
On Effective Axiofnatizations of Hoare Logics

Edmund M. Clarke, Jr.l, Steven M. Germanl’3, and Joseph Y. Halpernl’2

1. Aiken Computation Laboratory, Harvard University, Cambridgg MA02138

2. Laboratory for Computer Science, M.I. Z, Cambridge, MA02139

3. Compu{er Systems Laboratory, Stanford University, Stanford CA94305

Abrtrr?ct: For a wide cless of programming languages
P and expressive interpretatiorrs 1, we show that there
exist sound and relatively complete Hoara-tike Iogica for
both partial correctness and termination aasertiona. In
fact, under mild assumptions on P and I, we show that
the assertions true for P in I are uniformly decidable in
the theory of I (l’h(I)) iff the halting problem for P is
decidable for finite interpretations. Moreover
termination assertions are uniformly r.e. in T%(I) even if
the halting problem for P is not decklable for finite
interpretationa. Since totat correctness assertion9
coincide with termination a.wertiona for deterministic
programming lartguege.s. this last result unexpectedly
suggests that the class of tanguages with good axiom
systems for total correctness may be wider than for
partial correctness.

1. Introduction

1.1. Background

Because Hoare Logic, or axiomatic semantics, is one of the most

widely used approaches to defining programming language semantics

and proving properties of programs. it is impor~nt to undera~nd lN

limitations and their causes. The question of the existence of good

Hoare Axiom systems for programming ksnguageswas first raised by

Clarke in [C176/79], where it was shown that languages with certain

featores cannot have axiom systems that are sound and relatively

complete in the sense of Cook [C078]; natural examples of such

features include: call by name parameter passing in the presence of

recursive procedures, functions, and global variables, and coroutines

with local rccursivc procedures that can access global variables.

TIN incompleteness rcsuhs arc established by observing that if a

programming language P has a sound and rc12tivcly complctc proof
.-. ------ - ----- ----- ----- --------

This researchwassupported in part by NSF Grants MCS79-08365 and

MCS8O-107O7, Advanced Research Projects Agency contract

MDA903-80-C-0159, and a grant from the National Science and

Engineering ResearchCouncil of Canada.

Permission tn copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 ACM 0-89791-065-6/82/001/0309 $00.75

system for all expressive interpretations, theu the halting problem for

P must be decidable for finite interpretations. Lipton Wi77]

considered a form of converse: If P is an uccep@ble programming

language and the halting problem is decidable for finite

interpretations, then P has a sound and relatively complete Hoare logic

for expressive and effectively presented interpretations. The

acceptability of the programming language is a mild technical

assumption which ensures that the language is closed under certain

reasonable programming constructs, and that given a program, it is

possible to effectively ascertain its step-by-step computation in

interpretation I by asking somequantifier-free questions about L

Lipton actually proved a partial form of the converse. He showed

that given a program P and the effective presentation of I, it is possible

to enumerate all the partial correctness assertions of the form

o-ue{P}@lse which are true in L From this it easily follows that we can

enumerate all tnre quantifier-free partial correctness assertions, since

we can encode quantifier-free tests into the programs. But it does not

follow that we can enumerate all first-order partial correctness

assertions, since an acceptable programming language will not in

general allow first-order tests(cf. Section 2).

A number of other researchers ([Me78], &a80]) have since

attempted to clarify Lipton’s proof and to extend it to handle first-

order pre- and post-conditions and a wider range of acceptable

programming languages.

1.2. New Results of This Paper

We consider acceptable programming languages which permit

recursive pmccdurc calls. Wc also require, for technical reasons, that

every element of the domain of I correspond to some term in the

assertion language. (These requirements seem quite reasonable; cf.

Sections 2 and 4.) Under these assumptions we are able to

sj~njficantly Cxtend thc results of [C]76/79] and [Li77]:

309

1. We are able to eliminate the requirement that pre- and

post-conditions be quantifier-free and that the

interpretation be effectively prescmed, Under the

assumption that the halting problem for P is decidable for

finite interpretations, we show that, for all expressive

interpretations, P has a sound and relatively complete

Hoare axiom system for partial correctness assertions with

arbitrary first-order pre- and post-conditions.

2. We show, in fact, that the set of partial correctness

assertions true in I is actually (uniformly) decidable in the
theory of I (Th(l)) proyidcd that the halting problem for P

is decidable for finite interpretations. Lipton’s proof, on

the other hand, produces an enumeration procedure for

partial correctnessassertions and, thus, shows only that the

set of true partial correctnessassertionsis r.e. in Th(I).

3. We extend the decidability result to termination assertions

(which coincide with total correctness assertions for

deterministic programming languages). Here even

stronger results can be obtained. The set of true

termination assertions is (uniformly) decidable in Th(I) iff
the halting problem for P is decidable for finite

interpretations. Moreover, ‘&c set of true termination

assertions is (uniformly) r.e, in Th(l) even if the halting

problem for P is not decidable for finite interpretations.

This last result unexpectedly suggeststhat good axiom systemsfor

total correctness may exist for a wider spectrum of languages than is

the casefor partial correctness. In particular, it may be possible to find

a sound and relatively complete total correctness proof system for a

language with call by name parameter passing, recursive procedures,

functions, and global variables, even though no corresponding partisd

correctnessproof systemcan exist.

1.3. Outline

The paper is organized as follows. In section 2 we give precise

definitions for all our terms; in particular, we carefully specify the

conditions that a programming language must satisfy in order to be

acceptable. In section 3 we state and prove our main results,

contrasting thcm with those of I,iptnn. As in I.ipton’s papm, our

rw-rlts split into two casesdepending on whether there is for every

I rograrn P E P a number M such that P n:ver accessesmore than M

elements of the domain on any input In casesuch a bound exists we

show that it is possible to enumerate the true termination assertions

even if the halting- problem for P is not decidable. For partial

correctnessour proof in this caseis similar to Lipton’s.

In case some program can access an unbounded number of

different program states,our approach is different from that of Lipton.

We show that if the interpretation I is expressive, then it is possible to

effectively find formulas which make I into a standard model of

arithmetic. (Lipton is able to prove the existence of a standard model

of arithmetic embedded within the interpretation, but is not able to

find it effectively.) We usethe standard model of arithmetic to encode

partial and total correctness formulas as first-order formulas over 1.

The oracle for Th(I) is then used to determine the truth of the encoded

partial correctnessassertions(resp. termination assertions),

The paper concludes in section 4 with a statement of some open

problems and a discussion of the philosophical implications of our

results.

2. Basic Definitions

2.1. Interpretations and Valuations

A ~ypeor signature is a set of function and predicate symbols, each

with an associatedarity. (Constants arejust function symbols of anty

zero.) An irr[erprefatiun I (over a type X) consists of a domain; dom(I),

and an assignment to each function (resp. predicate) symbol of 2, a

function (rcsp. predicate) over dorn(l) of the appropriate arity. Th(I) is

the set of all first-order sentcnccs(over Z) true in 1.

In all that follows, we assume we are working over a fixed finite

type X For technical reasons+we always assume the constant a is an

clcmcnt of Z. Throughout this p:ipcr we will assume for case of

exposition that X = {a,b,f,g,Ao}, where a and b are constants, f is a

urrmy function symbol, g is a binary fun;tion symbol, and AO is a

binary predicate symbol. We also assume a fixed set of variables, var

= {Xo,xl,,..}. For a term ~ let var(t) = {y 6 varl y appears in t}.

