A Synthesis of Two Approaches for
Verifying Finite State Concurrent
Systems

E. M. CLARKE, Carnegie Mellon University, Pittsburgh, USA
O. GRUMBERG, Technion-Israel Institute of Technology, Haifa, Israel

R. P. KURSHAN, AT&T Bell Laboratories, 600 Mountain Ave, Murray
Hill, NJ 07974, USA

Abstract

The paper provides a synthesis between two main approaches to automatic verification of finite-
state systems: temporal logic model checking and language containment of automata on infinite
tapes. A new branching-time temporal logic is suggested, in which automata on infinite tapes are
used to define new temporal operators. Each such operator defines a set of acceptable computation
paths. Path quantifiers are used to specify whether all paths or some path from a state should be
in some acceptable set. The logic is very powerful and includes both linear-time and branching-time
temporal logics. We give an efficient model checking procedure that checks whether a finite-state
system satisfies its specification, given by a formula of the new logic. Our procedure is linear in the
size of the system and a low level polynomial in the size of the specification.

Keywords: Automata on infinite tapes, finite-state systems, model checking, temporal logics, w-

regular languages.

1 Introduction

Finite state concurrent systems arise in many applications. Both sequential circuits
and communication protocols can be viewed as implementing such systems at some
level of abstraction. When the number of system states is large, correctness may
become a major problem. Two techniques have shown promise for automatically
verifying this type of program. The first approach is based on temporal logic model
checking and is used in the CTL verifier [7, 8] developed at CMU. The second approach
is based on showing containment between automata and is used by the COSPAN
system developed at Bell laboratories [1, 14]. Although the two verification systems
have the same basic goal, they differ significantly in the way they attempt to achieve
this goal.

The CTL model checker determines whether a formula of the propositional,
branching-time logic CTL is true in some state of a labelled state-transition graph or
Kripke structure. The basic algorithm is linear in the size of the CTL formula and
also in the size of the Kripke structure. It has been used successfully to find subtle
errors in self-timed circuits [5, 9]. A number of other researchers have either extended

J. Logic Computat., Vol. 2 No. 5, pp. 605618 1992 © Oxford University Press

606 A Synthesis of Two Approaches

the basic algorithm or proposed alternative algorithms [3, 6, 12, 15, 20, 23]. Recently,
a new version of the CTL model checking algorithm has been developed which uses
binary decision diagrams [4] to represent state-transition graphs in a very concise
manner. The new algorithm has permitted much larger state-spaces to be searched
than was previously possible. For example, in [17] it was used to verify certain prop-
erties of the cache consistency protocol for a new multiprocessor being developed by
the Encore Corporation (the Encore Gigamax). This required searching a state-space
with more than 103 states.

The COSPAN system was developed at Bell Labs for protocol verification. The
protocol is represented by a collection of finite state processes, P. In order to show
that P meets some specification SP, COSPAN proves that the automaton determined
by the product of the processes in P is contained in the automaton determined by
SP. Both the protocol and its specification are given by automata on infinite tapes
in order to handle fairness properties. Usually the protocol will be non-deterministic
and its specification deterministic. The algorithm for showing containment in this
case is linear in the product of the sizes of the two automata. The system has
been used to verify the X.25 protocol specification, the (CCITT) FTAM protocol,
and several Datakit protocols. An implementation of the COSPAN system based on
binary decision diagrams is currently being developed.

Both approaches have their advantages and disadvantages. It may be difficult to
describe the behaviour of a complex finite state system by a temporal logic formula.
In some cases it is even impossible to do so. Automata are frequently more flexible
for describing such properties. Fairness properties, for example, cannot be directly
expressed in CTL and must be handled indirectly by means of fairness constraints
in the CTL verifier. Automata, on the other hand, can be tedious to debug if the
number of states is large, and branching-time properties are not easily expressed in
terms of language containment. Moreover, it is frequently necessary to make sure that
the automaton being verified satisfies specifications given by two different automata
or that is satisfies one specification but not another. Thus, a logic is implicit, if not
explicit, in the automata-based approach.

What is needed is the ability to define new temporal operators by using automata
in such a way that efficient model checking is possible. This paper provides such a
synthesis: We describe a branching time temporal logic, called ECTL, which per-
mits operators of the form E[M](f1,... , fn) and A[M]|(f1,... , fn) where M is an
automaton on infinite tapes and fi,... , f, are other ECTL formulas. (The new op-
erators may, of course, be given more mnemonic names by the user.) Intuitively, the
formula E[M](f1,... , fn) (resp. A[M]|(f1,... ,fn)) will be true in some state of a
Kripke structure if some path (every path) in the structure that starts at that state
is accepted by the automaton M(fq,... , f,) whose transitions are given in terms of
the lower level formulas f;,... , fn. All of the standard operators of branching-time
temporal logic can be defined as ECTL operators. Because the operators are given by
automata on infinite tapes, the logic can handle linear-time properties as well. This
approach is applicable to a number of different types of automata on infinite tapes.
In each case the complexity is linear in the size of the Kripke structure and a low
level polynomial in the size of the automaton M.

