
THE MODEL CHECKING PROBLEM FOR CONCURRENT SYSTEMS
WITH MANY SIMILAR PROCESSES

E.M. Clarke and O. Grumberg*
Computer Science Department

Carnegie Mellon University, Pittsburgh

1. INTRODUCTION

In [CGB] we addressed the problem of devising an appropriate logic for reasoning about concurrent

systems with many identical processes. The logic that we proposed is based on computation trees and is

called indexed CTL* or ICI~*. It includes all of CTL* (ICES], [EC], [EH]) with the exception of the

next-time operator and can, therefore, handle both linear and branching time properties with equal facil-

ity. In addition, our logic permits formulas of the form Af (i) and Vfi (i) where f (i) is a formula of our

logic. All of the atomic propositions that appear within the subformula f (i) must be subscripted by i. A

formula of our logic is said to be closed if all indexed propositions are within the scope of either a A or
i

V. A model for our logic is a labeled state transition graph or Kripke structure that represents the possi-
i

ble global state transitions of some network of finite-state processes. For a network of N processes this

state graph may be obtained as a product of the state graphs of the individual processes. Instances of the

same atomic proposition in different processes are distinguished by using the number of the process as a

subscript.

Since a closed formula of our logic cannot contain any atomic propositions with constant index

values, it is impossible to refer to a specific process by writing such a formula. Hence, changing the

number of processes in a family of identical processes should not affect the truth of a formula in our

logic. We make this idea precise by introducing a new notion of equivalence (called ICTL* -equivalence)

between Kripke structures with the same set of indexed propositions but different sets of index values.

We prove that if two structures correspond in this manner, a dosed formula of ICIL* will be true in the

initial state of one if and only if it is true in the initial state of the other. The most serious problem with

this approach is that it requires an explicit representation of the state transition relations for the two

Kripke structures. Sistla and German [SG] attempted to remedy this problem, but their approach

had high complexity and would probably be quite difficult to implement.

In a later paper [CG], we showed how the explicit construction of the equivalence relation could be

avoided in many cases. To understand how the new approach works, suppose that M k has k identical

copies of process P , i.e. M k = M 0 x P k. Intuitively, we would like to compute the first few Kripke

structures in the sequence M1,M2,... until we reach a point where M r and Mr+ 1 are ICTL* -equivalent and

then conclude by induction that for all k > r , M e and M r will be ICTL* -equivalent. Unfortunately, this

scheme does not quite work. It is possible to select M 0 and P in such a way that M 1 is ICTL*-equivalent

This research was partially supported by NSF Grant MCS-82-16706. The second author, O. Gmmberg on leave from Teclmlon, Haifa, is partially sup-
ported by a Weizmann postdoctoral fellowship.

189

to M 2, but M 2 is not ICTL* -equivalent to M 3. Instead, we construct a single process P * called the clo-

sure of P whose states are abstractions of states in pn. We prove that if Mr xP* and Mr+ 1 xP* are

equivalent under a suitable notion of equivalence, then for all k > r, M k and M r will be IC'rL*-

equivalent. We call this result the collapsing theorem for networks with many identical processes. By

using the CTL model checking algorithm on M r, it should be possible to establish properties for M k for

all k > r . Thus, we are able to reduce an infinite set of verification problems to a single problem!

The present paper briefly surveys the results in [CGB] and [CG] and indicates how they might be

used in reasoning about concurrent systems. It is organized as follows: Section 2 introduces the logics

CTL and CTL* that we use for specifying finite state systems and briefly discusses the CH'L model

checking algorithm. Section 3 contains the definition of stuttering equivalence. The notation that we use

for describing processes is presented in Section 4. Section 5 contains the definition of ICTL* and

discusses some restrictions on the logic that are necessary for systems with different numbers of similar

processes to satisfy the same formulas. Process closures are introduced in Section 6 and the collapsing

theorem is stated. Some examples of how the collapsing theorem can be used to avoid the state explosion

problem are given in Section 7. The paper concludes in Section 8 with a discussion of some directions for

future research.