Similarly, for a quantifier-free formula A, let var(A) = {y 6 varl y

appeam in A}. For each interpretation I, a valuufion over I is a

mapping u: var -i dom(I). We can extend a valuation to a mapping

u: Terms --+ dom(I) in the obvious way. To represent a diverging

computation we introduce onc special valuation, J-, such that L(x) is

undefined for all variables x. The valuation u[x/a] is identical to u on

all variables except x, and u[x/a](x)= a,

2.2. Acceptable Programming Languages with Recursion

An acceptable programming language P must satisfy the four

criteria given below.

1. For each program P E P we can effectively find finite

subsets CV(P),dep(P) ~ var satisfying certain constraints

given below. Intuitively, CV(P) corresponds to those
variables whose values may get changed aswe run program

P, while dep(P) includes input variables, output variables,

and any additional variables (such as those that appear in

tests) upon whose values the behavior of P depends.

310

Dctine var(P) = CV(P) U dep(P), In each interpretation 1

we can also associate with each P E P a set of Irrrjec[ories,

!’J(P), where each trajectory 76 T(P) is a finite sequence

of valuations (Uo,ul,...) such that 1, if it appears at all,

only appears as the last valuation. There is no trajectory of
the form (1). These trajectories must also satisfy:

a. If y t cv(P), then for all i, al(y) = uo(Y). (Ilis

corresponds to our intuition that the only vtiriables

which get changed as we run program P are those in

CV(P).)

b. If y E CV(P). then for i >0, Ui(y) = a, b, Uj(x),

f(uj(x)) or g(uj(x),ffk(z)), for some j, k < i and

x, z 6 var(P),

c. 1f uo(dcp(P)) = uo’(dcp(P)) thcrr there is a tmjcctory

T‘ = (Uo,ul’,...) C 9;(P) such that u,(dcp(P)) =

u~(dep(P)) for all i. This confim is the intuition that

the computation of P depends OMYon the variables

in dep(P).

2. The set of (codesof) programs in P is recursive, and we can

effectively compute the possible i* steps of running a
program P 6 P on any input by asking a finite number of

atomic questions about I. (Note we are allowing

boundedly nondeterministic computations here). More

formally, given a (code for) program P and i, we can

effectively find a finite set of quantifier-free formulas Al,
.,,, Ak with var(Aj) Q var(P) = {Yl,...yn} such that by

knowing the truth value of Aj in I,uo, we can effectively

compute a finite number of sets of terms {{~l,...,~ }1

m = 1,2,...} over {a,b, f,g,yl,,.,ya} which represent &e

possible values of the variables in var(P) at the iti step of

any trajectory in ~I(P) starting with rro That is, u is the i*

step of such a trajectory iff. for some m, U(yj) = Uo(kj) for

J = L...n, and u(x) = Uo(x) for x ff var(P). We can also

effectively cnmpute which (if any) of the sets {~l,...,~n}

represent output values; i.e. whether there]s some

trajectory (uo,...,ui) in 5;(P) with Ui(J’j) = uo(~j) for j =

1,...,n.

3. P is effectively closed under variable subslituliong that is,
given P C P with dep(P) = {x ~l,...,xim} and any set of m

variables {YI,...,YJ we can effectively find a program

P C P such that dep(P) = {yl,...,ym} and (Uo,ul,...) ~

%(P) iff for some (u~,ul’,...) E ~(p’) we have uj(xik) =

uj’(yk) fork = 1,..,,m.

4. P is effectively closed under flowchart operations, subroutine

calls, and run time checks.

To make this last notion precise, let P be the least set of programs

containing P such that if P, Q 6 P and A is a quantifier-free formula,

then tbc following programs arc all in P. (Note that the programs in

P’ will not necessarilybe in P. Ilcrc will just be programs in P which

simulate them.)

1, basic assignmentsx: =a, x: = b, x: = y, x: = KY), x: =g(y,z),

2. ~Q,

3. if A then P else Q,

4. while A do P,

5. run P until A,

6. after eachstep of P do all of Q.

7. begin local Xii,...,xh; P end

We extend z CV, and dcp to P below. Given a trajectory r =

(uo,...,uk), define firSt(T) = U. and laSt(T) = Ok; and for trajectories ITo

and 71,define

70071 = (“O,@k,ul’. ...) if TO = (%..,%),

T~ = (O(,O1’,.,.), and uk = Uo’,

undefined, otherwise.

L If t is a term, CV(X:=t) = {x}; dep(x: =t) = {x} U volt);

%(x: = t)= {(c,u[x/u])l u # 1, u(t) = u C dom(I)}.

2. cv(P;Q) = CV(P)U CV(Q);dep(P;Q) = dep(P) U dep(Q);

~(P;Q) = {70°T~l TO 6 f(p)> TI ~ %(Q)}

3. cv(if A then P else Q) = CV(P)U CV(Q);

dep(if A then P else Q) = dcp(P) U dcp(Q) U var(AJ

~(if A then P else Q) : {TI (], fk(T) k= A, , 6 %(P)), or

(I,first(r) 1= -A, r E %(Q))}

4. cv(while A do P) = CV(P);

dep(while A do P) = dep(P) U var(A);

~(while A do P) = Ui>l~(Wi); where WO = ~, Wi+l =

if A then P, Wi AC N&)P, NOOP is the program which
has no effect T1(NOOP) = {(u)I u * 1], and w is the

diverging program: %(Q) = {(u, J-)1 o # -L];

5. cv(run P until A) = CV(P);

dcp(run P until A) = dcp(P) U var(A);

~(run P until A) =

{T ~ ~(P)l ~ = (uo,ul,...), and for all i, I.rJi 1= _rA} U {*I
r = (Oo,..,,Ok),7 is a prctix of some T’ C 7,(P), if i < k then

I,ui 1= -A, and Uk = -1 or I,uk 1= A}. Essentially, we

car think of run P until A as inserting a test for A before

every st:)~cmcnt of p. As soon as tic test is satisfied, fie

computation halts.

6. cv(aftcr each step of P do all of Q) = CV(P)U CV(Q):

dcp(iiftcr each step of Pdo all of Q) = dcp(P) U dcp(Q);

If var(P) fl CV(Q) * 0, tbcn ~(aftcr each step of P do all

of Q) = ~. (We consider after cwh step of P do all of Q

syntactically incorrect unless var(P) fl CV(Q) = @; thus

we do not allow the computation of Q to affect the
variables of P.) If var(P) fl CV(Q) = 0,

~(after each step of P do all of Q) = {~1 ~ = (cr&rsl,...)
such that for some subsequenceu. < ail< ...< crikwe have

43

311

a.

b.

c.

d.

(JO = a. w

last(r) = Oik

ifrrij+l # -L, (ut+l,...,uij+~ 6 ‘Z(Q)

for some (UO’,UT‘,.,.,uV’) 6 T,(P), we have either

k= k’ or (k~”k’ &rd u~k = J-), and uj’(dep(P)) =

uij(dep(P)) for all j~k.

7. cv(begin local xilxim. P end) = CV(P);

‘ep(begin local xii,....x~m:P end) = dep(p). {Xii,,.,,x%};

%begnr locaI xii,...,xim; P end) = {(uO,ul)o To(last(7),CJ

al =
uO[xil/a,...,xi /a], 7 C ‘l(p), and 02 =

laSt(7)[Xil/O~(Xi,),...,Xim‘/uo(xi)]]. (Thus the local

variables xii,...,~ are set to #e constant value a when the

block is entered,mand reset to their previous values when

the block is exited.)