A number of authors have proposed the use of automata on infinite tapes instead
of temporal logic for verifying properties of concurrent systems [2, 16, 19]. Although

A Synthesis of Two Approaches 607

their papers argue persuasively that automata can be easier to use than temporal logic
for specifying properties of concurrent programs, they do not address the problem of
how the verification can be automated in the case of finite state programs. Wolper
[25] has described an extension of linear temporal logic that permits operators to be
specified by regular expressions. However, Sistla and Clarke {21] have shown that
the model checking problem for his logic is PSPACE-complete. Vardi and Wolper
[23] have developed an automata theoretic approach to model checking for linear
temporal logic. In their approach a Biichi automaton is extracted from the formula
to be checked and automata theoretic means are used to show that paths in the Kripke
structure are accepted by this automaton. While their algorithm is closely related
to the decision procedure for satisfiability of linear temporal logic formulas, it would
probably be difficult to implement. Vardi, Wolper, and Sistla [26] have considered an
extended version of linear temporal logic with operators specified by Biichi automata,
but do not show how to handle the branching time properties. Vardi and Wolper
[24] and Thomas [22] have proposed extended branching time logics, but have not
addressed model checking problem for these logics. Habasinski [13] has investigated
the model checking problem for a logic based on Miiller automata, but, unfortunately,
his procedure does not appear to work in general.

Our paper is organized as follows: Section 2 reviews the syntax and semantics of
the computation tree logics CTL and CTL*. Section 3 describes the CTL model
checker and the use of fairness constraints. Section 4 contains the definition of Miiller
automata and some examples of how they might be used to specify interesting prop-
erties of programs. It also contains the syntax and semantics of the logic ECTL.
Section 5 gives an efficient model checking algorithm for ECTL formulas for the case
in which all the operators are specified by Miiller automata. The paper concludes in
Section 6 with a discussion of some open problems and directions for future research.

2 Computation tree logics

The logic CTL" [8, 10, 11] combines both branching-time and linear-time operators;
a path quantifier, either A (‘for all computation paths’) or E (‘for some computation
path’) can prefix an assertion composed of arbitrary combinations of the usual linear
time operators G (‘always’), F (‘sometimes’), X (‘nexttime’), and U (‘until’). There
are two types of formulas in CTL": state formulas (which are true in a specific state)
and path formulas (which are true along a specific path). Let AP be the set of atomic
proposition names. A state formula is either:

e A if Ac AP.
e If f and g are state formulas, then —~f and f V g are state formulas.
o If f is a path formula, then E(f) is a state formula.

A path formula is either:

e A state formula.
o If f and g are path formulas, then —f, f V g, Xf, and fUg are path formulas.

CTL" is the set of state formulas generated by the above rules.
CTL is a restricted subset of CTL* that permits only branching-time operators —
each path quantifier must be immediately followed by either an X or a U operator.

608 A Synthesis of Two Approaches

More precisely, CTL is the subset of CTL* that is obtained if the syntax for path
formulas is restricted to include only the following rule:

o If f and g are state formulas, then Xf and fUg are path formulas.

Linear temporal logic (LTL), on the other hand, will consist of formulas that have
the form A f where f is a path formula in which the only state subformulas that are
permitted are atomic propositions. More formally, a path formula is either:

e An atomic proposition.
e If f and g are path formulas, then ~f, fV g, Xf, and fUg are path formulas.

We define the semantics of CTL* with respect to a structure K = (W, R, L), where

e W is a set of states or worlds.

e R C W x W is the transition relation, which must be total. We write w; — wo
to indicate that (w;,wsz) € R.

el : W — P(AP) is a function that labels each state with a set of atomic
propositions true in that state.

Unless otherwise stated, all of our results apply only to finite Kripke structures.
We define a path in K to be a sequence of states, 7 = wo,wy,... such that for every
i >0, w; — wiyr. 7 will denote the suffiz of 7 starting at w;. We use the standard
notation to indicate that a state formula f holds in a structure: K, w |= f means that
f holds at state w in structure K. Similarly, if f is a path formula, K, E f means
that f holds along path 7 in structure K. The relation |= is defined inductively as
follows (assuming that f; and f, are state formulas and g, and g are path formulas):

1. wk A & A€ L(w).

2. wkE -fi < w ¥ h.

3. wkE fivfa & wih fi orw E fa

4. w | E(g1) < there exists a path 7 starting withw such that 7 |= g1.
5 mkE A & w is the first state of 7 andw = f.

6. ™ E ¢ & 7w oar.

7. TEqaVg © mEg orT E g

8. mE Xan s 1 E g

9. ©F g1Uga <& there exists ak > 0 such that 7* b= g» and

forall0<j< k, 7 E g1.

We will also use the following abbreviations in writing CTL* (CTL and LTL) for-
mulas:

fl

fAg=-(~fV-g) Ff=trueUf A(f) = ~E(=f) Gf =-F-f.

In [11] it is shown that the three logics discussed in this section have different ex-
pressive powers. For example, there is no CTL formula that is equivalent to the LTL
formula A(FGp). Likewise, there is no LTL formula that is equivalent to the CTL
formula AG(EFp). The disjunction of these two formulas A(FGp) V AG(EFp)isa
CTL* formula that is not expressible in either CTL or LTL.

