On Effective Axiomatizations of Hoare Logics

Edmund M. Clarke, J r.l, Steven M, German' ,and Joseph Y. Halpernl’2

1. Aiken Computation Laboratory, Harvard University, Cambridge, MA02138
2. Laboratory for Computer Science, M.1.T., Cambridge, MA02139
3. Computer Systems Laboratory, Stanford University, Stanford, CA94305

Abstract: For 8 wide class of programming languages
P and expressive interpretations I, we show that there
exist sound and relatively complete Hoare-like logics for
both partial correctness and termination assertions, In
fact, under mild assumptions on P and I, we show that
the assertions true for P in I are uniformly decidable in
the theory of I (Th(l)) iff the halting problem for P is
decidable for finite interpretations. Moreover
termination assertions are uniformly r.e. in Th(I) even if
the halting problem for P is not decidable for finite
interpretations, Since total correctness assertions
coincide with termination assertions for deterministic
programming languages, this last result unexpectedly
suggests that the class of languages with good axiom
systems for total correctness msy be wider than for
partial correctness.

1. Intreduction

1.1. Background

Because Hoare Logic, or axiomatic semantics, is one of the most
widely used approaches to. defining programming language semantics
and proving propertics of programs, it is important to understand its
limitations and their causes. The question of the existence of good
Hoare Axiom systems for programming languages was first raised by
Clarke in [C176/79], where it was shown that languages with certain
features cannot have axiom systems that are sound and relatively
complete in the sense of Cook [Co78}; natural examples of such
features include: call by name parameter passing in the presence of
recursive procedures, functions. and global variables, and coroutines

with local recursive procedures that can access global variables,

‘The incompleteness results are established by observing that if a

programming language P has a sound and relatively complete proof

This research was supported in part by NSF Grants MCS79-08365 and
MCS80-10707, Advanced Rescarch Projects Agency contract
MDA903-80-C-0159, and a grant from the National Science and
Engineering Research Council of Canada.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-065-6/82/001/0309 $00.75

309

system for all expressive interpretations, theu the halting problem for
Lipton [Li77}

considered a form of converse: If P is an acceptable programming

P :nust be decidable for finite interpsetations.

language and the halting problem is decidable for finite
interpretations, then P has a sound and relatively complete Hoare logic
The

acceptability of the programming language is a mild technical

for expressive and effectively presented interpretations.

assumption which ensures that the language is closed under certain
reasonable programming constructs, and that given a program, it is
possible to effectively ascertain its step-by-step computation in

interpretation I by asking some quantifier-free questions about L

Lipton actually proved a partial form of the converse. He showed
that given a program P and the effective presentation of I, it is possible
to enumerate all the partial correctness assertions of the form
true{P}false which are true in I. From this it easily follows that we can
enumerate all true quantifier-free partial correctness assertions, since
we can encode quantifier-free tests into the programs. But it does not
follow that we can enumerate all first-order partial correctness
assertions, since an acceptable programming language will not in

general allow first-order tests (cf. Section 2).

A number of other researchers ([Me78], [La80]) have since
attempted to clarify Lipton’s proof and to extend it to handle first-
order pre- and post-conditions and a wider range of acceptable

programming languages.

1.2. New Results of This Paper

We consider acceptable programming languages which permit
recursive procedure calls, We also require, for technical reasons, that
every element of the domain of I correspond to some term in the
assertion language. (These requirements seem quite reasonable; cf.
Sections 2 and 4.) Under these assumptions we are able to

significantly extend the results of {C176/79] and [Li77]:

1. We are able to eliminate the requirement that pre- and
post-conditions be quantifier-free and that the
interpretation be effectively prescated. Under the
assumption that the halting problem for P is decidable for

finite interpretations, we show that, for all expressive
interpretations, P has a sound and relatively complete

Hoare axiom system for partial correctness assertions with
arbitrary first-order pre- and post-conditions.

2. We show, in fact, that the set of partial correctness
assertions true in I is actually (uniformly) decidable in the
theory of I (Th(T)) provided that the halting problem for P
is decidable for finite interpretations. Lipton’s proof, on
the other hand, produces an enumeration procedure for
partial correctness assertions and, thus, shows only that the
set of true partial correctness assertions is r.e. in Th().

3. We extend the decidability result to termination assertions
(which coincide with total correctness assertions for
deterministic programming languages). Here even
stronger results can be obtained. The set of true
termination assertions is (uniformly) decidable in Th(I) iff
the halting problem for P is decidable for finite
interpretations. Morcover, the set of true termination
assertions is (uniformly) r.e. in Th(l) even if the halting
problem for P is not decidable for finite interpretations,

This last result unexpectedly suggests that good axiom systems for
total correctness may exist for a wider spectrum of languages than is
the case for partial correctness. In particular, it may be possible to find
a sound and relatively complete total correctness proof system for a
language with call by name parameter passing, recursive procedures,
functions, and global variables, even though no corresponding partial

correctness proof system can exist,

1.3. Outline

The paper is organized as follows. In section 2 we give precise
definitions for all our terms; in particular, we carefully specify the
conditions that a programming language must satisfy in order to be
acceptable. In section 3 we statc and prove our main results,
contrasting them with those of Lipton. As in Lipton's paper, our
resulis split into two cases depending on whether there is for every
trogram P € P a number M such that P naver accesses more than M
elements of the domain on any input. In case such a bound exists we
show that it is possible to enumerate the true termination assertions
even if the halting” problem for P is not decidable. For partial

correctness our proof in this case is similar to Lipton’s.

In case some program can access an unbounded number of
different program states, our approach is different from that of Lipton.
We show that if the interpretation I is expressive, then it is possible to

effectively find formulas which make I into a standard model of

310

arithmetic. (Lipton is able to prove the existence of a standard model
of arithmetic embedded within the interpretation, but is not able to
find it effectively.) We use the standard model of arithmetic to encode
partial and total correctness formulas as first-order formulas over I
The oracle for Th(I) is then used to determine the truth of the encoded

partial correctness assertions (resp. termination assertions),

The paper concludes in section 4 with a statement of some open
problems and a discussion of the philosophical implications of our

results.

2. Basic Definitions

2.1. Interpretations and Valuations

A 1ype or signature is a set of function and predicate symbols, each
with an associated arity. (Constants are just function symbols of arity
zero.) An inferpretation 1 {over a type Z) consists of a domain; dom(T},
and an assignment to cach function (resp. predicatc) symbol of X a
function (resp. predicate) over dom(l) of the appropriate arity. Th(l) is

the set of all first-order sentences (over Z) true in I.