2. THE LOGICS CTL AND CTL*

There are two types of formulas in CTL* : state formulas (which are true in a specific state) and

path formulas (which are true along a specific path). Let AP be the set of atomic proposition names. A

state formula is either:

• A , i fA ~ A P .

• I f f and g are state formulas, then ~ f and f v g are state formulas.

• I f f is a path formula, then E(f) is a state formula.

A path formula is either:

• A state formula.

• i f f and g are path formulas, then --1 f , f v g, X f , and f U g are path formulas,

CTL* is the set of state formulas generated by the above roles.

CTL is a subset of CFL* in which we restrict the path formulas to be:

• I f f andg are state formulas, then X f a n d f U g are path formulas.

• I f f is a path formula, then so is ~ f .

We define the semantics of both logics with respect to a Kripke structure K = <S,R ,L >, where

• S is a set of states.

• R ~ S x S is the transition relation, which must be total. We write s 1 "* s2 to indicate that

(st,s2) e R.

• L: S .-~ P(AP) is the proposition labeling.

190

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We only consider transition relations where every state is reachable from the initial state. We define

a path in K to be a sequence of states, n = So,S 1 such that for every i >_ O, s i -4 si+ 1. n i will denote

the suffix of rc starting at s i .

We use the standard notation to indicate that a formula f holds in a structure: K,s ~ f means that

f holds at state s in structure K. Similarly, if f is a path formula, K,n ~ f means that f holds along

path n in structure K. The relation ~ is defined inductively as follows (assuming that f l and f 2 are

state formulas and g 1 and g2 are path formulas):

1. s ~ A ¢ , A e L (s) .

2. s ~ f l ¢:~ s ~ f 1.

3. s ~ f t v f 2 ¢~ s ~ f l o r s ~ f 2 .

4. s ~ E(g 1) ¢=~ there exists a path x starting with s such that x ~ g 1.

5. x ~ f l ¢~ s is the first state of x and s ~ f l .

6. x ~ - ~ g l ¢:~ n ~ g l .

7. r ~ g l v g 2 ¢=> ~ g l o r ~ g 2 -

8. : ~ X g t ¢:0 n l ~ g 1.

9. ~ ~ g lUg2 ¢:~ thereexists a k > 0 s u c h t h a t r ~ ~ g 2 a n d f o r a l l O < j < k , n J ~ gl.

We will also use the following abbreviations in writing CTL* (and CTL) formulas:

o f ^ g = ~ (~ f v ~ g) • F f = t rueUf

• A (f) = ~ E (~ f) • G f - ~ F ~ f .

In [CES] automatic methods for temporal logic model checking were introduced. These techniques

check that a finite-state concurrent system satisfies a C r L formula by searching all possible paths in the

global state graph ~.ripke structure) determined by the concurrent system. The following theorem states

the complexity of the model checking algorithm.

Theorem 1: There is an algorithm for determining whether a CTL formula f o is true in state s of the

structure K = (S ,R ,L) that runs in time O (length ~ o)'(I S 1 + I R I)).

Occasionally, we are only interested in the correctness of fair execution sequences in which some

resource that is continuously requested by a process will eventually be granted to the process. This type

of property cannot be expressed directly in CTL. In order to handle such properties we must modify the

semantics of CTL in a such a way that the path quantifiers in CTL formulas will be restricted to fair

paths. C r L with the new semantics is denoted by CTL F. The following theorem shows that handling fair-

ness in this manner does not change the complexity of the model checking algorithm.

Theorem2: There is an algorithm for determining whether a CTL F formula f o is true in a state s of a

structure K = (S ,R ,L ,F) with F as the set of fairness constraints that runs in time

O(length(fo) . (tS I+IR I)-tF I).

191

3. EQUIVALENCE WITH RESPECT TO STUTTERING

We now define what it means for two Kripke structures to be equivalent with respect to stuttering.

Given two structures K and K' with the same set of atomic propositions, we define a sequence of

equivalence relations Co,C 1 on S × S' as follows:

• s Cos' if andonly i f L (s) = L (s ') .