Although A(FGp) cannot be expressed as a CTL formula, A(GFp) can be ex-
pressed as a CTL formula, and in fact is equivalent to AG(AFp). We need to use

A Synthesis of Two Approaches 609

this fact in Section 5. To see that it is true assume that A(GFp) is false in some state
w of a Kripke structure. Hence, there must be a path 7 such that — p holds almost
always on 7. Let w; be the first state on 7 such that — p holds at w; and at every
state following w; on 7. Clearly, AFp does not hold at w;. Since w; is reachable
from w, it must be the case that AG(AFp) is false at w. Conversely, assume that
AG(AFp) is false at state w. Thus, w = EF(EG - p). It follows that there is a
state w; reachable from w by a finite path 7 such that w; = EG — p. There must
also be a path 7 starting at w; such that — p holds globally along 7;. The path «
obtained by concatenating 7y and m; starts at w and shows that A(GFp) is false at
that state.

3 The CTL model checking algorithm

Let K = (W, R, L) be a finite Kripke structure. The model checking problem for some
logic L is to determine which states in W satisfy a given formula f of L. This problem
is PSPACE-complete for LTL and for CTL*. In [8], an efficient graph-traversal
algorithm is given to solve the model checking problem for CTL.

THEOREM 3.1
Let K = (W,R,L) be a Kripke structure and f be a CTL formula. There is an
algorithm for finding the states of K where f is true that runs in time O(length(f) -
(IW] + |R])).

This algorithm is implemented in the EMC system developed at CMU and has been
used to debug a large number of non-trivial finite state machines [5, 8, 9].

Occasionally, we are only interested in the correctness of fair execution sequences.
For example, we may wish to consider only execution sequences in which some process
that is continuously enabled will eventually execute. This type of property cannot
be expressed directly in CTL (see [11]). In order to handle such properties we must
modify the semantics of CTL slightly. Initially, the model checker will prompt the
user for a series of fairness constraints. Each constraint can be an arbitrary formula
of the logic. A path is said to be fair with respect to a set of fairness constraints if
each constraint holds infinitely often along the path. The path quantifiers in CTL
formulas are now restricted to fair paths.

More formally, the new logic, which we call CTLF, has the same syntax as CTL.
But a structure is now a 4-tuple K = (W,R, L, F) where W, R, L have the same
meaning as in the case of CTL, and F is a collection of predicates on W, F C P(W).
A path 7 is F-fair iff the following condition holds: for each G € F, there are infinitely
many states on m which satisfy predicate G. CTLY has exactly the same semantics
as CTL except that all path quantifiers range over fair paths. In (8] it is shown that
handling fairness in this manner does not change the linear time complexity of the
model checker.

THEOREM 3.2

Let K = (W,R, L, F) be a Kripke structure with a set of fairness constraints F, and
let f be a CTLF formula. There is an algorithm for finding the states of K where f
is true that runs in time O(length(f) - ((W| + |R]) - |F|).

610 A Synthesis of Two Approaches

Fairness constraints have also been incorporated into the EMC verification system.
Practical examples of their use in verifying finite state concurrent systems are given
in several papers [5, 8, 9].

4 Automata on infinite tapes and the logic ECTL

A Miiller automaton is a 5-tuple M = (St, Alph, T'r, so, Freq) where St is a finite set of
states; Alph is the input alphabet which must also be finite; Tr : St x Alph — St is the
state transition function; sq is the initial state; and Freq C P(St) is a set of frequent
states. An infinite string ¢ = agay,... € Alph® is accepted by M provided the set of
states that M enters infinitely often when started in s¢ on string o is one of the sets
in Freq. More formally, let ug,u1,... be the sequence of states defined by up = so
and w1y = Tr(ug,ag). If inf(o) = {s € St|s = uy, for infinitely many k > 0}, then
o is accepted by M iff inf(o) € Freq. Note that, since Tr is a function, the defined
automaton is deterministic. That is, for a given state and a given input at most one
transition is defined. This is important for the efficiency of the algorithm described
in the next section.

In this paper Alph = P(X) will be the set of all possible truth assignments for some
nonempty set of proposition symbols . Each truth assignment will be represented by
the subset of ¥ that is assigned the value true. The elements of ¥ serve as parameters
when a temporal operator is defined in terms of the automaton. In describing the
transitions of M we will use propositional formulas over ¥ to represent subsets of
Alph. The formula f will represent all the truth assignments in Alph that satisfy f.
For example, if & = {a, b}, then a transition from s; to s labelled by (a Ab) V (a A—b)
will actually represent two transitions from s; to sz, one labelled by {a, b} and one
labelled by {a}. In using this abbreviation it is necessary to be careful that the
intended automaton is really deterministic. If some state s has a transition labelled
with fi and another labelled with f,, then it should be impossible to satisfy fi A fa.

Figure 1 shows Miiller automaton M; for the until operator U. In this case ¥ =
{a,b} and Alph = P({a,b}). The automaton accepts infinite paths over Alph that
satisfy the path formula a U b. The set of frequent states is given by Freq = {{B}}.
All of the other standard temporal logic operators can be defined similarly.

:
_ A

a A —b true

Fic. 1. Miiller automaton for until operator.

Figure 2 gives a Miiller automaton M, over ¥ = {a} for the path formula FGa
(almost always a). Recall from Section 2 that the corresponding CTL” state formula
A(FGa) cannot be expressed in CTL. Although specifications involving this prop-
erty frequently occur in reasoning about finite state concurrent systems, they must
currently be handled by means of fairness constraints in the EMC system. The set of

A Synthesis of Two Approaches 611

frequent states is given by Freq = {{B}} in this case as well.