Note that the programs in P still satisfy constraints 1 and 2 above.

Now we formally define P to be effectively closed under flowchart

operations, subroutine calls, and nmtime checks if for all P E P and all

interpretations I, we can effectively find a Q C P which simulates P in

I. That is, CV(P) C CV(Q), dcp(P) C dcp(Q), and for all r C %(P)

(resp. I(Q)) with last(T)* 1 there exists a r’ E ‘%(Q)(rfw %(p)),

such that first(7)(dep(P)) = first(7’)(dep(P)) and iast(~)(dep(p)) =

last(r’)(dcp(P)).

Tlnrs we only require of a program like

after each step of P do all of Q that it can be simulalcd by a program

in P, possibly using some extra varioblcs as flags. lt is easyto see that

flowcharts, PASCAL, ALGOL, and almost any ALGOI.-likc language

will :ill constitute acccpthlc progmmming Lmguagcs.

Our definition of acceptable progranhng language seems to

coincide with the rather vague definition grv:tr in Lipton ~i77]. In

any case, as we shall see below, it certainly gives us languages which

are sufficiently rich to contain all the programs required by Lipton to

prove his results. But for our stronger results, we seem to require that

our programming languages be acceptable with recursion, which we

define to mean acceptable and effectively closed under (possibly

recursive) procedure calls.

To make this precise, we use semantics similar to those of [Mi81].

Let plab = {Zo, Zl, ...} be some set of program labels and let P’ be the

smallest language containing P, plab, and all the programs described

above, such that if P E P and Z E plab, then pZ~] is a program in P.

We extend z CV,and dep to P as follows:

1. CV(Z) = dcp(Z) = @ for all Z < plab;
%(z) = ~(ti) = {(u, l)Iu # 1} for all Z 6 plab.

2. cv(pZ[P]) = dep(pZ[P]) = dep(p):

~(P’z[pl) = Ui>o~(P1), where PO=P, and #+1 =
P[Z/Pi] (i.e. we s~ntactically replace all jiree occurrences

(where free and bound occurrence have the fhrnihr

meaning) of Z in P by P’). Essentially, pZ[P] acts as a least

fixed point operator. Note that ~(while A do P od) =

~(pZ~f A then P;Z else NOOP])

Finally, we define P to be effectively closed under recursive cafls,

(as WC1las flowchart operations, subroutine calls, and rrrntime checks)

if for every program P E P’ and interpretation I, there is a program

Q C P which simulates P in I in the sense defined above. (The

observant reader will have noticed that wc have not dealt with issues

such as the copy rule and naming conflicts between global and local

variables. But since we only require that every program P E P“ with

the semantics that wc have giwr can be simulated by some program in

P whatever the semantics of P are, such problems will not concern us

here.)

A program P is de/ern/i~/i~zic iff for all valuations u there is at most

onti trajectory 7 E %(P) with first(r) = u and last(?) * 1. The

programming language P is cfctcnninistlc ifi all programs P E P are.

2.3. Partial Correctness and Termination

We expand the ty~e 2 to 2P by adding. for each P E P, a predicate

symbol Ap of arity 2k, where k = ldcp(P)l. In any interpretation I,

I * Ap(U,V) iff for some trajectory (Uo.....uk) E %(p) with uk # 1. we

have uo(dep(P)) = u and uk(dep(p)) = v. (Note we use italics to

indicate a vector of variables.) Thus Ap defines the input-output

semantics of program P. We say P halls on input u (in interpretation 1)

if there is a trajectory ~ E rI(p) such fiat first(7)(dep(p)) = u and

last(r) * 1. Otherwise we say P diverges on input u.

A (jirst-order) partial correctness (resp. ferminution) assertion is a

triple U{P}V (resp. U<P>V) where U and V are first-order formulas

(over ~) and P E P. By definition

II= U{P}V iff 11= VX,J{U(X) A AP(.UY) * WY))

Ii= U<P>V iff 1k= VX3J(U(X) * AP(X,Jl A V(y))

lIUS I * U{P} V (resp. U<F2V) iff, if U(x) then for all (rcsp. some) y

which are possible outputs of p on input x, wc have J J==V(y). Note

ckrat in the case of deterministic programs, total correctness and

termination coincide.

2.4. Expressiveness

An interpretation 1 is weakly expressive for P iff for every P C P

there is a formula BP(of type 2) such that

IF= BP(.x) iff 1 * Z.KAP(.C,Y))

312

Thus I != BP(x) iff there is a halting computation of P on input x.

Note that we do not assume wc can effectively find such a III,; only

that it exists.

In Dijkstra’s terminology [1X76], 1]), corresponds to the weakest

prccmrdition of P.with respect to true, or the negation of the weakest

libcml precondition of P with respect to-false.

2.5. I!xpressive-Herbrandand Expressive-Zffective

Interpretations

An interpretation I of type X is eflecfively presen[ed if there is a

tuple of integers pres(I) = <n~om,na,nb,nf,n9nAo>, where ndom is a

code for dom(I), a recursive subset of X (the integers), na, nb 6 dom(~)

are the interpretations of a and b, and nf, ns, and nAo are codes for

recursive functions and predicates of the right anty which interpret L

g, and A. respectively.

I is Herbrand dejkable iff for all i E dom(I), there is a term t in the

Herbrand Universe of {a,b,f,g} such that 11= t = i.

Finally, we say an interpretation I is expressive-Herbrand with

respect to programming language P iff it is weakly expressivefor P and

either Herbrand definable or finite. I is expressiveeflecfive if it is

wreaklyexpressiveand either recursively presented or finite.

2.6. Strongly and Weakly Arithmetic Interpretations

I is said to be strongly uri(hmetic if there exist first-order formulas

Z(x), S(x,y), A(x,y,z), and M(x,y,z), and a bijection ~: dom(I) -+ N

such that

1. I i= Z(x) iff ~(x)= O

2. I b S(x,y) iff q(x)+ 1 = ffr(y)

3. 11= A(x,y,z) iff rp(x) + T(Y) = rp(z)

4. 11= M(x,y,z) iff T(X) X rp(y) = rp(z)

Note we do not assumethat we can find Z, S; A, M effectively.

I is weakly arithmetic if we can find first-order formulas N(x),

F~.x,y),Z(x), S(.x,y),A(.x,y,z), and M(x,y,z) (with, respectively, k, 2k, k,

2k, 3k, and 3k free variables for some k) such that E defines an

equivalence relation cm dom(l)k, and if [x] = {y C dom(l)kl I 1=

E(x,y)}, there is a bijcction v: {[x] I 1 l== N(x)] -+ X such that

conditions 1-4 ahovc hold (when restricted to N) with [r] rcj>lacing x as

the argument to rp. (Thus, for ex~ple, con~ti~n 2 becomes

1i= N(X) A N(y) A S(X,Y) iff P(lxJ + 1 = ?(M).)