• s Cn+lS" if and only if

1. for every path rc in K that starts in s there is a path ~' in K' that starts in s ' , a partition

B 1 B 2 " " of ~, and a partition B ' t , B ' 2 . ' . of 7~' such that for all j E N, By and B'j are both

non-empty and finite, and every state in Bj is C n-related to every state in B'j, and

2. For every path g ' in K" starting in s" there is a path rc in K starting in s that satisfies the same

condition as in 1.

Our notion of equivalence with respect to stuttering is defined as follows: s C s" if and only if

s Cis" for all i _> 0. Furthermore, we say that K with initial state s o is equivalent to K' with initial state

s'0 iffs0 C s'0.

Lemma 3: Given two Kripke structures K and K', there exists an I such that Vs Vs' [s C l s' iff s Cs'].

Proof: By the definition of CI+I,s Cz+ts' ~ s Cts ' , so C o ~ C 1D C 2 Since K and K" are both

finite, C O must be finite as well, so only a finite number of these containments can be proper. Let C z be

the last relation that is properly included in Cz_ 1. By the definition of proper containment,

V m >- l [Ct--Cm], sos Cts" ~ s Cm s ' , for all m > l . Sinces Ct s' ~ s Ct_ls" ~ s Cl_2s'... ,we have

s CI s' ~ V m [s C,n s'], so s C l s" ~ s C s ' . The other direction is trivial. E]

Theorem 4: If s C s ' , then for every CTL* formula f without the next-time operator, s ~ f iff s" ~ f .

There exists a polynomial algorithm to compute C.

4. FINITE STATE PROCESSES

Next, we present a model of computation, suitable for reasoning about network of processes. Our

model is similar to the CCS model used by Milner [M]. Let A be a set of primitive open actions such

that ~ A whenever a ~ A and a = a . The set ACT of process actions contains the open actions in A, a

special action ~, used for transitions that do not require synchronization, and synchronization actions of

the form a ~ where a is in A. The ~, action and the synchronization actions are called completed actions.

A process P is a 5-tuple P = <AP ,S,R ~so,L > where,

* AP is the set of atomic propositions.

192

• S is the set of states.
a

• R ~ S x ACT x S. We write s 1 "-> s2 to indicate that (s 1,a ,s2) e R .

• s o ~ S is the initial state.

• L : -~ P(AP) is a function that labels each state with a set of atomic proposition.

A path x is a sequence of states s l , s 2 • • • such that for each i there exists a completed action a with

$ i ----> Si+ 1.

Let P1 = <AP1,S1,R 1-~d ,LI> and P2 = <AP2,S2,R2,so2,L2 > be two processes. The product pro-

cess P 1 × P 2 = <AP ,S ,R ,s o,L > is defined as fo110ws:

• A P is the disjoint union of AP 1 and AP 2-

• S = S 1 xS2.

• R will contain two types of transitions.

a a a

o ($1 ,S2) ----> (S' 1,St2) i f f [S 1 ----> St 1 and s2 = s'2] or [s 2 ---> s ' 2 ands 1 = S'l],

where a is either an open action or the % action.

aft" a E a~

o (s 1 ,s 2) --'> (s' t,s' 2) iff [s 1 --->s' 1 and s 2 --> s ' 2] or Is 1 "-> s" 1 and s 2 = s' 2] or

aE

[s 2 --> s" 2 and s 1 = S'l].

• so=~s~,s~).

• L : S 1 × S 2 "-> P(AP) such that L ((s 1,s 2)) is the disjoint union of L l(S 1) and L 2(s 2).

We define the product p n to be (...(P1 x P 2) x ...Pn-1) x P n) where each Pi is a copy of P with the

atomic propositions that label the states indexed by i . The action names am uneffected by this indexing.

In this case we say that p n is aprocess with index s e t I = {1 n} . A state c~ in p n can either be viewed

as an n-tuple (s 1,...,sn) or as a pair ((s 1 sn_l) ,s n) where s i is the component of process i . We will also

use the convention that ff I i is s i , the i - th component of the n -tuple representation of ft.