We are now ready to give the syntax and semantics of ECTL formulas. Let {M;}
be a family of Miiller automata such that each M; has P(Z;) as its input alphabet
where ©; = {a},... ,ail}. Let AP be a set of atomic propositions. Then the set of
ECTL formulas is the smallest set that is closed under the following three rules.

e Every atomic proposition is an ECTL formula.
o If f and g are ECTL formulas, then — f and f VvV ¢ are ECTL formulas.

o If fi,..., fx, are ECTL formulas, then E[M;](f1,..., fx,) and A[M;](f1,. ., fr.)
are ECTL formulas.

—Qa a

Fic. 2. Miiller automaton for almost always a.

Thus, if M, and M, are the Miiller automata defined in Figures 1 and 2, a typical
ECTL formula might be A[M;](p V r,q) V — E[M;](¢g). This formula will hold in
a state s if either (p vV 7)Ugq holds for every path starting at s, or ¢ is false infinitely
often on each path starting at s.

In order to give the semantics of ECTL it is convenient to use the following defini-
tion. Let m = wg,wn,... be a path in a Kripke structure K, and let C = gg,q1, . ..
be a sequence over P({fi,... , fx}) where fi,... , fr are formulas. 7w agrees with C
on {f1,..., fx}if and only if for every i > 0 and j = 1,...,k, K,w; | f; iff f; € ;.

As in Section 2 we will write K, w = f to indicate that the ECTL formula f is true
at state w in the Kripke structure K. The semantics of ECTL is given inductively
following the syntax in the preceding paragraph. Only case 3 will be considered here
since the other cases are trivial. M;(f1,... , fk,) will denote the Miiller automaton
in which each parameter ag» of M; is replaced by the corresponding formula f;. With
this convention:

o K,w = E[M](f1,..., fx) iff for some path 7 = wo,w;,... starting at w in K
there is a sequence C = qo,q1,... accepted by M;(f1,..., fr,) such that = agrees
with C on {f1,... , fk: }-

e K,w &= A[M](f1,...,fx,) iff for every path # = wq,w;,... starting at w in
K there is a sequence C = qo,q1,... accepted by M;(f,... , fx,) such that =

agrees with C on {f1,... , fi, }

The next theorem shows that ECTL is at least as expressive as CTL".

THEOREM 4.1
For every CTL* formula ¢ there is an ECTL formula ¢ which will be true in exactly

the same states of a Kripke structure as ¢.

612 A Synthesis of Two Approaches

The proof of this theorem is postponed to Appendix A.

5 Model checking for ECTL formulas

In order to motivate our technique we first consider two simpler problems for labelled
directed graphs. Let G = (V, E) be a directed graph and let Freq = {S1,...,Sa} C
P(V). The E-acceptance problem for G is to find all of those vertices v such that for
some path 7 starting at v, inf(r) is an element of Freq. The A-acceptance problem
for G is to find all of those vertices v such that for every path 7 starting at v, inf(r)
is an element of Fregq.

We first show how to solve the E-acceptance problem by using the CTL model
checker on the Kripke structure determined by G with each vertex labelled by its
name. Let S; = {v1,... ,v,} be an element of Freq. By a slight abuse of notation
we will also use S; to denote the propositional formula v; Vva V... Vv,,. We now use
the CTL model checker to check the formula EF(EGS;) with 7, fairness constraints:
infinitely oftenvy,... , infinitely oftenv,,. The vertices that we are interested in
are the ones that are labelled with EF(EGS)) for some S; € Freq when the algorithm
terminates. Each such vertex is the beginning of a path 7 that visits each element of
S; infinitely often and from a certain point on is contained entirely within S;. Thus,
inf(m) = S;. Given the linear complexity of the CTL model checking algorithm, it is
easy to see that the complexity of the E-acceptance problem is O(|G| - |Freq|) where
|G| is the sum of the number of vertices and the number of edges in G and |Freq| is
the sum of the cardinalities of the sets in Freq.

The A-acceptance problem is somewhat more complicated. First we check “EGtrue
with n fairness constraints: infinitely often — S1,... ,infinitely often — S,,. This
procedure will find those vertices v, such that every path starting with v is almost
always within some S;. This test is not sufficient, since a path 7 might almost always
be within S; but not visit some vertex v of S; infinitely often. In addition, we must
insure that for every path 7 there is a set S; € F'req such that inf(r) = §;. For
each S; we would like to check the formula

A(FGS, — [GFv; A GFu; A ... A GFu,)))

with fairness constraints: infinitely often — 7},... ,infinitely often - 7};,, where
Ty ... Ty, are all of the elements of Freq that are subsets of 5;.

A vertex v that passes the test will have the property that every path m which is
almost always within S;, but is not almost always in any subset T; of S, visits every
vertex in S; infinitely often. The vertices for which the A-acceptance problem holds
are those that satisfy the above formula with its fairness constraints for every S;. To
see why this works, consider the case of a particular S;. Note that if a path 7 satisfies
the fairness constraint infinitely often - T, then inf() is not a subset of T;. Thus,
if path 7 is fair, inf(n) is not contained in any subset T1,... ,Th, of S;. Hence, if w
is almost always contained within S;, then it should visit each of the elements of S
infinitely often. If 7 is not fair, then inf(r) is a subset of some T; and its acceptance
will be determined when T; is considered.