In all that follows, we assume we are working over a fixed finite
type 2. For technical reasons, we always assume the constant a is an

clement of Z.
exoosition that 2 = {a,b,fgAg}, where a and b are constants, fis a

Throughout this paper we will assume for case of

unery function symbol, g is a binary fun:tion symbol, and Ay is a
binary predicate symbol. We also assume a fixed set of variables, var
= {xg.Xy,-}. For a term ¢, let var(t) = {y € var| y appears in t}.
Similarly, for a quantifier-free formula A, let var(A) = {y € var] y
appears in A}, For each interpretation I, a valuation over I is a
mapping ¢ var — dom(I). We can extend a valuation to a mapping
o: Terms — dom(I) in the obvious way. To represent a diverging
computation we introduce one special valuation, .L, such that L(x) is
undefined for all variables x. The valuation o{x/a}] is identical to ¢ on

all variables except x, and ox/al(x)=a.

2.2. Acceptable Programming Languages with Recursion
An acceptable programming language P must satisfy the four

criteria given below.

1. For each program P € P we can effectively find finite
subsets cv(P), dep(P) C var satisfying certain constraints
given below. Intuitively, cv(P) corresponds to those
variables whose values may get changed as we run program
P, while dep(P) includes input variables, output variables,
and any additional variables (such as those that appear in
tests) upon whose values the behavior of P depends.

Define var(P) = cv(P) U dep(P). In each interpretation I
we can also associate with each P € P a set of trajectories,
9)(P), where each trajectory 7 € 93(P) is a finite sequence
of valuations (oy,0y,...) such that L, if it appears at all,

only appears as the last valuation. There is no trajectory of
the form (.L). Thesc trajectories must also satisfy:

a If y € cv(P), then for all i, 6i(y) = og(y). (This
corresponds to our intuition that the only variables

which get changed as we run program P are those in
cv(P))

b. If y € cv(P), then for i > 0, oi(y) = a, b, oj(x),
f(aj(x)), or g(aj(x),ok(z)), for some j, k < i and
x, z € var(P).

c. If ogldep(P)) = oy’(dep(P)) then there is a trajectory
7 ={0g'0) . E9(P) such that o(dep(P) =
6;'(dep(P)) for all i. This confirnis the intuition that
the computation of P depends oruy on the variables
in dep(P).

2. The set of (codes of) programs in P is recursive, and we can
effectively compute the possible it steps of running a
program P € P on any input by asking a finite number of
atomic questions about I. (Note we are allowing
boundedly nondeterministic computations here). More
formally, given a (code for) program P and i, we can
effectively find a finite set of quantifier-frec formulas A,
oy Ay with var(Aj) G var(P) = {y,..y,} such that by
knowing the truth value of Aj in Loy, we can effectively
compute a finite number of sets of terms {{tml,...,trn H
m=12..} over {abfgy;.y,} which represent &e
possible values of the variables in var(P) at the ih step of
any trajectory in Jy(P) starting with 6. That is, ¢ is the i
step of such a trajectory iff. for some m, o(yj) = oty) for
§ = 1., and o(x) = o¢(x) for x ¢ var(P). We can also
effectively compute which (if any) of the sets {tml,...,tmn}
represent output values, iec. whether there i some
trajectory (6y,-..,0;) in 9(P) with oy(y;) = oo(tmj) forj =
1...n.

3. P is effectively closed under variable substitutions, that is,
given P € P with dep(P) = {xil,...,xim} and any sct of m
variables {y)....y;,} we can effectively find a program
P' € P such that dep(P’) = {yp..¥n} and (og,07,..) €
H(P) iff for some (ag,07"..) € T(P") we have aj(xik) =
oj'(y) fork = 1,...m.

4. P is effectively closed under flowchart operations, subroutine
calls, and runtime checks.

To make this last notion precise, let P” be the least set of programs
comtaining P such that if P, Q € P’ and A is a quantifier-free formula,
then the following programs are all in P'. (Note that the programs in

P’ will not necessarily be in P. There will just be programs in P which

simulate them.)

L basic assignments x: =a, x:=b, x: =y, x: = fiy), x: =g(y.2),
2.PQ,

3. A then P else Q,

4. while A do P,

5. run P until A,

6. after each step of P do all of Q.

7. begin local x ;Pend

il,...,Xi_m

We extend 9, cv, and dep to P’ below. Given a trajectory ¢ =

(0,..0y), define first(t) = oy and last(r) = oy; and for trajectories Ty
and 7y, define

1‘0°1‘1 = (0'0,...,0'k,01’,...) if T = (60,...,0‘k),
= (0’0’,01,,...), and oy = 00’,
undefined, otherwise.

L Iftisaterm, cv(x: =t} = {x}; dep(x:=t) = {x} U var(t);
Fix:=t) = {(e.olx/uD| o # L, o(t) = u € dom(D)}.

2. ev(P1Q) = cv(P) U ev(Q); dep(P;Q) = dep(P) U dep(Q);
TP;Q) = {rgory| 70 €F(P), 7, € TQ)}

3. cv(if A then P else Q) = cv(P) U cw(Q);
dep(if A then P clse Q) = dep(P) U dep(Q) U var(A);
T(f A then P else Q) = {r| (Lfirsy(r) k= A, 7 € 9y(P)), or
(Lfirst(r) = DA, 7 € T(QN}

4. cv(while A do P) = cv{P);
dep(while A do P) = dep(P) U var(A);
F(while A do P) = U;sT(WY); where WO = o, Wit =
if A then P; Wi else NOOP, NOOP is the program which
has no effect: FH(NOOP) = {(o)] ¢ = L}, and w is the
diverging program: 9w) = {(o, L)| 0 # L};

5. cv(run P until A) = cv(P);

dep(run P until A) = dep(P) U var(A);

Fi(run P until A) =

{r €9(P)i v = (0¢.0)...), and for all i, Lo; k= DA} U {4]
7 = (0.0), 7 I8 2 prefix of some 7° € Fy(P), if i <k then
Lo; = —A, and 0y = 1 or Lo, = A}. Essentially, we
can think of run P until A as inserting a test for A before
every staiement of P, As soon as the test is satisfied, the
computation halts,

*

cv(after cach step of P do all of Q) = cv(P) U ev(Q);
deplafter cach step of P do all of Q) = dep(P) U dep(Q);
If var(P) N cv(Q) # B, then Ty(after cach step of P do all
of Q) = @. (We consider after cach step of P do all of Q
syntactically incorrect unless var(P) N ¢v(Q) = @; thus
we do not allow the computation of Q to affect the
variables of P.) If va’) N ovQ = @,

Ji(after each step of Pdo all of Q) = {7| v = (04.064...)

such that for some subsequence %, < o <..< o, We have

a. oy = Gio

b. last(1) = %
C. ifﬂ'ij+1 # -L, ((Tij+1,...,0ij+1) € qI(Q)

d. for some (64,07 ,...0p") € J(P), we have either
k=k" or (k<K and oy, = 1), and aj’(dep(P)) =
aij(dep(P)) for all j<k.