Thus the natural numbers are embedded in a weakly arithmetic

interpretation as equivalence classesof domain elements, while in a

strongly arithmetic interpretation, every nsttural number corresponds

to some distinct domain elemerk

3. Main Results

3.1. Statements of Theorems

With all these definitions in hand, we can now state our main

theorems precisely:

Theorem 1; Let P be a deterministic, acceptable

programming language with recursion. Then the following

areequivalent

1. P has a decidable halting problem for finite

interpretations; (i.e. there is an effective procedure
which, when given I with dom(l) finite, a program P

E P with ldep(P)l = k, and u E dom(l)k, decides if

P halts on input u in domain I.)

2. There is an effective procedure, which, for

expressive-Herbrand interpretations I, will decide

which tirst-order partial correctness (resp.

termination) assertions are true in I what given an

oracle for TMI). Thus the set of first-order partial

correctness (resp. termination) assertions true in I is

unl~omrly recursive in Th(l) for cxpressive-

Herbrand interpretations L

Moreover, even wifhou(the assumption that P has a

decidable halting problem for finite interpretations, wc can

show that the set of first-order termination assertions true

in I is uniformly r.e. in Th(l) for expressive-Hcrbrand L

Similar techniques allow us to prove a variant of this theorcm. By

exchanging Hcrbrand definability for cffccti!e presentation, we can

drop the assumption that the programming kmgoage allows recursive

tails, but at the price of losing uniformity. Thrsswe get

Theorem 2: Let P be a detmninistic, acceptable

programming language, Then the following are equivalent

1. P has a decidable hahing problem for finite

interpretations.

2. The set of first-order partial correctness (resp.

termination) assertions true in I is recursive in

<pres(I),Th(I)> if I is expressive-effective.

Moreover, the set of first-order termination assertions true

in I is r.e. in <pres(I),Th(I)> for expressive-effective

interpretations I.

By way of contrast, Lipton showed (in [Li771):

Theorem (Lipton): Let P be a deterministic, acceptable

programming language. Then the following are equivafen~

313

1. P has a decidable halting problem for finite

interpretations.

2. The true quantifier-free partial correctness

assertions are uniformly r.e. in <pres(I),Th(I)> for

expressive-effecti4e interpretations I.

Lipton’s proof only showed how to enumerate the true partial

correctnessassertionsof the form /rue{ P}J71se. Iiowever, note that

11= A{P}B iff 1 != oue{if 7A then Q; P; if B then u]~ulse

(recall Q is the program which always diverges). Moreover, if A and B

are quanti ficr-free, this modified program (or one that simulates it) is

in P. Thus it is easy to extend Lipton’s proof to quantifier-free partial

correctness assertions. But this trick does not extend to first-order

formulas. If A is first-order, then the program (if =,1 then u) cannof

in general be simulated by a program in an acceptable programming

language, since the simulating program would violate condition 2 of

Definition 2.2.

Thcorcrn 1 uscstic fbllowing Icmma, which is interesting in its own

right and iuyiin garcralizcs om! of l.ipton’s rcsuhs:

I.cmmu 1: If P is i]~~~p[;]blc with recursion and 1 is

expressive-Herbrand with respect to P hen either:

1. I is strongly arithmetic, or

2. VPCP3n(P reaches at most n distinct valuations in

any computation) (i.e. for all 7 E T(P), {Oil Ui C T}

has ~ n elements).

We will abbreviate condhion 2 of the lemma by (~) since we refer

to it so often below.

Lipton proved the same result with “acceptable with recursion”

replaced by “acceptable”, “expressive-Herbrand” replaced by

“expressive-effective”, and “strongly arithmetic” replaced by ‘“weakly

arithmetic”. However we can actually get a stronger result. As a

corollary to the proof of Theorem 1, we will show that if I is strongly

arithmetic and expressive-Herbrand, we can ejlecfive[y jrrd the

formula’s which make I strongly arithmetic. We will rederive Lipton’s

result in the course of our proof of Lemma 1, and use it in proving

Theorem 2.

3.2. Proof of Theorem 1

The fact that (2) - (1) in the first half of Theorem 1 was proved by

Clarke [C176/79]. The proof in fact goes through under much weaker

hypotheses: P does not have to be acceptable or deterministic. To

prove the remainder of Theorem 1, we will describe five effective

procedures, Ml, MJ When given an oracle for ‘I%(I) of an

expressive-Herbrand interpretation I each of thcm outputs first-order

partial correctness or termination assertions, or their negations. “They

arc all sound thatis.w awrtionwhichis‘outputistrUCinL If I is

strongly arithmetic, then M, is corrurlefe for Partial c~rrcctness

assertions; that is, it outputs U{P}V or 7U{P}V for each partiaf

correctness triple, depending on whether it is true or false in L

Similarly, M2 is complctc for termin:ltion assertions if 1 is strongly

arithmetic. If P has a dccidabic halting prublcm for finite

interpretations and (~) holds, ~CTI I~f~ (rcsP. M4) is comPlcte for

partial corrccmess(resp. terminatmn) asscrtior,s. Finally, MJ is similar

t J M4, but it just enumerates all the true terti.fiation assertions UC9V

if (~) holds (but not the negations of the false ones), and does not

require the assumption that P has a decidable halting problem for

finite interpretations.

Theorem 1 then follows from Lemma 1 (which we will prove

below). To decide first-order partial correctness assertions we run Ml

and M3 in parallel. To decide first-order termination assertions we run

M2 and M4 in parallel. To enumerate first-order termination

assertions without the assumption that P has a decidable halting

problem for finite interpretations, we run M2 and M5 in parallel.

3.2.1.Construction of M, and M2

Consider the following set of axioms for arithmetic:

AXL -(s(x) = O)

AX2. S(X) = S(Y) - x = Y

AX3. ‘x+O = X

AX4. X+ S(y) = S(x+Y)
AX5. Xxo = o
AX6. Xxs(y) = Xxy + x

AX7. -(x<O)

AX8. X<s(y) = (X<y v X=y)

AX9. X(Y V X= y V Y(X

Of course, these do not constitute a complete set of axioms for

arithmetic. However, an interpretation which satisfies these axioms

has a “standard part” (cf. [SH67]), consisting of those elements in the

domain of the form Sk(0) for some integer k. In general there is no

first-order formula which defines the standard part, but under certain

stronger hypotheses,we will show that it can be defined.

First we inductively define an encoding of Herbrand terms of type

z:

314

ral = 0

rbl = 1

rft=2

rg7 = 3

r[t)l = <rfl,rtl>

rg(t,u)7 ~ <rgl,<rtl,rul>>

where <> denotesthe pairing firnction <x,Y> = %(x+ Y)(X+Y + 1)+x,

Let H be a binary predicate symbol (whose intended meaning is

H(x,d) iff x is the kmcoding of a Herbrand term equal to d) and

consider the following encoding axiom, which we abbreviate by Eric:

Vx,d[H(x,d)s (x = ral A d = a) V (x = rbl A d = b)

v (3y,c(Pr(x,rfl,y) A H(y,e) A d = f(e))

V (3y,dl,d2,zl,z2(Pr(x, rg7,y) A (Pr(y,zl,zJ

A H(zl,dl) A H(zfid2) A d = dtfl,d$l
where Pr(z,x,y)s Y<ZA X<ZA z = %(x+ Y)(X+ y + 1)+ x

We now show H “works right” on standard elements:

Lemma 2: If I satisfies AX1-9 and Enc. then I != H(Sk(0),d) iff k ia

the encoding of a Hcrbrand term whose value in I is d.

Proof By induction on k. ~etails appear in the final paper.