Unfortunately, the above formula is not a CTL formula and, therefore, cannot be
directly checked using the CTL model checker. However, we can rewrite it as

A(FGS, — GFv) A A(FGS, — GFv;) A ... A A(FGS; — GFv,,).

A Synthesis of Two Approaches 613

Thus, it is sufficient to be able to check formulas of the form A(FGp — GFq) with
a series of fairness constraints: infinitely often u,,... ,infinitely often u4. This
formula is still not a CTL formula, but it is equivalent to one as the following chain
of identities shows:

A(FGp - GFq) = A(-FGp VvV GFyq)
= A((GF -p) vV GFq)
= A(GF(-pV q)
= AG(AF(-p V gq))

The last equivalence follows from the identity A(GFf) = AG(AF f) discussed in
Section 2. The last formula can be checked by the standard model checking algorithm.
It follows that the complexity of the A-acceptance problem is O(|G| - |Freg|*) where
|G| and |Freg| are as above.

We would like to use the technique described above to check temporal operators
defined in terms of Miiller automata. In order to accomplish this we first define a
new Kripke structure which is the product of the Kripke structure to be checked and
the given Miiller automaton. Let K = (W, R, L) be the Kripke structure and M =
(St, Alph, Tr, so, Freq) be a complete Miiller automata, i.e. the transition function
of M, Tr, is defined for every element in St x Alph. Assume that Alph = P(X).
Then K x M is the Kripke structure with state set W x St such that each state
(w,s) € W x St is labelled by {s}. The transition relation for the product Kripke
structure is given by the following rule: There will be a transition (w,s) — (w',s’)
provided that

e w — w' is a transition of K.

e There is g € Alph = P(X) such that:
—Tr(s,g) = s is a transition of M.
—Foreverya € X, K,w [aiff € g.

A path p in the product structure K x M can be decomposed into a path 7 in K
and a path ¢ in M. The path p simulates the behaviour of M on 7. More precisely,
if ¢ starts at the initial state of M and inf(c) is an element of Freq, then path 7 in
K is accepted by the Miiller automaton M. The completeness of M is a technical
restriction which insures that the transition relation of K x M is total, i.e. every
state in the product structure has at least one successor. A Miiller automaton that
is not complete can be converted to one that is by adding ‘trap’ states. A somewhat
more complicated definition of the product structure can also be used to avoid this
assumption.

We now show how to check E{M]|(fi,..., fm) and A[M](f1,..., fm) assuming that
fi,... , fm are atomic formulas labelling K.

THEOREM 5.1

K,w | EM](f1,... ,fm) iff K xM(f1,... ,fm), (w,s0) F EF(EGS) with
fairness constraints: infinitely often s;,... ,infinitely often s,, for some S; =
{51,... ,8r,} € Freq.

614 A Synthesis of Two Approaches

The complexity for this case is O(|K| - |Tr| - |Freg|), where |T'r| is the size of M’s
transition graph and |F'req| is the size of its frequent set measured as in the directed
graph case considered previously.

THEOREM 5.2
K,w | AM|(f1,... , fm) iff

o K x M(f1,...,fm),(w,s0) E —EG true with fairness constraints:
infinitely often — S, ... ,infinitely often - S,,.
e For every S; € Freg:
KxM(fi,..., fm),(w,s0) E A(FGS;, — [GFs; A GFs2 A ... GFs,])

with fairness constraints: infinitely often—Tj,... ,infinitely often - T}, , where
Ty ... Ty, are all of the elements of Freg that are subsets of S;.

The complexity for this case is O(|K| - |Tr| - |Freq|?).

The algorithm outlined above will label each state (w, sg) of K x M with an A or
an E formula iff that formula is true in state w of K. We can use the labelling of the
product graph to label the states of the original Kripke structure appropriately. In
order to handle an arbitrary ECTL formula h, we successively apply the state labelling
algorithm to the subformulas of h, starting with the shortest, most deeply nested
and work outward to include all of h. Working in this manner, it is guaranteed that
whenever E[M|(f1,..., fm) (A[M](f1,..., fm)) is considered, fi,..., fm have already
been processed, i.e., a state w € K is labelled with f;, 1 <4 < m if and only if K, w |=
fi. Defining ¥ = {fi1,..., fm}, the above algorithm can be applied to determine for
every w € K if EIM|(f1,..., fm) (A[M](f1,..., fm)) is true in w. Thus, the algorithm
described above works correctly for every ECTL formula h. Since processing a single
Miiller automaton M; with T'r; as its transition relation and F'reg; as its acceptance
set takes time O(|K|-|Tr;|-|Freg:|?) and since h has length(h) different subformulas,
the entire algorithm requires O(|K| - length(h) - |[TTmaz| - |FT€gmaz|?), where maz is
the index of the Miiller automaton used as an operator in A for which the product
|Tr;| - |Freg;|? is largest. Note that this complexity is linear in the size of the Kripke
structure K and a low order polynomial in the size of M ,,.