7. cv(begin local XX P end) = cv(P);
dep(begin local x; i P end) = dep(P) - {x; 1,...,xim};
ibegin local x;x; ; P end) = {(og.o)°ro(last(r),09)}
o] = oo[xil/a,...,xim/a], r € 9(P), and o, =
laSt(T)[xil/UO(xil)""’Xi.n/UO(Xi . (Thus the local

variables x; ,....x; _are set to thie constant valuc a when the

m .
block is entered, and reset to their previous values when
the block is exited.)

Note that the programs in P’ still satisfy constraints 1 and 2 above.

Now we formally define P to be effectively closed under flowchart
operations, subroutine calls, and runtime checks if for all P € P” and all
interpretations 1, we can effectively find a Q € P which simulates P in
I That is, cv(P) C cv(Q), dep(P) C dep(Q), and for all 7 € J;(P)
(resp. T(Q)) with lasi(r) # L there exisis a 7 € Ty(Q) (resp. T}(P)),
such that first(r)(dep(P)) = firsi(z")(dep(P)) and last(r)(dep(P)) =
last(+")}(dep(P)).

Thus we only require of a program like
after each step of P do all of Q that it can be simulated by a program
in P. possibly using some extra variables as flags. -1t is easy to see that
flowcharts, PASCAL, ALGOL, and almost any AL.GOL-like language
will all constitute acceptable programming languages.

Our definition of acceptable programraing language seems to
coincide with the rather vague definition given in Lipton [Li77}. In
any case, as we shall see below, it certainly gives us languages which
are sufficiently rich to contain all the programs required by Lipton to
prove his results. But for our stronger results, we seem to require that
our programming languages be acceptable with recursion, which we
define to mean acceptable and effectively closed under (possibly

recursive) procedure calls.

To make this precise, we use semantics similar to those of [Mi81].
Let plab = {Zy, Z,, ...} be some set of program labels and let P” be the
smallest language containing P, plab, and all the programs described
above, such that if P € P” and Z € plab, then pZ[P] is a program in P”.
We extend 7, cv, and dep to P” as follows:

1. cw(Z) = dep(Z) = @ for all Z € plab;
IUZ) = Fi(w) = {(o, L)le # L} for all Z € plab.

312

2. cv(pZIP]) = dep(pZ[P]) = dep(P): .
GZP) = Uy TP, where PP=P, and P*1 =
P[Z/PY] (i.e. we syntactically replace all free occurrences
(where free and bound occurrence have the familiar
meaning) of Z in P by P!). Essentially, pZ[P] acts as a least
fixed point operator. Note that Ti(while A do P od) =
TLWZLf A then P;Z else NOOP])

Finally, we define P to be effectively closed under recursive calls,
(as wel! as flowchart operations, subroutine calls, and runtime checks)
if for every program P € P” and interpretation I, there is a program
(The

observant reader will have noticed that we have not dealt with issues

Q €P which simulates P in I in the sense defined above.

such as the copy rule and naming conflicts between global and local

variables. But since we only require that every program P € P” with
the semantics that we have given can be simulated by some program in
P whatever the semantics of P are, such problems will not concern us

here.)

A program P is detenministic iff for all valuations ¢ there is at most
one trajectory 7 € 1(P) with first(r) = o and las(r) # L. The

programming language P is deterministic if' all programs P € P are.

2.3. Partial Correctness and Termination

We expand the tyi)e Sto =P by adding. for each P € P, a predicate
symbol Ap of arity 2k, where k = |dep(P)|. In any interpretation [,
1= Ap(u,v) iff for some trajectory (g...oy) € Iy(P) with oy, # L, we
have oy(dep(P)) = u and o (dep(P)) = v. (Note we use italics to
indicate a vector of variables.) Thus Ap defines the input-output
semantics of program P. We say P halts on input (in interpretation I)
if there is a trajectory 7 € Ty(P) such that first(r)(dep(P)) = u and

last(r) # L. Otherwise we say P diverges on input u.

A (first-order) partial correctness (resp. termination) assertion is a
triple U{P}V (resp. UKP>V) where U and V are first-order formulas
(over Z) and P € P. By definition

1= U{P}V iff 1= Vx (U A Ap(xy) = V()
1= UCPOV iff TE= Vadp(U(x) = Aply) A V()

Thus I E= U{P}V (resp. UCPV) iff, if U(x) then for all (resp. some) y
which are possible outputs of P on input x, we have I k= V(y). Note
that in the case of deterministic programs, total correctness and

termination coincide.

2.4. Expressiveness
An interpretation [is weakly expressive for P iff for every P € P
there is a formula Bp (of type Z) such that
1= Bp(x) iff 1= Jp(Ap(xy))

Thus 1 = Bp(x) iff there is a halting computation of P on input x.

Note that we do not assume we can cffectively find such a By; only

that it exists.

In Dijkstra’s terminology [Di76], Bp corresponds to the weakest
precondition of P with respect to frue, or the ncgation of the weakest

liberal precondition of P with respect to false.

2.5. Expressive-Herbrand and Expressive-Cifective
Interpretations
An interpretation I of type Z is effectively presented if there is a
tuple of integers pres(l) = <ndom,na,nb,nf,ng,nA0>, where ny.. is a
code for dom(T), a recursive subset of N (the integers), n,, n, € dom(I)
are the interpretations of a and b, and ny n,, and Dy, are codes for
recursive functions and predicates of the right arity which interpret f,

g, and A respectively.

1is Herbrand definable iff for all 1 € dom(T), there is a term t in the
Herbrand Universe of {a,b,f,g} such that [=t = i,

Finally, we say an interpretation I is expressive-Herbrand with
respect to programming language P iff it is weakly expressive for P and
cither Herbrand definable or finite. I is expressive-effective if it is

weakly expressive and either recursively presented or finite.

2.6. Strongly and Weakly Arithmetic Interpretations

I is said to be strongly arithmetic if there exist first-order formulas
Z(x), S(x.y), A(xy,z), and M(x,y,2), and a bijection ¢: dom(I) — N
such that

LIEZx) iff ¢(x)=0

2.1E=8(xy) iff @x) + 1= (y)
31EARyD ff () + ¢y) = ¢(2)
4IEMEy) iff o) X gy) = ¢@)

Note we do not assume that we can find Z, S; A, M cffectively.

1 is weakly arithmetic if we can find first-order formulas N(x),
E(x,y), Z(x), S(x.3), A(x.3,2), and M(x,y,2) (with, respectively, k, 2K, k,
2k, 3k, and 3k free variables for some k) such that E defincs an
equivalence relation on dom(l)k, and if [x] = {y € dom(l)k| I k=
E(x,»)}, there is a bijection ¢: {{x]} T k= N(x}} — XN such that
conditions 1-4 above hold (when restricted to Ny with [] replacing x as
the argument to @. (Thus, for example, condition 2 becomes

=N ANO) A Sy iff elx) +1=o0])

Thus the natural numbers are embedded in a weakly arithmetic
interpretation as equivalence classés of domain elements, while in a
strongly arithmetic interpretation, every natural number corresponds

to some distinct domain element.