Let M and P be as shown in Figure 4.1, the product M x P is shown in Figure 4.2.

M : ;
/h.:

Figure 4.1: Two Finite State Processes: M and P .

193

),

Figure 4.2: The Product M x P.

Intuitively, a distributed algorithm consists of a finite set of component processes with some rules

for connecting these processes together to form networks of different sizes. In this paper we consider a

simple but important class of distributed algorithms such that in each instance of the algorithm all but a

finite number of the processes are identical and each process can communicate with every other process.

We represent an instance of such an algorithm by a product of the form M r = M 0 x pr for r > 0, where

M 0 gives the combined behavior of the component processes that are not identical. We expect that our

results also hold for distributed algorithms with more complicated rules for combining component

processes.

5. INDEXED CTL*

In order to reason about networks of processes, we need to be able to distinguish between the atomic

propositions of the different processes. Therefore, we introduce the notion of indexed atomic propositions

such that A i is the value of proposition A in process i. Let AP be a set of proposition names which will

be indexed by a set of index variables,/V. The logic indexed CTL* is an extension of CTL* where

• A i is a state formula ifA ~ AP and i e W.

• I f f is a state formula that has exactly one free index variable i , then V f is a state formula. (We will
i

write f (i) to indicate that f has a free index variable i.)

Indexed CTL* is the set of closed state formulas generated by these rules and the rules in Section 2. We

define the semantics of Indexed CTL* with respect to a structure K = <AP ,/,S,R , s o l >, where

AP ~ ,R ,s o and L are defined as before and I is the set of index value (a subset of N). A path in K is also

defined as before.

Note that structures are different from processes. A structure may be obtained from a process with

index set I by restricting the transition relation of the process so that only transitions on completed

actions are allowed. Also, if some state in the process has no transitions on completed actions, we add to

the corresponding state in the structure a transition from that state back to itself. It will sometimes be

convenient to refer to a process in a context which requires a structure instead. When this happens, the

194

required structure is the one obtained from the process by the above conventions. The relation ~ is

defined as before, except that it satisfies also :

(1) s ~ A i ¢mA i ~ L (s) .

(2) s ~ Vf 1(i) ¢:* there exists an i 0 ~ I such that s ~ f 1(i0)-

(3) ~ ~ Vg 1(i)¢:~ there exists an i 0 e I such that :~ ~ g 1(i0).
l

We use Af (i) as an abbreviation for -1 V~fi (i).

We will omit the nexttime operator from indexed CTL*, since it can be used to count the number of

processes. For example, consider a ring of processes that pass around a token. Using the nexttime opera-

tor X,

AA(t i ~ (XXXti))
i

says that any process that has the token will receive it again in exactly three steps. This is only true if the

ring has exactly three processes.

Figure 5.1: Example to IUustrate Restrictions on ICIL*

Even with this restriction on the nexttime operator, the logic is too powerful; by nesting the opera-

tors A and V it might still be possible to count the number of processes in a concurrent system. Suppose
i t

we take as our Kripke structure the global state graph for the concurrent program in Figure 5.1. The fol-

lowing formula sets a lower bound on the number of processes:

V(A i ^ EF(Bi ^ V(A) ^ EF(Bj ^ V(A k ...)))).
t 1

Once B i becomes true, it remains true. Therefore, if VA k is true, we know that this k is different from all
k

of the preceding indices mentioned in the formula. For this reason, we will use a restricted form of

indexed CTL*. The additional resections are:

* V f is a permissible state formula only i f f does not contain V operators.
t j

s V. g is not a permissible path formula.
t

195

• g 1 U g 2 is a permissible path formula only if neither g 1 nor g 2 contains any V operators.
J

In practice, many of the most interesting properties of networks of identical processes can be expressed in

the restricted logic. In the remainder of the paper, we will refer to the restricted logic as ICTL* unless

otherwise stated.