Now we show how to use H to define the standard part in a

nonstandard model of arithmetic.

Lemma 3: If 1satisfies AX1-9 and Enc. then Std(x) - 3dVz(H(z,d)

* x <z) defines the standard part of L

Proofi We begin by showing that the nonstandard elements, if

there arc any, come after all of the standard elements in the ordering<.

That is, if x is standard and y nonstandard, 1 1= x<y. This in turn is

provcc! using induction on k to show that if y is nonstandard, then 11=

Y(Y<Sk(0)). The desired result then follows immediately by AX9,

The biisc case nf the induction is just AX7, and the inductive step

follows using AX8, the inductive hypothesis, and the fact that we

cannot have y= Sk(0) since y is nonstandard.

\’Je will now show that 11= Std(x) iff x is d standard element. If x iS

standard, lemma 2 implies that Std(x) holds. Because dom(I) is

infinite, for any standard x there exists an element d all of whose

encodings are greater than x. For this d, I + Vz(H(z,d) ~ x<z),

because if z is either a standard value encoding d or a nonstandard

value, it must be greater than x. Thus I 1= Std(x). On the other hand

if x is nonstandard, then for every d E dom(I), there exists a standard

encodtng z of d such that I 1= H(z,d) A =(x<z). Therefore,

I & _lSM(x),

Finally we need

Lemma 4: Suppose we can effectively find formulas Z(x), S’(x,y),

A’(x,y,z), and M’(x,y,z) (of type X) which make I strongly arithmetic.

Then, for eachP C P, we can effectively find a formula AP’ of type X

which is equivalent to AP in I.

Proof Deferred to the final paper.

Now we can define M, to decide partial correctness assertions. It

systematically guesses formulas Z’(x), S’(x,y), L’(x,y), A’(x,y,z),

M’(x,y,z), and H(x,y) and checks (by consulting its oracle for Th(I))

that z defines a unique element of I (i.e. I * 3x(~(x) A VY(-?IY) *

Y= x)), S’, A’ and M detioc functions (i.e. 1 1= VX3Y(S’(X,Y) A

VZ(S’(X,Z) - y= z)), etc.), and that AX1-9 and Ezrchold in I when

written in terms of these formulas. (For example, AX2 becomes

(S’(x,z) A S’(Y,Z))~ x= Y.) Now using these formulas, wc can define

Std(x) as in Lemma 3, and check if 11= Vx(Std(x)). If not, their Ml

continues grzcssing. But if Vx(Std(x)) doci hold in I, then we have

effec(ive~ found the formulas which make I strongly arithmetic, and

the hypotheses of Lemma 4 arc satisfied. Then for every pair of tirst-

ordcr formulas U, V and wry program P E P, Ml constructs the

formula PCu,p,v:

VX,J{U(.X)A AP’(X,J])* WY))

By consulting the oracle for ‘l’h(l), Ml can tell if this formula is true in

I. lfso, Ml outputs U{P}V; otherwise it outmm 7U{P}V.

From Lemma 4, it follows immediately that Ml is sound. And if I

is strongly arithmetic, M, will eventually find first-order formulas Z’,

S’, L’, A’, M’, and H’ which satisfy all the conditions, and hence will

also be complete. (Here we are using the fact that the formula H is

definable in strongly arithmetic domains. The construction is

straightforward but technical, using coding of sequences, and is

omitted here.)

For total correctnessassertions,M2 proceeds just as J#l, but instead

of using PCU,P,V it usesTu,p,v:

VX3J(U(X) * Ap’(x,y) A V(-Y)) I

Note dzat in constructing Ml and IU2 we did not need the foil

strength of the assumption that I is strongly arithmetic. We could have

weakened it to “I is weakly arithmetic and there is a formula H which

satisfies (Eric)”. In this case, we would also have to guess a formula

N(x) for natural number, and formula E(x,JJ)for equivalence. AX1-9

would also have to be appropriately modified to restrict everytldng to

N. For example, AX2 would read:

315

N(x) A W) A N(z)=+ [WLY) A s(w) + E&z)]

We also would also have to include axioms to check that E is an

equivalence relation, and that N, S, and Z interact correctly. Tln.rs we

wou!d also have to check that the following two formulas held in I:

E(w) A (F{XJ) * Ffi,-x)) A (E(-x>Y)A W,z) * E@)),
(Z(x) - N(x)) A ((N(x) A S(X,Y))~ NW).

3.2.2. Construction of M3, M4, and MJ

We extend the techniques of [1.i77] to the first-order case.

Given an interpretation I, M C Al a program P C P with dep(P) =

x = ‘xii,...,Xik), and ~ = <U1,...,u~l 6 dom(l)k, we make the following

definitions:

1, UM(X) = {terms ofdcpth ~ M ovrr {f,g,a,b,x}}.

2. IM(u) = {values obtained by substituting uj for xij in the

terms of UM(x)}.

3. KM = {domains of size ~ N, where N = 1+ 11-f~(.x)l}We

also assumeeach K E KM has one distinguished element A.

4. PM(x) is the program which acts just like P(x) except that

on input u it halts at any valuation u such that u(y) @IM(u)

for any y C CV(P). PM is just

run P(X) until -T[Ay~a(P)(VLCuM(xp = t)].

If y E CV(P),T = (UO,U1,...) C Z(P), and On(y) is the k* distinct

valuation in T, then it is straightforward to show using condition 1 on

acceptable programming languages and induction on k that on(y) C

Ik(uo(x)). From this observation we get

Lemma 5: (Lipton ~i77]) If(~) holds in I, then there exists an M

such that for all y E CV(P),all T C $(P), and all n, we have Un(y) 6

IM(u~(x)),

We say that I is isomorphic o <K,c> on TM(u) (where K E KM and

c E dom(K)k) iff there exists a map ~: IM(u) -+ dom(K) - {A} such

that

L l(ui) = ci, for i = 1,...,k.

2,1 != Ao(tl,t2) for tl, t2 C IM(u) iff K * AO(44t1),t(t2)).

3. If tl f IM(u) and f(tl) @ IM(u), then K 1= Ky(tl))= A.

Similarly for g.

4. Iftl, f(tl) E I@), then K t= fl$(tl)) = +(f(tl)). Similarly

for g.

Note that tlhere are only finitely many pairs <K,c> for a given

M. Moreover, for each such pair we can find a tirst-order formula

A<K,cj(x) such that

11= A<K,C~(u) iff I is isomorphic to <K,c> on IM(~)

Call a pair <K,c> diverging if PM(x) diverges when run in

interpretation K on input c, Call a pair clean!v hcr//ing if PM(x) halts

with output d when run in interpretation K urr input c, and no ~= A.

Let U<K,,>be the vector in IM(~) corresponding to d.

It is easyto check that if<K,c> is diverging and I ~ A<K,C>(~),then

P diverges in I on input u. If <K,c> is cleanly halting and I k=

A<K ,>(u) men I # AP(u,u<K,C>). Thus we define the two first-order

sentences

~M,(J,f+i
VX{U(X)= (V<K,C>div,@@<K,c>(x)v

V<K,C>~]eanlyhalting(A<K,~>(x)A ‘(X<K,C>)))I

FPC’M,PJJ,”:
~x[u(x) A V<K,c>cleanly halting (A<K,,(x) A lWX<K.C>))l

M3 proceeds as follows. For each M, U, P, and V, it constructs the

sentencesPC’M,U,p,v and Fp~M,p,U,~ This can be done effectively.