6 Conclusion

It should be quite easy to adapt the EMC system to handle ECTL formulas. Since
the basic algorithms in this paper are given in terms of primitives that are already
implemented in the EMC verifier, it should only be necessary to provide a parser
for ECTL formulas and a program for computing the product of a Kripke structure
and the appropriate automaton on infinite tapes. Since memory is always a critical
resource with this type of verification, a version of the algorithm that avoids the
product construction would be quite useful. Such an algorithm has been obtained for
the case of Biichi automata and L-automata by T. G. Tang at CMU. Although his
algorithm will use as much memory in the worst case as the algorithm described here,
it is possible to give examples where it results in enormous savings.

A Synthesis of Two Approaches 615

An obvious question to ask is whether our techniques can be extended to handle
non-deterministic versions of the automata discussed in this paper. It is not difficult
to show that the model checking problem is PSPACE-hard for ECTL formulas with
operators specified by non-deterministic automata. Although an algorithm for this
may still be polynomial in the size of the Kripke structure, it will very likely involve
some version of the closure construction in [23, 26] and will probably be much more
difficult to implement. Similar results should hold for the other types of automata as
well. Other theoretical questions require more research. For example, there is a close
relationship between the model checking problem and various problems for formal
languages like checking emptiness and containment of languages. It would be inter-
esting to investigate this relationship further. In particular, the algorithm described
in Section 5 should give a simple polynomial algorithm for deciding containment of
deterministic Miiller automata. Another problem to consider is the complexity of
deciding validity for ECTL formulas. Although the ECTL has provably greater ex-
pressive power than CTL*, the model checking problem is of much lower complexity
for ECTL than for CTL*. Is this lower complexity observed for validity as well?

Finally, since the technique described in the paper applies to several different types
of automata, it is natural to ask which is best? The translation from a deterministic
Biichi automaton to a deterministic Miiller automata is exponential in general. The
reverse translation (from deterministic Miiller to deterministic Biichi) is not always
possible. Thus, it is unlikely that any one type of automaton is best for all problems.
Some problems can be specified more succinctly using Biichi automata and some
using Miiller automata. L-automata and V-automata are a step in the right direction
since they combine Biichi and Miiller acceptance properties. Our approach provides
for maximum flexibility since the CTL model checking algorithm can be used as the
basis for efficient checking algorithms for all four types of automata.

Acknowledgements

We wish to acknowledge the help of T. G. Tang. Also, Michael Kaminski is thanked
for useful discussions. The first author was partially supported by NSF Grant MCS-
82-16706. The second author was partially supported by a Weizmann postdoctoral
fellowship.

References

[1] S. Aggarwal, R. P. Kurshan and K. K. Sabnani, A calculus for protocol specification and
validation. In Protocol Specification, Testing and Verification, North-Holland, pp. 19-34, 1983.

[2] B. Alpern and F. Schneider, Verifying temporal properties without using temporal logic. Tech-
nical Report 85-723, Cornell University Computer Science Department, December 1985.

[3] A. Arnold and P. Crubille, A linear algorithm to solve fixed-point equations on graphs. Technical
Report 1-8632, Université de Bordeaux I, France, November 1986.

[4] K. S. Brace, R. L. Rudell and R. E. Bryant, Efficient implementation of a BDD package. In
Proceedings of the 27th ACM/IEEE Design Automation Conference. IEEE Computer Society
Press, June 1990.

[5] M. Browne, E. Clarke, D. Dill and B. Mishra, Automatic verification of sequential circuits using
temporal logic. ITEEE Transactions on Computers, C-35(12), 1986.

[6] M. C. Browne, An improved algorithm for the automatic verification of finite state systems
using temporal logic. In Proceedings of the 1986 Conference on Logic in Computer Science, pp.

616 A Synthesis of Two Approaches

260-267, Cambridge, Massachusetts, June 1986.

[7] E. M. Clarke and E. A. Emerson, Synthesis of synchronization skeletons for branching time tem-
poral logic. In Proceedings of the Workshop on Logic of Programs, Lecture Notes in Computer
Science 131, Yorktown Heights, NY, Springer-Verlag, 1981.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages and
Systems, 8(2), pp. 244-263, 1986.

[9] D. L. Dill and E. M. Clarke, Automatic verification of asynchronous circuits using temporal
logic. IEE Proceedings, 133, pt. E(5), p. 276-82, 1986.

[10] E. A. Emerson and E. M. Clarke, Characterizing properties of parallel programs as fixpoints.
In Proceedings of the Seventh International Colloguium on Automata, Languages and Program-
ming. Springer Lecture Notes in Computer Science 85, pp. 169-81, 1981.

[11] E. A. Emerson and J. Y. Halpern, ‘Sometimes’ and ‘Not Never’ revisited: On branching time
versus linear time. In Proceedings 10th ACM Symp. on Principles of Programming Languages,
pp. 169-80, 1983.

[12] E. A. Emerson and C. L. Lei, Modalities for model checking: Branching time strikes back. 12th
Symposium on Principles of Programming Languages, New Orleans, La., pp. 89-96, January
1985.

[13] Z. Habasinski, Program verification and Miiller automata. Technical University, Poznan.

[14] R. P. Kurshan, Testing containment of w-regular languages. Technical Report 1121-861010-33-
TM, Bell Laboratories Technical Memorandum, 1986.

[15] O. Lichtenstein and A. Pnueli, Checking that finite state concurrent programs satisfy their linear
specification. In Proceedings of the 12th Annual ACM Symposium on Principles of Programming
Languages, New Orleans, La., pp. 97-107, January 1985.

