rer — Rev))

The latter formula specifies that non-destination registers do not change,
and that if a stall occurs, no registers change.

Table 1 summarizes the results we obtained in verifying a variety of
pipelines of this type. We varied the number of bits per register, and the
type of operation(s) performed by the ALU, to see how these affected the
size of the BDD used to represent the transition relation, the total execution
time required to check formula 1, and the total storage used. The most
complex pipeline we verified had approximately 5 x 102 states, which puts
it far outside the range of model checkers like the one reported in [5]. It
required a BDD with 42,000 nodes to represent the transition relation, and
approximately 22 minutes to verify on a Sun 3/60. The most interesting
result is that the number of nodes in the transition relation BDD increases
only linearly in the number of bits per register. Intuitively, the complexity
of the BDD is a function of how much information must be remembered as
one passes from one layer of the BDD to the next (i.e., from one variable
to the next). In the pipeline examples, the information stored from cne bit
slice of the data path to the next is simply the state of the control bits plus
the value of the ALU carry bit. This amount of information is constant
in the number of bits, which explains why the size of the BDD increases
linearly in the number of bits. ’

[t is also interesting to note that adding an exclusive-or operation to the
addition pipeline roughly doubles the number of nodes in the transition re-
lation characteristic function. This results from the fact the an additional
bit has been added to the control information that must be passed down
through the data path levels of the BDD, effectively doubling the number
of control states. The complexity of control would therefore seem to be
a crucial factor in the size of the BDD representation. In addition, if the
ALU were able to perform a multiply operation, a barrel shift, or some
other complex operation which has more than a constant amount of infor-
mation passing from one bit position to the next, then the size of the BDD
representation would quickly become unmanageable.

7.2 Verifying Asynchronous Circuits

The synchronous pipeline experiments show that it is in fact possible to ex-
ploit the regularity of some data paths to construct a compact representa-
tion for their state space. Will the same effect be observed for asynchronous

ALU | word | numberof | BDD | verification
ops size registers size time (secs)
D 1 bit 4 2,737 9
® 2 bits 4 8,430 46
& 3 bits 4 14,123 145
&) 4 bits 4 19,816 306
@ 3 bits 4 41,000 1,349
¥ | Lbit 4 2,737 9
+ 2 bits 4 10,734 45
+ 3 bits 4 22,276 179
+ 4 bits 4 33,818 492
+ 8 bits 4 79,986 3,709
+,% | 2 bits 4 18,429 183
+, | 3 bits 4 36,239 690
+,5 | 4 bits 4 53,924 1,706

Table 1: Performance of BDD model checking algorithm on simple pipelines

circuits? Since the behavior of asynchronous and self-timed circuits is con-
siderably less ordered that that of synchronous circuits, we should expect
the complexity of verifying them to be greater. We observed in the pre-
vious section that the number of control states had an important impact
on the tractability of representing the state space. In self-timed circuits,
the number of global control states is generally quite high, due to the loose
synchronization between components. On the other hand, a certain kind
of regularity can be said to exist in the state space, since many of the pos-
sible transitions are mutually commutative—the action of one transition
does not affect the enabling conditions of another. The question is, will
this effect compensate for the inherently high number of control states in
asynchronous circuits? To test this, we applied BDD-based methods to
checking hazard freeness in a speed-independent stack element design [15].

We take a different approach to asynchronous circuits (as opposed to syn-
chronous circuits) because of a phenomenon we observed in our experiments
that led to a more efficient method. The CTL model checking procedure
we used for synchronous circuits begins with a set of states and expands
that set by performing a backward breadth-first search though the state
graph until a fixed point is reached. This approach provided exactly the
result we wanted for specifying the synchronous pipelines, since we wanted
to specify the set of states which could reach a state n steps in the future in
which a given register bit had a value 1. We discovered, however, that for
asynchronous circuits, computing the set of reachable states using forward
search progressed much more rapidly than backward search from a set of

16

states representing some failure condition.