3. Main Results

3.1. Statements of Theorems
With all these definitions in hand, we can now state our main
theorems precisely:

Theorem 1. Let P be a deterministic, acceptable
programming language with recursion. Then the following
are equivalent:

1.P has a decidable halting problem for finite
interpretations; (i.e. there is an effective procedure
which, when given I with dom(]) finite, a program P
€ P with |dep(P)] = k. and u € dom(1)¥, decides if
P halts on input « in domain 1.)

2. There is an effective procedure, which, for
expressive-Herbrand interpretations 1, will decide
which first-order partial correctness (resp.
termination) assertions are true in I when given an
oracle for Th(I). Thus the set of first-order partial
correctness (resp. termination) assertions true in I is
uniformly recursive in Th(l) for expressive-
Herbrand interpretations 1.

Moreover, even without the assumption that P has a
decidable halting problem for finite interpretations, we can
show that the set of first-order termination assertions true
in1is uniformly r.e. in Th(!) for expressive-Herbrand I,

Similar techniques allow us to prove a variant of this theorem. By
exchanging Herbrand definability for effective presentation, we can
drop the assumption that the programming language allows recursive
cails, but at the price of losing uniformity. Thus we get

Theorem 2: let P be a deterministic, acceptable

programming language. Then the following are equivalent:

1.P has a decidable halting problem for finite
interpretations.

2.The set of first-order partial correctness (resp.
termination) assertions true in I is recursive in
<pres(1), Th(I)> if I is expressive-effective.

Moreover, the set of first-order termination assertions true
in I is re. in <pres(I),Th(I)> for expressive-effective
interpretations I.

By way of contrast, Lipton showed (in [Li77]):

Theorem (Lipton): Let P be a detcrministic, acceptable
programming language. Then the following are equivalent:

313

1.P has a decidable halting problem for finite
interpretations.

2.The true quantifier-free partial correctness
assertions are uniformly r.e. in <pres(i),Th(I)> for
expressive-effective interpretations L.

Lipton’s proof only showed how to enumerate the true partial

correctness assertions of the form true{P}false. However, note that
1= A{P}Biff I = rrue{if — A then w; P; if B then w}false

(recall w is the program which always diverges). Moreover, if A and B
are quantifier-free, this modified program (or one that simulates it) is
in P. Thus it is easy to extend Lipton’s proof to quantifier-free partial
correctness assertions. But this trick does not extend to first-order
formulas. If A is first-order, then the program (if A then w) cannot
in general be simulated by a program in an acceptable programming
language, since the simulating program would violate condition 2 of

Definition 2.2,

Theorem 1 uses the following lemma, which is interesting in its own
right and again generalizes one of Lipton’s results:
Lemma I. If P is acceptable with recursion and 1 is
expressive-Herbrand with respect to P then either:

1. Iis strongly arithmetic, or

2. YPEPAn(P reaches at most n distinct valuatiens in
any computation) (i.e. for all r € TY(P), {o;| 0; € 7}
has < n elements).

We will abbreviate condition 2 of the lemma by (}) since we refer

to it so often below.

Lipton proved the same result with "acceptable with recursion”

replaced by “acceptable”, “expressive-Herbrand" replaced by
"expressive-effective”, and “"strongly arithmetic” replaced by "weakly
arithmetic”. However we can actually get a stronger result. As a
corollary to the proof of Theorem 1, we will show that if I is strongly
arithmetic and expressive-Herbrand, we can effectively find the
formulas which make I strongly arithmetic. We will rederive Lipton’s
result in the course of our proof of Lemma 1, and uvse it in proving

Theorem 2.

3.2, Proof of Theorem 1
The fact that (2) = (1) in the first half of Theorem 1 was proved by

Clarke [C176/79). The proof in fact goes through under much weaker
hypotheses: P docs not have to be acceptable or deterministic. To

prove the remainder of Theorem 1, we will describe five effective

314

. M5 When given an oracle for Th(l) of an

expressive-Herbrand interpretation 1 each of them outputs first-order

procedures, M;,

partial correctness or termination assertions, or their negations. They
are all sound: that is, any assertion which is ‘output is true in I. If s
strongly arithmetic, then M, is complete for partial correctness
assertions; that is, it outputs U{P}V or 7"U{P}V for each partial
correctness triple, depending on whether it is true or false in L
Similarly, M, is complete for termination asscrtions if 1 is strongly
arithmetic. If P has a decidable halting problem for finite
interpretations and () holds, then Af; (resp. M, is complete for
partial correctness (resp. termination) assertior.s. Finally, M is similar
ts M, but it just enumerates all the true termination assertions UCP>V
if (1) holds (but not the negations of the false ones), and does not
require the assumption that P has a decidable halting problem for

finite interpretations.

Theorem 1 then follows from Lemma 1 (which we will prove
below). To decide first-order partial correctness assertions we run M;
and M in parallel. To decide first-order termination assertions we run
M, and M, in parallel. To enumerate first-order termination
assertions without the assumption that P has a decidable halting

problem for finite interpretations, we run M, and Mj in parallel.

3.2.1. Construction of M, and M,

Consider the following set of axioms for arithmetic;

AX1, (S(x) = 0)

AX2, S(x)=S(y)=>x=y
AX3. x+0=x

AX4. x+5(y) = S(x+y)
AX5. xX0=0

AX6. xXS(y) = xXy + x
AX7. —(x<0)

AX8. x<S(y) = (xXy V x=y)
AX9. xXyVix=yV Kx

Of course, these do not constitute a complete set of axioms for
arithmetic. However, an interpretation which satisfies these axioms
has a "standard part" (cf. [SH67]), consisting of those elements in the
domain of the form S¥(0) for some integer k. In general there is no
first-order formula which defines the standard part, but under certain

stronger hypotheses, we will show that it can be defined.

First we inductively define an encoding of Herbrand terms of type
2

Fal1=0

=1
M=2
Tgl=3

gy = <FAeH
Fgtu)1 = <Mg<rel,ruD>

where < denotes the pairing function <x,y> = %(x+y)(x+y+1)+x.

Let H be a binary predicate symbol (whose intended meaning is
H(x,d) iff x is the 'encoding of a Herbrand term equal to d) and
consider the following encoding axiom, which we abbreviate by Enc:

VxdHxd)=Gx=TaTAd=a)VE=TbTAd=1)
V (Ay.e(Pr(x,F f1y) A H(y.e) A d = Re))
\ (Hy,d1,d2,Zl,Z2(PT(X,rg-I,y) A (Pr(y,zl,lﬁ
A H(z},d)) A H(zp.dy) A d = g(dy.dy)l

where Pr(z.x,y) = vz A x<z A 2 = %(x+yXx+y+1)+x

We now show H "works right" on standard elements:

Lemma 2: If 1 satisfies AX1-9 and Enc, then | k= H(Sk(O),d) iff k is

the encoding of a Herbrand term whose value in Iis d.
Proof. By induction on k. Details appear in the final paper.