By assumption the halting problem is decidable for finite

interpretations so we can effectively find all the diverging pairs <K,c>.

(Note we do not need the halting problem to be decidable to

recursively enumerate the cleanly halting pairs. BY condhion 2 of

acceptable programming language we can simply simulate PM on input

c in interpretation K simultaneously for each pair <K,c>. Eventually

we will find all the cleanly halting pairs, although we will not know

when we have found all of them.) If (by consulting its oracle for’fh(I))

&fj discovers that PC’M,U,P,V(rcsp. FpC’M,P,u,V) holds in I for anY M>

it outputs U{P}V (resp. _IU{P}V). The procedure is sound by the

comments above, and complete if(~) holds for I by Lemma 5.

Md is identical to Mj but replacespC’M,u,P,v and Ff’~M,p,U,V by

‘M,U,P,V:
VXKJ(X) = A V<K,C>cleanlyhamE(A<K.c>(X) A ‘(X< K,C>))I

~M,U P,V:
~x[U(X) A (V<K,c> diver6in/<K,c>(X) v

‘<K.c>c]canlyha]ting(A<K,c>(X) A lV(X<K,.>))]

Finally, for Jffi note that wc do not need drc assumption that the

hahing prob]cm is dccidablc for finite intt’rprctatiorrs to compute

T’M,U,P,V, since we only need the cleanly h:d!ing pairs <K,c> and not

ti,e diverging pairs. Thus &fj starts simulautg PM on input c in

interpretation K simultaneously for each pair <K,c>. Every so often it

discovers that another pair <K,c> is cleanly halting. Let J be those

pairs which it has so far discovered to be cleanly halting. hf5 checks if

316

IF= V@(x) * V<K,c)tCJ(I&JX) A WK,JI

If so, it outputs U<P>V. By the same arguments asabove M5 is sound,

and it is complete if(~) holds in I. Note that we cannot effectively find

all the pairs <K,c> which are diverging, but we do not need them to

enumerate the true termination assertions.

3.2.3. Proof of Lemma 1

Assume that (f’) does not hold for I. Then there is some program

P C P with dep(P) = x such that card(<P(.x)>) is unbounded; i.e. for all

M there exists r C ~(P), T = (uo, al, ...) such that{ui(~)lui67} has

at least M distinct elements. We show how to define programs whose

weakest preconditions (the BP of Definition 2.4) define the formulas

necessaryto make I arithmetic. O~r initial stepsarc much like those of

Lipton. We use his technique for representing integers in I and show

how to write programs that perform arithmetic operations on this

notion of integer. However, we go much further than Lipton in that

we usc these primitive programs to write more complicated programs,

and ultimately to construct a program which translates the encoding of

a Herbrand term into its corresponding value.

The programming details are themselves interesting. It turns out

that under this representation of integers wc can compute a

predecessor function, but no successorfunction. But we can compute

a houndedsuccessorftmction. and that is sufficient for our needs.

In the constructions below, wc assumefor caseof exposition that P

= P“, so that programs Iikc after each S(CPof P do all of Q really arc in

P. In gcncml, of course, wc would IMVCto replace the programs below

by the programs in P which sirmhtc thcm. We write P(x) to indicate

dcp(l)) = x. P().’) is just P wiLh the val iablc x ‘sutrstilutcd for x.

We first construct a program Q(x) such that if we run Q(x) on any

i]pu~ x takes on the same values as whe~, we run P(x) on the same
. .

inpu~ but without repetmon; I.e. lf ~ = (uo, al, ...) C %(P) and # =

(u~, U1’, ...) E %(Q) with U. = u~ then {u;(x) I i>O} =

{Ci(X)l i>(l} and if ~~(x) = Uj’(.r) for i<j, then u~(x) = u;(x) for all

k, i~k~. Essentially this is done by keeping track of the initial and

current values of x, and then running a copy P with input the initial

value and looking for the next new value it reaches after the current

value (see [L177] for more details). The code for Q(x) is given in

Figure 3-L

begin local inil, x< x

init: = x;

x’:= x,
after each step of P(x ? do all of R(x,x~Y,in@;

end

where R(x,x ~y,init) is the program

if x # x‘ then begin

y:= inic
run P(y) until (y = x’V y = x);

ify = xtbenx:=-x~

end

Figure 3-1: The program Q(x).

The pair x = (X1,X2)will represent tie integer k iff X2 is r-bekh

distinct value reached by Q on input XP We write [x] = k to indicate

fiat the pair x = (X1,X2)represents k.

Choose two Herbrand terms tt and ff which get distinct values in I,

to represent owe and false respectively. Then using Q it is

straightforward to write programs which meet the following

specifications.

(1) CHECKING: hahs with x unchanged if x represents an

iutcger; otherwise CHECK INT will diverge.

(2) ~Q(J’,y,allS): if x and y do not both rcprcscnt integers, HQ wiB

diverge. Olhcrwisc EQ will terminate with x, y unchanged and

ans = tt if [x] = ly]

ff otherwise

(3) LESS(x,y,ans): if x and y do not both represent integers, LESS

will diverge. Otherwise LESS will terminate with x, y unchanged and

ans = tt if [x]< ~]

ff otherwise

(4) NUMk(x,ans): if x doesnot correspond k an integer NUMk will

diverge. Otherwise, NUMk will terminate witi x unchanged and

ans = tt if [x] = k

ff otherwise

The idea for computing EQ(x,y,ans) is to compute the successive

values reached by Q starting from x, and yl and check that’ we reach X2

and y2 at the sametime. (Recall that we assume x is of the form xl, X2

and likewise y.) We give the code in Figure 3-2; the codes for

CHECKINT, LESS, and NUMk are similar and will not be given.

317

CHECKING;

CHECKINT(y);

begin local u, v, u’, v’;

U;=xl;
V:= y,;

while u * X2 V v # Yzdo begin

u’:= u;

v’:= v:

t3NEMORESTEPQ(xl,u ‘,U);

ONEMORESTEPQ(Y1, V’,V);

end;

ifu=x2A v=y2thrmans:= ttelseans:=tl

end

ONEMORESTEPQ(X,Y,Z) computes z such that [AZ] = [x,Y1 + 1:

hcgiu local flag;

flag:= X

Z:=y.;

run Q*@,z,flag) until (flag = tt A y * z);

end

where Q*(-v,z,flag) is

~ftcr,::ic}) stL,l)O(Q(2) do uII Of (if: = j, then flag : = tt).

l’igrm 3-2: ‘lhc program FQ(x,y,ans).

In more detail, the program works as fd 10WS. The initial calls to

C .lECKINT check that x and y are integers, and diverge otherwise.

We get ONEMORESTEPQ(X,Y,Z) by using Q*(-v,z,flag) to compute

successive values taken on by z when we run Q(z) starting with x,

setting flag to tt when y = z, and then continuing the computation one

more step.

In general, it does not seem possible to construct a program

SUC(X,Y) which will compute a y such that ~] = [x] + L If [x] = k, it

may be the casethat only k distinct elements of dom(l) are reachable

from XI by the program Q. The program ONEMORESTEPQ above

only worked because at the point when it was called we were

guaranteed that a “next” element existed. However, it is possible to

generalize this idea and construct a “bounded” successorprogram, as

well as the bounded addition and multiplication programs described

below.