Our verification algorithm first computes the set of states H where a
hazard can occur, using a method developed by Dill for detecting haz-
ards [12]. The set H is actually represented as an implicit disjunction of
BDDs Hy,..., H,. Each H;j represents the set of states where the jth com-
ponent of the circuit can cause a hazard. Thus, computing H requires no
search, and can be done quite quickly. The next step is to compute the set
of reachable states, as described in section 5. As this computation is being
performed, the algorithm checks that none of the reached states are in H.
If no reachable states are in H, the algorithm reports that the circuit is
hazard-free.

Another optimization which we have found useful for dealing with asyn-
chronous circuits is to represent the transition relation as a list of charac-
teristic functions, one corresponding to each logic element in the circuit.
Since the transitions of each element occur asynchronously, and there is no
overall structure or regularity in the organization of the elements, this is a
more compact representation than the BDD obtained for the union of all
of the separate transition relations.

The performance of the BDD-based verifier on the asynchronous stack
is summarized in Table 2. The figure given for the size of the BDD repre-
senting the reached state set is the largest for any iteration. This does not
in general correspond to the final (and hence largest) set of reached states,
since the complexity of the BDD representation is not directly related to
the cardinality of the set. The table also gives the number of states reached,
and total execution time as a function of the number of data bits. Note that
the number of reached states grows by roughly a factor of 10 for each addi-
tional data bit, while the number of nodes grow by a factor less than two,
and the execution time by a factor between 2 and 3. This is an encouraging
result, in that it allows us to check a system with many more states than
was previously possibly, and it lends some validity to the conjecture that
regularity exists in the state graph of asynchronous circuits. Nonetheless,
in this case the BDD algorithm has not given us polynomial complexity in
the number of data bits. It has only reduced the base of the exponential.
More powerful methods are apparently needed to verify circuits of this type
with a large number of data bits.

7.3 Frontier set simplification

In the verification of the stack element, we made use of a technique of
Coudert, Berthet, and Madre [11] for simplifying the representation of the
fromtier set (the set of states reached but not yet expanded). This set is
the input to the next iteration of the fixed point algorithm, so there is
some interest in making its representation as compact as possible. The
correctness of the search algorithm is not affected by whether or not the
set of reached states passed to the next iteration of the algorithm does or

17

data’| approx. depth of | BDD | number of | verification
bits gate search size reached time
equivalents states (secs)
1 30 44 458 272 20
2 50 57 865 1,632 60
3 70 75 1,735 | 14,696 208
4 90 93 | 3,101 155,024 726
5 100 111 4,774 = 10° 1,878
6 120 129 | 7,968 ~ 10 4,588
7 140 147 | 12,051 = 10° 10,416

Table 2: Performance of BDD algorithm for asynchronous stack element

does not contain states which have been previously expanded. When using
an explicit representation for the reached state set, it is important not to
re-expand any states that have been previously expanded. However, since
the complexity of a BDD is not directly related to the number of states
it represents, it.is often advantageous to re-expand some states if this will
reduce the size of the BDD representing the set of states to be expanded.
Coudert, Berthet, and Madre describe a method for simplifying the frontier
set according to this principle.

We have found that in the case of the stack element, this method reduces
the number of nodes in the frontier set BDD by a factor of 2 to 20, depending
on the depth of the search. Figure 7.3 shows a graph of the size of the
BDD representing the reached states and the simplified frontier set BDD
as a function of the number of iterations in the search, for the 6-bit stack
element. This graph shows an effect that we have observed a number of
times when applying breadth-first search to asynchronous circuits. The
graph has a small number of peaks which occur at evenly spaced intervals.
We conjecture that these peaks occur at search depths where there is the
greatest disparity in the progress of individual elements of the circuits.
Completion of a given operation generally occurs after a fixed or nearly
fixed number of transitions, even though the order of those transitions
is highly arbitrary. These situations correspond to troughs in the graph,
where the set of reached states is highly regular, and the set of frontier
states is actually very small.

8 Conclusions

As our examples show, the state-explosion problem can sometimes be cir-
cumvented by using a symbolic representation for state graphs. When the
representation captures the right structural uniformities in the graph, it

8000

7000 |-

6000 -

5000 |- Reachable States

4000

3000 |- Simplified Frontier

‘" States

Size of BDD

2000

1000 -

, i \ N Peeenees

L 1 J
o 20 40 60 a0 100 120 140

Depth of Search

Figure 3: BDD size as a function of search depth for the 6-bit stack.

is much smaller than an explicit table of all of the states. The choice of
symbolic representation requires balancing between the expressive power of
the representation and the existence of good algorithms for manipulating
it.