Now we show how to use H to define the standard part in a

nonstandard model of arithmetic.

Lemma 3: If | satisfies AX1-9 and Enc, then Std(x) = 3dVz(H(z,d)

= x < z) defines the standard part of I.

Progfi We begin by showing that the nonstandard elements, if
there arc any, come after all of the standard clements in the ordering <.
That is, if x is standard and y nonstandard, 1 k= x<y. This in turn is
proved using induction on k to show that if y is nonstandard, then 1 =
"'l(y(Sk(O)). The desired result then follows immediately by AX9.
The base case of the induction is just AX7, and the inductive step
follows using AX8, the inductive hypothesis, and the fact that we
cannot have y=5(0) since y is nonstandard.

We will now show that I = Std(x) iff % is « standard element, If x is
stardard, lemma 2 implies that Std(x) holds. Because dom(l) is
infinite, for any standard x there exists an element d all of whose
encodings are greater than x. For this d, I = Vz(H(z,d) = x<2),
because if z is either a standard value encoding d or a nonstandard
value, it must be greater than x. Thus I &= Std(x). On the other hand,
if x is nonstandard, then for every d € dom(J), there exists a standard
encoding z of d such that I = H(zd) A —(x<2).

1= =Std(x).

Therefore,

315

Finally we need

Lemma 4: Suppose we can effectively find formulas Z'(x), S'(x.y),
A’(x,y,2), and M’(x,y,2) (of type %) which make I strongly arithmetic.
Then, for each P € P, we can effectively find a formula Ap’ of type 2

which is equivalent to Ap in 1.
Proof: Deferred to the final paper.

Now we can define M to decide partial correctness assertions. It
systematically guesses formulas Z'(x), S'(xy), L'(xy), A'(xy.z),
M’(x,y,z), and H'(x,y) and checks (by consulting its oracle for Th(I))
that Z' defines a unique element of I (ie. I &= Ix(Z'(x) A YY(Z(y) =
y=x)), S, A’ and M’ definc functions (ie. I = Vx3Iy(S'(xy) A
VZ(S'(x,2) = y=2)), etc.), and that AX1-9 and Enc hold in I when
written in terms of these formulas. (For example, AX2 becomes
(5'(x.2) A S'(y,2)) = x=y.) Now using these formulas, we can define
Std(x) as in Lemma 3, and check if [= Vx(Std(x)). If not, then M;
continues guessing. But if ¥x(Std(x)) does hold in I, then we have
effectively found the formulas which make I strongly arithmetic, and
the hypotheses of Lemma 4 are satisfied. Then for every pair of first-
order formulas U, V and every program P € P, M; constructs the
formula PCyjp y:

YU A Ap'(xp) = V0))
By consulting the oracle for Th(l), M, can tell if this formuta is true in

L. If so, M, outputs U{P}V; otherwise it outouts =U{P}V.

From Lemma 4, it follows immediately that M is sound. And if 1
is strongly arithmetic, M, will eventually find first-order formulas Z',
S', L, A, M’, and H’ which satisfy all the conditions, and hence will
also be complete. (Here we are using the fact that the formula H is
definable in strongly arithmetic domains. The construction is
straightforward but technical, using coding of sequences, and is

omitted here.)

For total correctness assertions, M, proceeds just as M, but instead
of using PCy p . it uses Ty py:
Vx3U() = Ap(x) A V) B

Note that in constructing M, and M, we did not need the full
strength of the assumption that I is strongly arithmetic. We could have
weakened it to "I is weakly arithmetic and there is a formula H which
satisfies (Enc)”. In this case, we would also have to guess a formula
N(x) for natural number, and formula E(x,y) for equivalence. AX1-9
would also have to be appropriately modified to restrict everything to

N. For example, AX2 would read:

N(x) A NG) A N(2) = [5(x.) A S(x,2) = E(3,2)]
We also would also have to include axioms to check that E is an
equivalence relation, and that N, S, and Z interact correctly. Thus we
would also have to check that the following two formulas held in I:

E(x,x) A (Blx.y) = BOnx) A (B(x.p) A E(,2) = E(x,2)),
(Z(x) = N(x)) A (N(x) A S(xy)) = NO)).

3.2.2. Construction of M;, M, and M;

We extend the techniques of [1.i77] to the first-order case.

Given an interpretation I, M € X, a program P € P with dep(P) =

X = <xi1""’xik>’ and u = <Uy,..,u> € dom(l)k, we make the following

definitions:

1. Up(x) = {terms of depth < M over {f.g.ab,x}}.

2. Iyy(w) = {values obtained by substituting uj for x; in the
J
terms of Upy(x)}.

3. Ky = {domains of size < N, where N=1+|Up(x)[} We
also assume each K € Ky has one distinguished element A.

4. Pyy(x) is the program which acts just like P(x) except that
on input it halts at any vatuation ¢ such that o(y) ¢ Iy (u)
for any y € cv(P). Py is just

run P(x) until _1[Ay€cv(P)(Vt€UM(x)y =t)}.

Ify € cv(P), v = (0(,07,....) € Ty(P), and o (y) is the k™ distinet
valuation in 7, then it is straightforward to show using condition 1 on

acceptable programming languages and induction on k that o, (y) €

Ii(o(x)). From this observation we get

Lemma 5: (Lipton [Li77]) If (1) holds in I, then there exists an M
such that for all y € cv(P), all + € 9y(P), and all n, we have ¢, (y) €
Iy(o(x).

We say that 1 is isomorphic to <K,¢> on Ty(u) (where K € Ky and

c€ dom(K)k) iff there exists a map ¥: Iy(u) — dom(K) - {A} such
that

Ly = ¢, fori = 1,k

3.0 4 € Iy(wy and 1) € Iy(w, then K k= f@(t))=A.
Similarly for g.

4. 1f ty, f(t) € Iyg(w), then K = fY(t))) = $(fty)). Similarly
for g.

Note that there are only finitely many pairs <K,o> for a given

M. Morcover, for each such pair we can find a first-order formula

A g (x) such that
TE A () iff Lisisomorphic to <K,c> on Iy(w)

Call a pair <K,c> diverging if Py(x) diverges when run in
interpretation K on input ¢. Call a pair cleanly halting if Pyy(x) halts
wiih output d when run in interpretation K un input ¢, and no d;=A.

Let ugy , be the vector in I4(u) corresponding to d.