We can use the notion of equivalence defined in Section 3 to define an indexed equivalence. Since

the restrictions to ICTL* do not permit the use of two different indices with an until operator, it is impos-

sible to refer to the behavior of two different processes along a specific path. Thus, the notion of indexed

equivalence between structures only needs to refer to one index from each structure at a time. Because of

this, we will define a set of equivalence relations, Cii', that relate the behavior of an index i in one struc-

ture to the behavior of an index i' in the other structure.

Let K be a structure and i be an index value from I. The reduction of K to i (denoted by K [i) is a

structure identical to K except that the new proposition labeling L i is defined as follows:

Li(s) = {A IA i ~ L(s)}

In other words, all of the indexed atomic formulas are omitted except those that are indexed by i.

Let K 1 and K 2 be two structures with the same indexed atomic formulas and with index sets

11 andl2, respectively. We say thatK 1 andK 2 (i,i ') - correspond if and only i f K 11 i C K21i,. We will

write this as K1Cii, K 2.

Moreover, K 1 C K 2 iff there exists an index relation IN c l 1)<12, total in both arguments, such that for

every (i ,i') e I N , K 1 Cir. K 2. The following theorem is proved in [CGB].

Theorem 5: IfK 1 C K 2 then Kl,s ~ ~ h ¢=~ K2,s ~ ~ h, for every closed ICTL* formula h.

6. PROCESS CLOSURES

A distributed algorithm M is r-reducible, if and only if for every k > r, M k is ICIL* -equivalent

to M r . Unfortunately, it is not sufficient to show that M r is ICTL* -equivalent to Mr+ 1. I f M 0 and P are

as shown in Figure 6.1, then M 1 is ICTL* -equivalent to M2, but M 2 is not ICTL* -equivalent to M 3. It is

not enough to show that M r and Mr+ 1 have the same behavior. In addition, we must require that

M r x P k and Mr+ 1 x P k have the same behavior for every k." We can accomplish essentially the same

thing by showing that M r xP* and Mr+ 1 xP* are equivalent, where P* is a special process called the

closure o f P. The closure serves as an abstraction for pk for all k > 0 and must be supplied by the person

who is doing the verification. We will use M e to denote M r x P*. Note that each state ~ of Sr P is a pair

(s ~p*) in which the first component s is a state of M r and the second component p* is a state of P*.

The user must also supply two families of homomorphisms hk:Mk ~ M f for k > r and

gk: Mk -'-> Mf+l for k > r + l . The homomorphisms associate with every computation of M k a uniquely

determined computation of Mr e (or Mr+ 1). The homomorphism h k will have the following properties:

it must map the initial state of Mk to the initial state of Mr e.

196

- it is the identity on the components 0 through r of the states, i.e. ~r t i = h (or) I i for i < r .

0~

- If ~l is a reachable state o fM k and c h ~ t~ 2 is a transition involving a completed action ct in Mk, then
Ct

there is a transition hk(gl) ~ hk (~2) in Mr . Furthermore, if o~ is the synchronization action a ff and a

is taken by the i-th process in c I ~ c~ 2 with i < r , then the i-th process will also take a action in
t~ Ct

hk(t~l) --~ h/c(t~2). Otherwise, i f i > r , then the a action in hk(cq) ~ hk(c2) is taken by P*. A similar

restriction also applies to g and 7~.

The homomorphisms gk have similar properties, with r + l replacing r .

Mo:: P::

(

Q

Figure 6.1: M 1 - M2,bu tM 2 ~ M 3.

We wish to define an equivalence relation D between Mr P and Mr+ 1 which will ensure that for

every k, M k C Mk+ 1, where C is the relation defined in Section 5. In other words, we must ensure that

there is an index relation IN ___ I k x Ik÷ 1 such that M k Cir Mk+ 1 for every (i ,i') E IN.