[16] Z. Manna and A. Pnueli, Specification and verification of concurrent programs by V-automata.
In Thirteenth ACM Symposium on Principles of Programming Languages, Munich, pp. 1-12,
January 1987.

[17] K. L. McMillan and J. Schwalbe, Formal verification of the Gigamax cache consistency protocol.
In Proceedings of the International Symposium on Shared Memory Multiprocessing, Japan, pp.
111-134, April 1991.

[18] R. McNaughton, Testing and generating infinite sequences by a finite automaton. Information
and Control, 9, 521-530, 1966.

[19] M. Nivat, Behaviors of synchronized systems of processes. Technical Report 81-64, Université
Paris 7, November 1981.

[20] J. P. Quielle and J. Sifakis, Specification and verification of concurrent systems in CESAR. In
Proceedings of the Fifth International Symposium in Programming, pp. 337-51, 1981.

[21] A. P. Sistla and E. M. Clarke, Complexity of propositional temporal logics. Journal of the
Association for Computing Machinery, 32(3), 733-749, 1986.

[22] W. Thomas, On chain logic, path logic, and first-order logic over infinite trees. In Proceedings
of the 1987 Conference on Logic in Computer Science, pp. 245-257, June 1987.

[23] M. Vardi and P. Wolper, An automata-theoretic approach to automatic program verification.
In Proceedings of the Conference on Logic in Computer Science, Boston, MA, pp 332-44, June
1986.

[24] M. Y. Vardi and P. Wolper, Yet another process logic. In Proceedings of the Workshop on Logic
of Programs, Lecture Notes in Computer Science, 164, pp. 501-513. Springer-Verlag, 1983.

[25] P. Wolper, Temporal logic can be more expressive. In Proceedings of the 22nd Symposium on
Foundations of Computer Science, pp. 340-348, 1981.

[26] P. Wolper, M. Y. Vardi and A. P. Sistla, Reasoning about infinite computation paths. In
Proceedings of the 24th Symposium on Foundations of Computer Science, pp. 185-194, 1983.

Appendix: Proof of Theorem 4.1

We first present some definitions and lemmas that are needed for the proof. Let Alph be a set of
state formulas of CTL*. We say that C is a sequence over Alph if C € Alph“. In the sequel, we

A Synthesis of Two Approaches 617

sometimes interpret a path formula with respect to a sequence C rather than with respect to a path
m in a Kripke structure. We say that C = ¢o,q1,... satisfies a state formula f (denoted C = f) iff
f € qo. The rest of the definition is identical to the definition of = over 7. We use C* to denote the
suffix of C starting at g;.

Let f be a path formula of CTL* and let g be a state subformula of f. An occurrence of g in f is
mazimal if this occurrence is not a proper subformula of a proper state-subformula of f. The formula
g is mazimal in f if it has a maximal occurrence in f. Maz(f), the set of maximal state-subformulas
of f, is inductively defined by:

o If f is a state formula then Maz(f) = {f }.
e If f is a path formula and either f = —f; or f = Xf1, then Maxz(f) = Maz(f1).

e If f is a path formula and either f = f1 V fa or f = fiUf; then Maxz(f) = Maz(f1) U Maz(fz).

When Maz(f) = {f1,... , fx} we sometimes refer to f as f[f1,... ,fx]. Given a set of state
formulas {41, ... ,4¥} we denote by f[w1,... 4] the formula obtained from f by replacing all the
maximal occurrences of f; in f by ¢;, fori =1,... k.

LEMMA Al

Let f{f1,... ,fx) be a path formula of CTL* with Maz(f) = {f1,... ,fx}, and let a1,... ,ax be
new proposition names. Then fla1,... ,ax] is an LTL formula.

ProOOF. Immediate. [|

LEMMA A.2
For every LTL formula f over the set of atomic propositions AP, there exists a deterministic Miiller
automaton My over Alph="P(AP) which accepts exactly those sequences over Alph* that satisfy f.

PROOF. In [23] Vardi and Wolper show that for every LTL formula f there is a Biichi automaton
By that accepts exactly those sequences that satisfy f. By [18] there is a deterministic Miller
automaton, My, defined over Alph“, that accepts exactly the same language as By. My is the

required automaton.

LLEmMA A.3
Let f[f1,...,fx] be a CTL* path formula with Maz(f) = {f1,... , fx} and let {1,... , ¥} and
{¢1,.-- oK} be two sets of state formulas. Also let C = go,q1,... and C’ = g¢{,q},... be two
infinite sequences over P({¢1,...,¥x}) and P({p1,...,pr}) respectively, such that for every i > 0
and j =1,...,k, ¥; € q; iff p; € q}. Then

(@) C F flyr,...] i C" E flor,... ekl

(b) Let m be a path in a Kripke structure K, such that m agrees with C on {t1,... ,¥%}, then

C kE flr,. .. ¥} i Kom = fldn, ... vkl

PROOF. Since the proofs of (a) and (b) are similar, we prove them simultaneously. We use induction
on the structure of f to show that for every i,

C'E flr,... ¥l iff C O flen. . ek iff Kot .tk

Base case: f is a state formula. Then Maz(f) = {f}, f[¢¥1] = ¥1 and f[p1] = ¢1. Thus, (a) and
(b) immediately hold.