It is easy to check that if <K,¢> is diverging and [b= A »(u), then
P diverges in I on input w. If <K,¢> is cleanly halting and I b=
Ak o(w) then T = Ap(uucg). Thus we define the two first-order

sentences
PCyupv:
Y{U(x) = (V(K,c> divergingA(K,t)(x) \4
V (Ko dleanty hattingA<k, (9 A Vxeg o]

FPCyvpy v
AU A Vg o> cteanty hatting{B¢k) A T V(xeg o)

M, proceeds as follows, For each M, U, P, and V, it constructs the
sentences PC’y; ypy and FPC’yp 1. This can be done effectively.
By assumption the halting problem is decidable for finite
interpretations so we can effectively find all the diverging pairs <K,c>.
(Note we do not need the halting problem to be decidable to
recursively enumerate the cleanly halting pairs. By condition 2 of
acceptable programming language we can simply simulate Py on input
¢ in interpretation K simultaneously for each pair <X,¢>. Eventually
we will find all the cleanly halting pairs, although we will not know
when we have found all of them.) If (by consulting its oracle for Th(I))
M discovers that PC'yy y p v (iesp. FPC'ygp yy v) holds in I for any M,
it outputs U{P}V (resp. =VU{P}V). The procedure is sound by the

comments above, and complete if () holds for I by Lemma 5.

M, is identical to M but replaces PC'yy y p y and FPC'pp 1y y by
Tyvupy:
VAU() = A Vx o cteanty natingB ek o) A Vg o))

Flyupyv:
HX[U()& A (V(K‘c> divcrgingA<K<c>(x) v
V(K.c) cleanly ha]Ling(A<K.c>(x) A _'V.(X<K,c)))]

Finally, for M, note that we do not need the assumption that the
halting problem is decidable for finite interpretations to compute
T'pmup,v- since we only need the cleanly halting pairs <K,c> and not
the diverging pairs. Thus M starts simulsung Py on input ¢ in
interpretation K simultaneously for each pair <K,c>. Every so often it
discovers that another pair <K,¢> is cleanly halting. Let J be those

pairs which it has so far discovered to be cleanly halting. M checks if

TE= VU) = Vg s€aBex o0 A Vix o))
If so, it outputs UCP>V. By the same arguments as above My is sound,
and it is complete if () holds in I. Note that we cannot effectively find
all the pairs <K,¢> which are diverging, but we do not need them to

enumerate the true termination assertions.

3.2.3. Proof of Lemma 1

Assume that () does not hold for I. Then there is some program
P € P with dep(P) = x such that card(<P(x)>) is unbounded; i.e. for all
M there exists 7 € 9i(P), v = (gg, 0}, ...) such that {o(x)| o; € 7} has
at least M distinct elements. We show how to define programs whose
weakest preconditions (the Bp of Definition 2.4) define the formulas
necessary to make I arithmetic. Qur initial steps are much like those of
Lipton. We use his technique for representing integers in 1 and show
how to write programs that perform arithmetic operations on this
notion of integer. However, we go much further than Lipton in that
we usc these primitive programs to write more complicated programs,
and ultimately to construct a program which translates the encoding of

a Herbrand term into its corresponding value.

The programming details are themselves interesting. It turns out
that under this representation of integers we can compute a
predecessor function, but no successor function. But we can compute

a bounded successor function, and that is sufficient for our needs.

In the constructions below, we assume for casc of exposition that P
= P”, so that programs like after cach step of P do all of Q really are in
P. In general, of course, we would have to replace the programs below
by the programs in P which simulate them. We write P(x) to indicate
dep(P) = x. P(x)is just P with the variable x’substituted for x.

We first construct a program Q(x) such that if we run Q(x) on any
fput, x takes on the same values as wher. we run P(x) on the same
input, but without repetition; ie. if 1 = (6, 07,.) €FH(P)and " =
(og, o7, .} € 9(Q) with oy = oy then {oy(x)] i20} =
{o(0)]1>0} and if 0;'(x) = 0;'(x) for ij, then a,/(x) = a;(x) for all
k, i<k<j. Essentially this is done by keeping track of the initial and
current values of x, and then running a copy P with input the initial
value and looking for the next new value it reaches after the current
value (see [Li77] for more details). The code for Q(x) is given in

Figure 3-1.

317

begin local init, X', y;

init 1= X,
X=X
after cach step of P(x") do all of R(x,x’y,inif);

end
where R(x,x’y,init) is the program

if x # x”then begin
y:i= init,
run P() until (y = X’V y = x);
ify = xthen x:=_x}

end

Figure 3-1: The program Q(x).

The pair x = (x;x,) will represent the integer k iff x, is the K
distinet value reached by Q on input x;. We write [x] = k to indicate

that the pair x = (x;,x;) represents k.

Choose two Herbrand terms tt and ff which get distinct values in I,
to represent frue and false respectively. Then using Q it is
straightforward to write programs which meet the following

specifications.

(1) CHECKINT(x): halts with x unchanged if x represents an
integer; otherwise CHECKINT will diverge.

(2) EQ(x.y,ans): if x and y do not both represent integers, FQ will
diverge. Otherwise 13Q will terminate with x, y unchanged and

ans =t if[x] =Dl
ff otherwise

(3) LESS(x,y,ans): if x and y do not both represent integers, LESS
will diverge. Otherwise LESS will terminate with x, y unchanged and

ans = tt if [x}<[y]
ff otherwise

(4) NUM,(x,ans): if x does not correspond k an integer NUM;, will
diverge. Otherwise, NUM, will terminate with x unchanged and

ans=1tt if[x] =k
ff otherwise

The idea for computing EQ(x,y,ans) is to compute the successive
values reached by Q starting from x; and y; and check that we reach x,
and y, at the same time. (Recall that we assume x is of the form x;, x;
and likewise y) We give the code in Figure 3-2; the codes for
CHECKINT, LESS, and NUM, are similar and will not be given.

CHECKINT(x);
CHECKINT();
begin local u, v, v, V',
U= X
vi=yn
while ¥ # x, V v# y;do begin
wi=u,
vVi= v
ONEMORESTEPQ(x;,u’u);
ONEMORESTEPQ(y,,v’v);
end;
fu=x, A v=yythenans:= ttelseans:= ff;
end
ONEMORESTEPQ(x,5,2) computes z such that [x,z] = {x,y] + 1:
begin local flag;
flag 1= fTf:
=X
run Q*(3,z.flag) until (flag = tt A y # 2);
end
where Q*(y,z.flag) is
after each step of Q(2) do all of (if z = ythen flag : = tt).

Figure 3-2: The program EQ(x,y.ans).

In more detail, the program works as foliows. The initial calls to
CJECKINT check that x and y are integers, and diverge otherwise.
We get ONEMORESTEPQ(x,y,2) by using Q*(y,z.flag) to compute
successive values taken on by z when we run Q(z) starting with x,
setting flag to tt when y = z, and then continuing the computation one

more step.

In general, it does not seem possible to construct a program
SUC(x,y) which will compute a y such that [y} = [x] + 1. If[x] = k, it
may be the case that only k distinct elements of dom(l) are reachable
from x; by the program Q. The program ONEMORESTEPQ above
only worked because at the point when it was called we were
guaranteed that a "next" element existed. However, it is possible to
gencralize this idea and construct a "bounded” successor program, as
well as the bounded addition and multiplication programs described

below.