In our examples, we used binary decision diagrams as the symbolic repre-
sentation. Results so far indicate that this representation works well much,
-but not all, of the time. Thus, the method is not necessarily a replace-
ment for brute-force state-enumeration methods, but an alternative that
may work efficiently when the brute force methods fail.

Our method is not especially dependent upon the properties of binary
decision diagrams. Any representations of boolean functions that supports
boolean operations and for which there are good simplification algorithms
is a candidate as an internal representation. This is fortunate; because of
the importance of boolean functions in CAD for digital systems, a great
deal of effort will continue to go into finding better representations and
algorithms for manipulating boolean functions. As better representations
are developed, they can easily be plugged into our framework to give better
verification methods, as well.

Although we have concentrated on temporal-logic model checking, the
symbolic state graphs (and specifically binary decision diagrams) can be
used in other formalisms for reasoning about sequential and concurrent be-
havior, such as propositional linear temporal logic and automata on infinite
sequences [8].

19

References

(1]

(2]

(3]

(4]

J. Allen and F. T. Leighton, editors. Advanced Research in VLSL
Proceedings of the Fifth MIT Conference. MIT Press, 1988.

S. Bose and A. Fisher. Verifying pipelined hardware using symbolic
logic simulation. In Proceedings: [EEE International Conference on
Computer Design, Oct. 1989.

S. Bose and A. L. Fisher. Automatic verification of synchronous cir-
cuits using symbolic logic simulation and ternporal logic. In L. Claesen,
editor, Proceedings of the IMEC-IFIP International Workshop on Ap-
plied Formal Methods For Correct VLSI Design, pages 759-764, Nov.
1939.

M. C. Browne. An improved algorithm for automatic verification of
finite state machines using temporal logic. In Proceedings of the First
Annual Symposium on Logic i Computer Science, Boston, Mass.,
June 1986.

M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic
verification of sequential circuits’ using temporal logic. [EEE Trans.
Comput., C-35(12):1035-1044, 1986.

R. E. Bryant. Graph-based algorithms for boolean function manipu-
lation. TEEE Trans. Comput., C-35(8), 1986.

R. E. Bryant. Verifying a static RAM design by logic simulation. In
Allen and Leighton [1]; pages 335-349.

1. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang.
Symbolic model checking: 1029 states and beyond. In Proceedings
of the Fifth Annual [EEE Symposium on Logic in Computer Science,
June 1990.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skele-
tons for branching time temporal logic. In D. Kozen, editor, Logic
of Programs: Workshop, volume 131 of Lecture. Notes in Computer
Science, Yorktown Heights, New York, May 1981. Springer-Verlag.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Prog. Lang. Syst., 8(2):244-263, 1986.

O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In Sifakis [16].

D. L. Dill. Trace theory for automatic hierarchical verification of speed-
independent circuits. In Allen and Leighton [1].

20

(13]

[14]

(15]

M. Fujita and H. Fujisawa. Specification, verification, and synthesis
on control circuits with propositional temporal logic. In J. A. Dar-
ringer and F. J. Rammig, editors, Proceedings of the Ninth Interna-
tional Symposium on Computer Hardware Description Languages and
their Applications, Washington, D.C., June 1989. North-Holland.

R. P. Kurshan. Testing containment of w-regular languages. Technical
Report 1121-861010-33-TM, Bell Laboratories, 1986.

A. J. Martin. A synthesis method for self-timed VLSI circuits. In Pro-
ceedings: IEEE International Conference on Computer Design, Oct.
1987.

J. Sifakis, editor. Aulomatic Verification Methods for Finite State
Systems, International Workshop, Grenoble, France, volume 407 of
Lecture Notes in Computer Science. Springer-Verlag, June 1989.

J. Staunstrup, S. J. Garland, and J. V. Guttag. Localized verification
of circuit descriptions. In Sifakis [16].

21