The definition of the equivalence relation D is somewhat more complicated than the one given in Section

5 because of the P* component. Mr/, D MrP+I iff there exists an index relation IN 1 c_/~ x lr+l such that

for every (i , i ')e lN 1, MfDii, Mr+ 1 and in addition M f E MrP+I. The relation Di? is used in constructing

Cir for (i , i ')E /N 1 while the relation E is used in constructing Ch ~ for (i ,i') E IN- IN 1. Dil, and E are

defined over S f x Sf+ I . As before, we say that two structures are Dif or E related to each other if their

initial states are. Note again that (~ = (s ,p*).

Dii, = f~ Di~ , where DiT, is:
n

• Di 0 = {((~1,(Y2)ILl(S1) =Lr(s z) ^ p I =P2}"

• glDi~n~+la2 iff:

o For every path ~, starting in ¢~1, them exists a path ~', starting in ~2 and partitions of both paths

B 1,B 2,...,B' 1,B'z.. such that for every j :

1. B t ,B~ arc nonempty, finite, and defined along actions in Mr and Mr+l, respectively.

z

197

3. Let t/ be the transition last(Bi) --~ first(Bj+1). Then either tj is a transition in M r and t ' j is a

transition in Mr÷t or, if t i involves some action in P* , then t'j involves exactly the same action in
p* .

o For every path ~', starting in c2, there exists a path re, starting!n tJ 1 that satisfies the same condi-

tions above.

E = ~ =E n, where E n is defined exactly like Diin,, except that the basis case is given by
/ '1

e ° = {(~1,a9 Ip~ = p ~ .

We now state the collapsing theorem for r-reducible algorithms.

Theorem 6: I f M f D Mr+ I then for every k >__ r, M k C M r.

There exists a low-order polynomial algorithm to compute D.

7. EXAMPLES

To illustrate how the equivalence relation defined in Section 6 might be used we consider two very

simple examples. The first consists of a master process M 0 and several slaves Pi as shown in Figure 4.1.

The master process will determine that a job needs to be performed and then start the job on a slave that

is not busy. Thus, the master will remain in its ready state (R 0) until a job needs to be performed. It will

then make a transition to its waiting state W 0 and try to rendezvous with a slave (Pi) that is in its free

state (F i). The joint transition wilI cause the master to return to its ready state and the slave to enter its

busy state (B i). When the slave has completed the job it will return to its free state.

We will show that the algorithm M = {M1,M 2,...} with M t = M 0 x P k is 1-reducible, i.e. that

M k C M 1 for all k > 1. In order to demonstrate that this is true we must find a suitable closure P*

together with two sets of homomorphisms hk: M k --, M1 e for k > 1 and gk:Mk ---) M1~ for k > 2 that

satisfy the cdnditions given in Section 6.

Intuitively, the states of P* are abstractions of the states o f P k that are reachable when pk is run in

parallel with M r. In this case we choose the states of P* to be sets of states o f P . The state {F} of P*

represents a state of pk in which all of the processes are in the state F . The state {B} represents a state

of pk in which all processes are in the state B. The third and last state handles the case in which some

processes of pk are in state B and some are in state F . The transition graph for process P* is shown in

Figure 7. t . Note that there is a transition from one state to another in P* iff the same transition occurs

between corresponding states o f P k for some k > 0.

198

{,,~

Figure 7.1: The Closure of P for the Master-Slave Algorithm.

The homomorphism h k is also based on the intuition in the previous paragraph and is given by

hk(So,...,Sr,Sr+l,...,Sk)=(So,...,Sr,{Sr+l,...,Sk}). Essentially the same def'mition can be used for gk with

r + l replacing r and k + l replacing k. It is easy to see that h k and gk satisfy the first two conditions in the

definition of a homomorphism. It is not difficult to establish the third condition as well since any open or

completed action that can be made by one of the last k - r processes in some state of M k is also possible

in the P * -component of the corresponding state of M r x P* .

The algorithm to determine D can be used to show that (M 1 x P *)D (M 2 x P*). Since M 1 x P * has

12 states and M 2 x P* has 24 states, the computation is tedious but straightforward. By Theorem 5 and

Theorem 6, it follows that M k and M 1 satisfy the same ICTL* formulas for all k > 1. In order to deter-

mine if some particular formula holds for M k with k >- 1, the temporal logic model checking procedure

described in [CES] can be used to check the formula for M 1.