(4) SUC(b,x,yoft): if b, x, and y do not all initially represent
integers, SUC will diverge. Otherwise SUC will terminate with b, x

unchanged and
Dl=[d+Lofl =ff iffx<[2]
ofl = tt if [< [

(6) ADD(b,x,y,z,0fl): if b, x, y do not all initially represent integers,
ADD will diverge. Otherwise, ADD will terminate with b, x, y

unchanged and

318

[d=0+Dlofl = ff iflx] +) < (8

ofl =1t iF[B1< 1] + 1)

(7) MULT(d,x,y,2,0fl): similar to (6) above except that
[=[XDlofl=ff if[x]X[)] <[4
ofl = tt if (5] < [x] X [y].

The code for SUC(4,x,y,0f1) is given in Figure 3-3. The idea is to
initialize y to b and then increase y (using ONEMORESTEPQ) until x
<y. The code for AIDD and MULT is straightforward to write using
50C and is omitted here. It is, however, important to ensure that no

intermediate integer value ever exceed the alue determined by b.

begin local ans, y*

LESS(x,b,ans);
if ans = ff then ofl := tt else begin
Y= by
while ans = {f do begin
Yi=yy
ONEMORESTEPQ(y..y'y,);
LESS(x,y,ans);
end;
end;

end

Figure 3-3: The program SUC(5,x,y,0f1).

By slightly modifying the programs written above so that they
compute predicates instead of functions (e.g. we would modify ADD
so that it halts on input xy,z iff [2] = [x] + [1]) and taking weakest
preconditions we could already define formulas N, Z, E, S, L, A, and
M which satisfy Definition 2.6, We note that none of the above
programs required recursive calls. Thus it follows that if (1) does not
hold, P is an acceptable programming language (but not necessarily
acceptable with recursion}, and 1 is expressive-Herbrand or expressive-
effective with respect to P; then I is weakly arithmetic. This is exactly
Lipton’s result. But we requirc more; we necd a formula H which

satisfies the axiom (Enc).

We get H by using the programs defined above to construct a
program HRBD which relates the encoding of a Herbrand term as an
integer to its corresponding value. We use the encoding of Herbrand
terms described in 3.2.1. The formal specification for HRBD is given

below.

(8) HRBD(x,enc,d): if x does not represent an integer, HRBD will
fail to terminate. Otherwise, HRBD will terminate with x unchanged
and

enc=t,d =h(inl)
enc = ff

if [x} encodes rlerbrand term h,
otherwise

Thus, for example, if [x] = F'fa)7 (= (2,0) = 5), then after the

execution of HRBD(x,enc,d), we will have enc = ttand d = f{a).

Note that a true pairing function cannot be programmed using the
above techniques. Given only x and , it is not in general possible to
compute z with [z} = <[x),[yD, since the value to be computed will be
larger than both of the input values. The corresponding projection
function, on the other hand, is relatively easy to compute and is
sufficient for programming HRBD. Thus we need a program PR
which satisfies

(9) PR(z,x,y): if z does not represent an integer, then PR diverges.
Otherwise, PR will terminate with the final value of z unchanged and
the final values of x and y will satisfy the relationship

[4="%0]+ DDA+ DI+ 1) + [
The program for PR simply tests all [x],)] < [2] until it finds [x}, [}]
which satisfy this relationship. It uses the identity 1+2+...4+(n+m)
= Y(n+m)(n+m-1) to ensure that no intermediate value for the
right choice [x] and [y] exceeds the initial value of [z]. The code for PR
will not be given; the code for HRBD is given in Figure 3-4.

A straightforward modification of HRBD(xenc,d) gives us
HRBIY'(x,d) which halts iff d is equal to the Herbrand term encoded
by x. Now, by taking weakest preconditions, we can already show that
1is weakly arithmetic and has a formula H which satisfies Enc. As we
remarked in 3.2.1, this would already be enough to enable us to define
the procedures M, and M, and prove our main theorem. However,

with a little more work, we can show that I is strongly arithmetic.

List the terms in the Herbrand universe (of {ab.f,g}) in order of

increasing encoding: a, b, {a), f{b), g(a.a)......

Using this encoding and our old way of looking at tuples in dom(l)

as integers, we can define a new way of looking at tuples in dom(l) as

iitegers. We use the notation [v] to contra«t with the [v] used before.
Define [v] = m, if, for some k:
Lphl=k
2. k is the encoding of some Herbrand term t (ie. [tT = k).
3. there is no term ¢ with 't 1<k such thatH=t = ¢,

4. the Herbrand terms t with [t'7 < k take on m distinct
valuesin I,

If the conditions above do not hold, then [v] is undefined.

319

uH[begin
local init, ans, fid, arg, arg’, arg”, 4':
init 1= x;
enc .= f;
NUMp,q(x,ans);
ifans = ttthend:=a
else begin
NUMp1(x,ans);
ifans = ttthend:= b
else begin
PR(x.fidarg);
NUMf £1(fd, ans);
if ans =: tt then begin
x:i= arg;
H;
d:= fd);
X = init;
end;
else begin
NUMrg—](ﬁd,ans);
if ans = tt then begin
PR(arg, arg’, arg");
xXi= arg’s
H;
¢:=4d;
if enc = tt then begin
x:= arg”
H;
d:=g(d, d);
end;
X .= init,
end;
elseenc ;= ff;
end;
end;
end;
end)

Figure 3-4: The program HRBD(x,enc,d).

For example, suppose that in I we have a = f{a), but a, b, and f{b)
are all distinct. It is easy to check thatFa1=0,Fb71=1,Tfla) 1 =
5, Ff(b) T =8. Thus,if v} = 0.[v] = Lv] = 2. [v] = 5. [vd = 8,
then [v)] = 0, [v/] = L [v,] is undefined, [v;] is undefined (since
there is a Herbrand term, namely a, with FaT1 < fa)TbutI b= a =
f{a) by assumption), and [v,] = 2.

We can use this listing of Herbrand terms to define a bijection
@: dom() — N. Foru € dom(I}, (u) = m iff, if tis the first term on
the list such that I =t = u, then m different values are taken on by
the terms on the list before t. So in our example above, @(a) = 0,
p(b) = L, p((fb)) = 2.

Since I is Herbrand definable (by assumption) and hag an infinite
domain {otherwise (1) would hold), ¢ is indeed a bijection.

It is not hard to definc programs similar to the ones above which do
arithmetic on this notion of integers. We can then use their weakest
preconditions to show 1 is strongly arithmetic. We leave details to the

full paper.

This completes the proof of Lemma 1, and with it the proof of

Theorem 1.

3.2/4. Remarks

“We have used two of our hypotheses on P -- that P is deterministic
and that P allows recursive procedure calls -- in a weak way. In
particular, note that the construction of M;, M, and M are unaffected
if P has nondeterministic programs. For M; and M, to work in the
presence of nondeterministic programs, we need to strengthen the
hypothesis that "P has a decidable halting problem for finite
interpretations” to ""P has a decidable input-output relation for finite
interpretations”; i.e. if is finite, then for all P € P, we can decide for
which u, v € dom(l) we have I F= Ap(w,y). Note that the two

hypotheses are equivalent if P is deterministic.