(4) SUC(b,x,y,ofl): if b, x, and y do not all initially represent

integers, SUC will diverge. Otherwise SUC will terminate with b, x

unchanged and

~]= [x] + Lofl = K if[x]<[b]
Ofl = tt if[b] ~ [x]

(6) ADD(b,x,y,z,ofl): if b, x, y do not all initially represent integers,

ADD will diverge.

unchanged and

Otherwise, ADD will terminate with b, x, y

318

[z] = [x] -t M, ofl = ff if[xl + [Y]< [b];

Ofl = tt if [b]< [x] + ~]

(7) MULT(b,x,Y,z,ofl): similar to (6) above except mat

[z] = [x] X ~], otl = ff if[x] X ~] < [b]

Ofl = tt if [b]< [x] X ~].

‘1’hc code for SUC(b,x,y,Ofl) is given in Figure 3-3. Tbc idea is to

initialize y to b and then increasey (using ONEMORl?SFEPQ) until x

< y. The code for ADI) and MUI.T is straightforward to write using

Sb-C and is omitted here. It is, however, kIIf50rLlIrt to ensure that no

intermediate integer value ever exceed the alue determined by b.

begin local ans, y’;

LESS(x,b,ans);

if ans = ff therr ofl := tt elsehegin

YI : = bl;

y~ : = bI;

while ans = ff do begin

Y’: = Y2:

0NEMOREST~@l,y’,y2);

LESS(x,y,acts);

end;

end;

end

Pigure 3-3: The program SUC(b,x,y,ofl).

By slightly modifying the programs written above so that they

compute predicates instead of functions (e.g. we would modify ADD

so that it halts on input X,Y,Ziff [z] = [x] + ~]) and taking weakest

preconditions we could already define formulas N, Z, E, S, L, A, and

M which satisfy Definition 2.6. We note that none of the above

programs required recursive calls. Thus it follows that if (f’) does not

hold, P is an accephble programming language (but not necessarily

acceptable with recursion), and 1is expressive-Herbrand or expressivc-

effective with respect to P; then 1 is weakly arithmetic. This is exactfy

Lipton’s result. But we require more; we need a formula H which

satisfies the axiom (Eric).

We get H by using the programs defined above to construct a

program HRBD which relates the encoding of a Herbrand term as an

integer to its corresponding value. We use the encoding of 1ierbrand

tcnns described in 3.2.1. The formal specification for HRBD is given

below,

(8) HRBI>(x,cnc,d): if x dots not rcprcscnt an integer, HRBD will

fail to tcnninate. Otherwise, fill IN) will terminate with x unchanged

and

enc = tt, d = h (in I) if [x] encodes flerbrand term h,

cnc = ff otherwise

Thus, for example, if [x] = rf(a)l (= (2,0) = 5), then atler the

execution of HRBD(x,enc,d), we will have enc = tt and d = f(a).

Note that a true pairing function cannot be programmed using the

above techniques. Given only x and y, it is not in general possible to

compute z with [z] = <[.x],~]>, since the value to be computed will be

larger dran both of the input values, The corresponding projection

function, on the other hand, is relatively easy to compute and is

sufficient for programming HRBD. Thus we need a program PR

which satisfies

(9) PR(z,x,y): if z does not represent an integer, then PR diverges.

Otherwise, PR will terminate with the final value of z unchanged and

the final valuesof x and y will satisfy the relationship

M = ‘4([~1 + b]) ([xl+ b] + 1) + [X]c

The program for PR simply tests all [x], ~] ~ [z] until it finds [x], Lv]

which satisfy this relationship, It uses the identity 1+2+ ...+(n 4-m)

= %(n + m)(n + m + 1) to ensure that no intermediate value for the

right choice [x] and ~] exceedsthe initial value of [z]. The code for PR

will not be given; the code for HRBD is given in Figure 3-4.

A straightforward modification of HRBD(x,enc,d) gives us

HRBD’(x,d) which halts iff d is equal to the Herbrand term encoded

by x. Now, by raking weakestpreconditions, we can already show that

I is weakly arithmetic and has a formula H which satisfies Enc. AS we

remarked in 3.2.1, this would already be crrotrgh to enable us to define

the procedures Ml and M2 and prove our main theorem. However,

with a little more work, wc can show that I is strongly arithmetic.

pHPegin

local ini[, ans,ficl arg, frrg{ arg’{ i:

inil: = K

enc: = tt
NUMra-@,ans);

ifans = ttthen cl:= a

elsebegin
NUMrb7(x,ans);

if ans = tt then d: = b

elsebegin

PR(xJ?d,arg~
NUMr ~-@7, ans~

if ans =, tt then begin

x:= arg,

H;

d:= fid);

x:= inil;

end;

elsebegin
NIJMrg@f,~s);

if arts = tl then begin

PR(arg, arg: arg’);

x:= arg’;

H;

d’:=~
if cnc = tt then begin

x:= arg”;
H;

d:= g(d’, d);

end;

x:= ini~

end;

else enc: = ~,

end;

end;

end;

end]

Figure 3-4: The program HRBD(x,enc,d).

List the kmns in the Hcrbriurd universe (of {a,b,f,g}) in order of

increasing encoding: a, b, l(a), Nb), g(a,a),,....

Using this encoding and our old wry oflooking at tuplcs in dom(l)

as integers, we,can define a new way of looking at tuplcs in dom(I) as

iltegers. We use the notation [v] to contra<t with the [v] used before.

Define [v] = m, if, for some k:

1. [V]= k,

2. k is the encoding of some Herbrand term t (i.e. rtl = k),

3. there is no term t’ with rt’1 < k such that 1 != t’ = L

4. the Herbrand terms t’ with I_t’1 < k take on m distinct

values in L

For example, suppose drat in I we have a = fla), but a, b, and f(b)

are all distinct. It is easyto check that ra 7 = O,rb 7 = 1, r~a) 1 =

S, rf(b) 1 = 8. ‘fhus, if[vol = 0, [VII = 1, [V21 = 2, [V31= 5, [v41 = 8,

then Ivo] = O, [vl] = 1, [}>] is undefined, [V3] is undefined (since

there is a Herbrand temt, r!mmely a, with ral < rf(a)l but I 1= a =

f(a) by assumption), and [vf] = 2.

We can use this listing of Herbrand terms to define a bijection

V: dom(I) -+ N. For u E dom(I), p(u) = miff, if t is the first term on

the fist such that I 1= t = u, then m different values are taken on by

the terms on the list before t. So in our example above, ~(a) = 0,

q(b) = 1, cp((f(b)) = 2.

If the conditions above do not hold, then [v] is undefined. Since I is Fferbrand definable (by assumption) and has an infinite

domain (otherwise (~) would hold), ~ is indeed a bijection.

319

his not hard to define programs similar to the onesabove Which do

arithmetic on this notion of integers. Wc can chcn usc their weakest

preconditions to show 1 is strongly mithrnetic. WC leave dctiils to the

full paper,

This complctcs drc proof of 1cmma 1, and with it the proof of

Ilcorcm 1.

3.2.4. Remarks

We have used two of our hypotheses on P -- that P is deterministic

and that P allows recursive procedure calls -- in a weak way, In

particular, note that the construction of Ml, M2, and J{J are unaffected

if P has nondetenninistic programs. For &fj and A44to work in the

presence of nondeterministic programs, we need to strengthen the

hypothesis rhat “P has a decidable halting problem for finite

interpretations” to “P has a decidable input-output relation for finite

interpretations”; i.e. if I is finite, then for all P E P, we can decide for

which u, v C dom(I) we have I 1= Afiu, v). Note that the two

hypotheses are equivalent if P is deterministic.