The construction that we used to obtain the closure of the slave process in the example can be gen-

eralizexl. Let P be a process. The closure o f P , P * , is defined by: P* = < A P , S * , R ,So,/, > where

S* = P(S)-{f~}. Intuitively, the states of P* are abstractions of states of P n. The state {s 1 sk} indi-

cates that at least one process of p n is in each s i and that each of the processes is in one of the s i. There
a

are several cases in the definition of R *. Let q = {s 1,..,sk} e S * . For every transition si ~ s'i ,R * will
a

include two transitions of the form q ~ q ' . The first transition in which q" = (q - { s i }) u {s'i} assumes

that there is exactly one process in the state s i. The second transition in which q" = q u {s'i} assumes

that there are several processes in state s i .
a ~"

If two transitions s i ~ s" i and sj ~ s j are possible in state q for i= j , then there will be two transi-
a g

tions of the form q ~ q ' . The first with q" = (q - { s i ,sj}) u {s" i ,s~} represents the case in which exactly

two processes are in s i . The second with q" = q k.) {s'i ,s~} represents the case in which more than two

processes are in s i .

a E

If two transitions s i ~ s" i and s i --~ s~ are possible in state q for i ~ j , then there will be four tran-
a~

sitions of the form q ~ q ' . The first with q ' = (q-Cs i ~ j }) t.) Cs'i,s'j} represents the case in which

exactly one process is in s i and exactly one process is in sj . The second with q" = q u {s ' i ,s~}

199

represents the case in which several processes are in s i and also in sj. The two remaining cases with

q' = (q-{si}) u {s" i,s'j} and q' = (q-{s j}) u {s" i,s~} represent cases in which exactly one process is

in one of the two states but several are in the other. The initial state of P* is s~ = {So}. The labeling
k

function for propositions is given by L* (q) = ui= ? (s i). The size of P * is at worst exponential in the

size of P.

There are two obvious problems with this definition for the closure of P. The closure of P may be

quite large, even if P is very small. Secondly, P* may contain states that are not reachable in any com-

putation of pk and behave differently when composed with M r and Mr+ 1. These problems may be

avoided in many cases by considering in the construction of P* only states that are reachable in M k for

some k. The second example illustrates how a reachability assumption can be used to obtain a smaller

closure for a very simple critical section problem. The transition graphs for M 0 and P in this example

are in Figure 7.2. w is a wait state, and c corresponds to the critical section. This time we will show

that the algorithm M = {MI,M2,... } is 2-reducible or that M k C M 2 for all k > 2. We choose as the clo-

sure of P the process shown in Figure 7.3. This is exactly what would be obtained by the construction

described above except that transitions which would result in states with more than one process in state c,

have been eliminated. We use the same definitions for h k and gk as in the previous example. As before,

it is easy to see that h~ and gk satisfy the f~rst two conditions in the clef'tuition of a homomorphism. It is

also easy to estabIish the third condition provided we already know that only states with exactly one c

component are reachable in M k. This mutual exclusion property would, of course, have to be established

by other techniques for proving safety properties or perhaps by the ICTL* decision procedure of Sistla

and German [SG]. Even when it is necessary to supply a teachability assumption of this sort, we believe

our technique will still be useful for proving more complicated safety and liveness properties.

Mo:: P::

t

Figure 7.2: Critical Section algodthm

t

200

t t

Figure 7.3: The Closure of P for the Critical Section Algorithm

The reduction in the number of states of M r × P* obtained by using the reachability assumption is quite

significant. Without the variant M 2 x P* has 24 states and M 3 × P * has 48 states. With the reachability

assumption, we only need to examine 5 states of M 2 x P * and 6 states of M3×P*. Thus, with the

teachability assumption it is relatively simple to show that (M 2 × P *) D (M 3 x P*). It follows that M is

2-reducible and that M k and M 2 satisfy the same ICTL* formulas for every k > 2.