Inductive step: We show that (a) and (b) hold for f = gUh. The other cases are handled similarly.
Given that f = gUh, Maz(f) = Maxz(g) U Maz(h). Assume that Maz(g) = {fj,,-.- , fj..} and
that Maz(h) = {fi,,... , fi, } where,

{1, Ty =450 > Fimt YA i fin b

If C* &= (gUh)[¢1,... ,¥] then there exists a ¢t > i, such that C* |= h[¢y,,... ,4;,] and for
all i <r <t, C" | g{¥j,. . ,%j,]- By the inductive hypothesis, 't E= hfey,-.. ,%1,] and
c'r = glej,--- 9] Moreover, K,n* = R[y,... ,¢,] and K, 7" = glYy,,... ,9¥;,]. This
implies that, c'i = (gUR)[p1,--- s pk] and K, i k= (gUhA)[%1,--- ,¥k}. The other implications

necessary to complete the proof of the inductive hypothesis proceed along similar lines. .

618 A Synthesis of Two Approaches

LEMMA A .4
Let Ms(ay,...,ax) be an automaton that accepts exactly those sequences over P({a1,...,ax}) that
satisfy flai,...,ak). Then, Ms(s1,... ,9) accepts C over P({h1,... ¢ }) ff C | fln, .o vkl

PrROOF. Let C be a sequence over P({t1,... ,%1}) and let C’ be a sequence over P({a1,... ,ax})
obtained from C by replacing everywhere ¢; by a;, for j =1,... , k.
Assume C is accepted by My (%1, ..., %) by an accepting run ug, uy, Then, ug,u1,... isarun

in M¢(a1,...,a), that accepts C’'. Thus, C’ fla1,. .. ,ai) and by Lemma A.3 C = f[$1,..., %]
Conversely, assume C = f[¢1, ... ,%,]. By Lemma A.3, C' = flai,...,ak]. Thus, C’ is accepted
by Mg(a1,... ,ai) by some accepting run. The same run accepts C in My (31,... k) |

We are ready now to prove Theorem 4.1. We will show that for every state formula ¢ of CTL*
there is an equivalent ECTL formula v, i.e., for every Kripke structure K and a state w in K,

KuwkE= piff K,w = 9.

PROOF. We prove the theorem by induction on the depth of the nesting of E operators in .

Base case: ¢ does not contain E operators. Thus, ¢ is either an atomic formula or a Boolean
combination of atomic formulas. In either case, ¥ = ¢.

Inductive step: We show that the claim holds for a state formula ¢ in which the depth of nesting
of E operators is at most n + 1.

Case (a): ¢ = Ef, where f is a path formula. Let Maz(f) = {f1,...,fx}- Each f; has at most
n nested E operators. Thus, by the inductive hypothesis for each f; there is an ECTL formula %;,
equivalent to f;.

Let a1,... ,a; be new proposition names. By Lemmas A.1 and A.2, there is a deterministic
Miiller automaton My, over Alph = P({a1,... ,ar}) that accepts exactly those sequences over
Alph® which satisfy flai,... ,ar]. We denote this automaton by My(a1,... ,ax). We choose
¥ = E[M¢](¢1,... ,¥) and show that ¢ = ¢.

Assume K,w | E[My|(¢1,... ,¥%). Then, there is a path 7 = wo, w1, ... starting at w in K
and a sequence C = qo,q1,... over P({1h1,... ,9}) such that C is accepted by My(v¥1,... ,¥%).

Moreover, for every @ > 0 and for all 1 < j < k, K,w; E v; iff ¥; € ¢;. Since ¢; and f; are
equivalent, K,w; = f; as well.

Let C' = ¢g,q},... be the sequence obtained from C by replacing ; by f; in each g;, for all
j=1,...,k. By Lemma A3, C & fl¥1,... ¢ if C' = f[f1,... ,fx]. Since C is accepted by
My (¥1,... ,9¥), by Lemma A4 C }= f[¢1,... , 9] and therefore C' & flfi,--- ,fk]- Since w
agrees with ¢’ on {f1,... ,fx}, K,m E flfi,--., fe]. But f[f1,..., fx] is identical to f. Thus,
K,w E Ef as required.

Conversely, let K,w = Ef. Then, there exists T = wo,w1,... starting at w in K such that
K,m = f. Let C' = g, q), ... be asequence over P({f1,..., fr}) such that for every ¢, q; =1{f;1f; €
MAX(f)and K, w; |= f;}. The path 7 agrees with C’ on {f1,..., fx}, therefore C' | f{f1, ... , frl-

Let C = qg, 41, . .. be a sequence over P({11, ..., }) such that for every 4, g; = {#;|f; € ¢/} By
Lemma A.3, C |= f[¥1,...,%%), thus C is accepted by M¢(41,...,%x). The equivalence between f;
and v, implies that K,w; = ; iff ¢¥; € g;, for every © > 0. Thus, agrees with C on {¥1,... , ¥k}
and by the definition of satisfaction of ECTL formulas, K,w | E[M¢](¢¥1,... ,¥k).

Case (b): ¢ is a Boolean combination of state formulas in which case ¢ is the same Boolean

combination of the corresponding ECTL formulas. [|

Received 22 December 1991