It is only in the proof of Lemma 1 that we really needed
determinism, because we needed to know that if () does not hold,
then there i3 a deterministic program P such that card(KP(x)>) is
unbounded. But once the presence of one such program is guaranteed,
the

nondeterministic programs.

programming language could certainly have other

Similarly, the only place in which we used recursive calls was in the
construction of the program HRBD of the previous section, which in
turn was necessary to show that I was strongly arithmetic. We could
remove this condition by insisting, for example, that there be some
program P € P and some x € var(P) such that if we run P on some
input u, x takes on every value in dom(I). In particular, under our
assumption that I is Herbrand definable, having a deterministic
program which would generate all the Herbrand terms would- be a

sufficient condition to remove both of these hypotheses on P.

It is also worth noting that our decision procedures for partial
correctness and termination also extend to decision procedures for the
[Pr76,Ha79]) of any acceptable

programming language with recursion.

full first-order dynamic logic (cf.

3.3. Proof of Theorem 2

By the comments made in the proof oi Lemma 1, since I is
expressive-effective, I is either weakly arithmetic or (1) holds. If (})

holds, then the procedures M; M, and M defined above work

320

perfectly well in this case too. If1 is weakly arithmetic, we show below
that given the formulas N, Z. S, A, M. and E which make 1 weakly
arithmetic, we can effectively find a formula Ap” of type 2 (analogous

to the formula Ap’ of Lemma 4) which is equivalent to Apin L.

Since I is expressive-effective, and hence effectively presented, it
follows that Ap defines an r.c. subset of dom(D* C N (where k =
|[dep(P)}). Thus by a well-known result of recursive function theory (cf.
[Sh67)), given (the code for) P, we can effectively find a first-order
formula Ap* of number theory (i.e. over the type {0,+,X,S}) such that
N B Ap*(xy) iff 1= Ap(x,y). But by a straightforward syntactic
translation using N, Z, S, A, M, and E, for any formula of number
theory we can find a formula B’ of type X such that I k= B'(2) iff
N'= B(z2). Applying this syntactic translation to the Ap*, we get the

desired formula Ap”.

Now we can construct A, and M’ which are identical to M; and
M, except they replace the Ap’ of Lemma 4 by the Ap” constructed
above. Note this procedure is not uniform in L. In contrast to Theorem
1, we have no effective way of finding the formulas N, 7, S, A, M, and

E; all we know is that they exist.

4. Conclusions and Open Problems

We belicve that this paper raises a number of open questions of
both technical and philosophical interest. Perhaps the most important
technical questions concern to what extent the various hypotheses that
we used in Theorem 1 can be climinated or replaced by weaker

1

conditions. In particular, thc hypotheses that the programming
language be deterministic and allow recursive calls do not appear
essential (cf. 3.2.4), and we conjecture that our results can be extended
to a wider class of languages. On the other hand, the assumption of
Herbrand definability, or something like it (perhaps the existence of a
pairing function, so that sequences of values can be coded up by one
valuc) does seem necessary. Moreover, both Herbrand definability
and effective presentability (used in Theorem 2) seem to be very
natural conditions. The first limits the values of the domain to those
which can be effectively described, while the second limits the

interpretations to those which can be effectively described.

A second open question concerns the relationship between an
axiomatization of the kind given by Floyd and Hoare (consisting of a
finite number of axiom schemes), and a decision procedure of the sort
provided by Theorems 1 and 2. In order for a decision procedure to be
a realistic analogue of a Floyd-Hoare axiom system, it should, in some

sense, be uniform; i.e. independent of the particular interpretation I

that is being used. For this reason, Theorem 2 is perhaps not all that
useful.

interpretation in mind.

But it still might have application when we have a fixed

A third question concerns the rclationship between the
uninterpreted case considered in [MH80] and the interpreted case
discussed here. It is interesting to note that termination assertions
were shown (in [MH80]) to be somewhat more tractable than partial

correctness assertions in the uninterpreted case.

This leads us to our last point: the relationship between partial
correctness and termination, and our ability to find good axiom
systems for complicated programming languages. One conclusion we
can draw is that under the assumption that the halting problem is
decidable for finitc interpretations, partial correctness and termination
scem to have essentially the same complexity. However, for more
complicated deterministic programming languages such as those
discussed in [C176/79] which do not have a decidable halting problem
for finite interpretations, termination assertions, and hence total
correctness assertions, are effectivelv axiomatizable. while partial
correctness assertions are not. This suggests the use of a total
correctness proof system which, unlike mcst currently available, does
not require the establishment of partial correctness as an essential first

step.

321

References

[C176/79] Clarke, EM. Programming language constructs for

which it is impossible to obtain good Hoare axiom systems. JACM

26:1, January, 1979 Ph.D. Thesis, Cornell, 1976.

[Co78]
system for program verification. SIAM Journal on Computing 7:1, pp.

70-90, February, 1978.

Cook, S.A. Soundness and completeness of an axiom

[Di76] Dijkstra, E. W. A Discipline of Programming, Prentice-
Hall, 1976.
[Ha79] Harel, D. Firsi-Order Dynamic Logic. Lecture Notes in

Computer Science, 68. Springer-Verlag, N.Y., 1979.

[La80]
Logic and Applications. Institut fur Informatik und Praktische
Mathematik bericht 8003, June, 1980.

Langmaack, H.A. Proof of a theorem of Lipton on Hoare

[LOSO]

like systems for programming languages with procedurcs: Power,

Langmaack, H.A. and ER. Olderog. Present day Hoare-

limits, and most likely extensions. In: Proceed. 7th Conf. Automata,
Languages, and Programming, Nordwijkerhout 1980, Eds: J. W. de
Bakker, J. van Leeuwen, LNCS 25, pp. 363-373, June, 1980,

[Li77]
existence of Hoare logics. In: 18th IEEE Symp. on Found. Comp.

Lipton, R.J. A necessary and sufficient condition for the

Science, pp. 1-6, October, 1977.

[Me78] Meyer, A.R. Notes on Lipton’s generalization of the
theorems of Cook and Clarke on expressiveness. Privately circulated

notes.

[MH80] Meyer, A.R. and 1.Y. Halpern. Axiomatic definitions of
programming languages: a theoretical assessment. In: Proceed. 7th
ACM Symp. on Principles of Programming Languages. pp. 202-212,
January, 1980 (to appear in JACM).

Mitchell, J.C. Axiomatic Definability and Completeness

[Mi81]
for Recursive Programs, S.M. Thesis. M.LT,, 1981,

[Pr76] Pratt, V.R. Semantical Considerations of Floyd-Hoare
Logic. In: 17th IEEE Symp. on Found. Comp. Science, pp. 109-121,

October, 1976.

[Sh67} Shoenfield, J. R. Mathematical logic. Addison Wesley,

1967.