8. CONCLUSIONS

There are a number of important questions relating to stuttering equivalence that still need to be

resolved. First and most importantly, what is the complexity of determining whether two states are

stuttering equivalent? The best algorithm that we currently have is O (nn). We have implemented this

algorithm on a VAX 11/780 and it seems to be relatively fast on small structures. In fact, we can handle

a 100 state structure in 6 sec. We expect to be able to handle structures with several hundred states in rea-

sonable time. The algorithm will probably not be useful for structures that are much larger than a

thousand states. Since the goal of the theory described in this paper is to avoid building large structures, it

is difficult to say whether the complexity of stuttering equivalence will prove to be a major limitation of

our work. In any case, it would certainly be desirable to have a more efficient method for determining if

two states are stuttering equivalent. Perhaps such a method exists for a restricted class of structures that

is large enough to be useful in practice. AlternativeIy, there might be a weaker relation, which is easier to

compute, that could be used in place of stuttering equivalence in many applications. Observational

equivalence used in the study of CCS programs is closely related to stuttering equivalence and has some-

what lower complexity. It might be worthwhile to explore the relationship between these two notions of

equivalence further.

There are also interesting open questions concerning the expressiveness of ICTL*. In Section 5 we

showed how nesting of A and V. operators could be used to count the number of processes in a concurrent

program. We conjecture in [CGB] that with formulas having at most k operators of this type, it is impos-

sible to distinguish between programs that have more than k processes. In other words, if f is a formula

with k levels of A and V. operatOrs and M n is a Kripke structure obtained as a product of n identical

processes, then f will hold in M n for n > k i f and only if f holds in M e. If the conjecturer is correct, it

might be quite useful in verifying properties of systems with many processes. For example, mutual exclu-

sion has nesting depth two so it may be sufficient to cheek this property for two process systems.

201

Finally, we have only tried the collapsing theorem on small examples. It is impossible to say how

widely applicable this technique is without considering many more examples. Moreover, in order to make

the technique practical we will need to investigate other network topologies (linear arrays, rings, etc.) and

to develop procedures for finding process closures that have reasonable sizes.

REFERENCES

ICES] Clarke, E.M., Emerson, E.A., and Sistla, A.P., "Automatic Verification of Finite-State Con-

current Systems using Temporal Logic Specifications", ACM Trans. on Programming

Languages and Systems, 8(2), pp. 244-263, 1986.

[COl Clarke, E.M. and Gmmberg, O., "Avoiding the State Explosion Problem in Temporal Logic

Model Checking Algorithms", Proc. of the 6th Annual ACM Syrup. on Principles of Distributed

Computing, ACM, pp. 294-303, August 1987.

[CGB] Clarke, E.M., Grumberg, O., and Browne, M.C., "Reasoning about Networks with Many Identi-

cal Finite-State Processes", Proc. of the 5th Annual ACM Syrup. on Principles of Distributed

Computing, ACM, pp. 240-248, August 1986. To appear in Information and Computations.

[Ec] Emerson, E.A., and Clarke, E.M., "Characterizing Properties of Parallel Programs as Fix

Points". Springer Lecture Notes in Computer Science. Proc. of the 7th Intern. Colloq. on

Automata Languages and Programming, Vol. 85, Springer-Verlag, 1981.

[EI-1] Emerson, E.A., and Halpern, LY., '"Sometimes" and "Not Ever" Revisited: On Branching vs.

Linear Time', Proc. l Oth A CM Syrup. on Principles of Programming Languages, 1983. And J.

of the ACM, Vol. 33, No.l, January 1986, pp. 151-178.

[M] Milner, R., Lecture Notes in Computer Science, Vol. 92, A Calculus of Communicating Sys-

tems, Springer-Yerlag, 1979.

[so] Sistla, A.P., and German, S., "Reasoning with Many Processes", Proc. of the Syrup. on Logic in

Computer Science, Ithaca, N.Y., June 1987.