It is only in the proof of Lemma 1 that we really needed

determinism, because we needed to know that if (f) does not hold,

then there is a deternrinis[ic program P such that card(<P(.x)>) is

unbounded. But once the presenceof one such program is guaranteed,

the programming language could certainly have other

nondcrwrrrinistic programs.

Similarly, the only place in which we used recursive calls was in the

construction of the program HRBD of the previous section, which in

turn was necessaryto show that I was strongly arithmetic. We could

remove this condition by insisting, for example, that there be some

program P C P and some x E var(P) such that if we run P on some

inpuJ u, x takes on every value in dom(I). In particular, under our

assumption that I is Hcrbrand definable, having a deterministic

program which would generate all the Hcrbrand terms would be a

sufficient condition to remove both of thesehypotheseson P.

It is also worth noting tiat our decision procedures for partial

correctness and termination also extend to decision procedures for the

full first-order dynamic logic (cf. [Pr76,Ha79]) of any acceptable

programming language with recursion.

3.3. Proof of Theorem 2

By the comments made in the proof of Lemma 1, since I is

expressive-effective, I is either weakly arithmetic or (~) holds. If(~)

holds, then the procedures A43, A44, and 145 defined above work

perfectly well in this casetoo. If 1 is weakly arithmetic, we show below

that given tie formulas N, Z, S, A, M. and E which make I weakly

arithmetic, we can effectively find a formula AP” of type X (analogous

to the formula AP’ of Lemma 4) which is equivalent to AP in I.

Since I is expressive-effective, and hence effectively presented, it

*k C ~k (where k =follows that Ap defines an r,e, subset of dom(I) _

ldep(P)l). Thus by a well-known result of recursive function theory (cf.

[Sh67]), given (the code for) P, we can effectively find a first-order

formula AP* of number theory (i.e. over the type {0, + ,X, S}) such that

.N 1= AP*(x,y) iff 11= AP(x,y). But by a straightforward syntactic

translation using N, Z, S, A, M, and E, for any formula of number

theory we can find a formula B of type Z such that I 1= B(z) iff

~-i= B(z). Applying this syntactic translation to the AP*, we get the

desired formula Ap”.

Now we can construct Ml’ and J4~ which are identical to Ml and

M2, except they replace the A~ of Lemma 4 by the Ap” constructed

above. Note this procedure is not uniform in L in contrast to Theorem

1, we have no effective way of finding the formulas N, 2!, S, A, M, and

E; all we know is that they exist.

4. Conclusions and Open Problems

We believe that this paper raises a number of open questions of

both technical and philosophical interest. Perhaps the most important

technical qucstimzsconcern to what extent the various hypotheses that

wc rrscd in Theorem 1 can bc eliminated or rcplaccd by weaker

conditions. In particular, the hypotheses Lhat the programming

language bc deterministic and allow rccursivc calls do not appear

cssclitial (cf. 3.2.4), and wc conjecture that our rcsuhs can bc cxtcndcd

to a wider class of languages. On the other hand, the assumption of

Herbrand definability, or something like it (perhaps the existence of a

pairing function, so that sequencesof values can be coded up by one

value) does seem necessary. Moreover, both Herbrand definability

and effective presentability (used in Theorem 2) seem to be very

natural conditions. The first fimits the values of the domain to those

which can be effectively described, while the second limits the

interpretations to those which can be effectively described.

A second open question concerns the relationship between an

axiomatization of the kind given by Floyd and Hoare (consisting of a

finite number of axiom schemes),and a decision procedure of the sort

provided by Theorems 1 and 2. In order for a decision procedure to be

a realistic analogue of a F’toyd-Hoare axiom system, it should, in some

sense, be uniform; i.e. independent of the particular interpretation I

320

tiat is being used. For this reason, Theorem 2 is perhaps not all that

usefirl. But it still might have application when we have a fixed

interpretation in mind.

A third question concerns the relationship between the

uninterpreted case considered in [MH80] and the interpreted case

discussed here. It is interesting to note that termination assertions

were shown (in [MH80]) to be somewhat more tractable than partkd

correctnessassertionsin the uninterpreted case.

This leads us to our last point: the relationship between partird

correctness and tcrrnination, and our ability to find good axiom

systems for complicated programming languages. One conclusion we

can draw is that under the assumption that the halting problem is

decidable for finite interpretations, partial correctness and tmrnination

seem to have essentially the same complexity. However, for more

complicated deterministic programming Ianguagcs such as those

discussed in [C176/79] which do not have a dccidablc halting problem

for tinite interpretations, twrrrinatiurr assertions, and hence total

correctness asscrtiorrs, arc effcctivclv axiornatizable. while ~artial

correctness assertions are not, This suggests the use of a tottd

c!}~ectne$s proof $ystem which, unlike mcst currentIy available, does

not require the establishment of partial correctness as an essential first

step.

References

[C176/79] Clarke, E.M. Programming language constructs for

which it is impossible to clbtain good Hoare axiom systems. .L4CM

26:1, January, 1979 Ph.D. Thesis, Cornell, 1976.

[C078] Cook, S.A. Soundness and completeness of an axiom

system for program verification. SIAM Journal on Computing %1, pp.

70-90, February, 1978.

[Di76] Dijkstra, E. W, A Discipline of Programming. Prentice-

Hall, 1976.

[Ha79] Harel, D. Firs/-Order Dynamic Logic. Lecture Notes in

Computer Science,68. Springer-Verlag, N.Y., 1979.

[La80] Langmaack, H.A. Proof of a theorem of Lipton on Hoare

Logic and Applications. Institut fur Informatik und Praktische

Mathematik bericht 8003,June, 19g0.

[L080] Langmaack, H.A. and E.R. Olderog. Present day Hoare-

like systems for programming languages with procedures Power,

limits, and most likely extensions. In: Proceed, 7th Conf, Automata,

Lmrguagcs, and Programming, Nordwijkcrhout 1980, Eds: J. W. de

Bakker, J. van Leeuwen, LNCS 25, pp. 363-373, June, 1980,

[Li77] Lipton, R.J. A necessaryand sufficient condition for the

existence of Hoare Iogics. h’s: 18th IEEE Symp. on Found. Comp.

Science, pp. 1-6, October, 1977.

[Me78] Meyer, A.R. Notes on Lipton’s generalization of the

theorems of Cook and Clarke on expressiveness. Privately circulated

notes.

[MH80] Meyer, A.R. and J.Y. Halpern. Axiomatic definitions of

programming Ianguagcs: a theoretical assessment. In: Proceed. 7th

ACM Symp. on Princip]cs of Programming Languages. pp. 202-212,

.iamrary, 1980(to appear in .JACM).

~i81] Mitchell, J.C. Axiomatic Definability and Completeness

for Recursive Programs. S.IVLThesis. M. I.T., 1981.

~r76] Pratt, V.R. Sernantical Considerations of Floyd-Hoare

Logic. In: 17th IEEE SymP. on Found. Comp. Science, PP. 109-121,

October, 1976.

[Sh67] Shoenfield, J. R. Mathematical logic. Addison Wesley,

1967.

321

